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The aim of the study was to assess the quality and reproducibility of reducing the injected

[18F] sodium fluoride ([18F]NaF) dose while maintaining diagnostic imaging quality in bone

imaging in a preclinical skeletal model using digital photon counting PET (dPET) detector

technology. Beagles (n = 9) were administered three different [18F]NaF doses: 111 MBq

(n = 5), 20 MBq (n = 5), and 1.9 MBq (n = 9). Imaging started ≃45min post-injection

for ≃30min total acquisition time. Images were reconstructed using Time-of-Flight,

ultra-high definition (voxel size of 1 × 1 × 1 mm3), with 3 iterations and 3 subsets. Point

spread function was modeled and Gaussian filtering was applied. Skeleton qualitative

and quantitative molecular image assessment was performed. The overall diagnostic

quality of all images scored excellent (61%) and acceptable (39%) by all the reviewers.

[18F]NaF SUVmean showed no statistically significant differences among the three doses

in any of the region of interest assessed. This study demonstrated that a 60-fold [18F]NaF

dose reduction was not significantly different from the highest dose, and it had not

significant effect on overall image quality and quantitative accuracy. In the future, ultra-low

dose [18F]NaF dPET/CT imaging may significantly decrease PET radiation exposure to

preclinical subjects and personnel.

Keywords: [18F] sodium fluoride, PET/CT, digital photon counting, bone imaging, bone metabolism, sodium

fluoride dose reduction, preclinical molecular imaging, canine PET

INTRODUCTION

Sodium Fluoride ([18F]NaF) Positron Emission Tomography—Computed Tomography (PET/CT)
is used clinically in oncology patients to detect and characterize osteoblastic metastatic lesions
(1–4), as well as to aid visualization of atherosclerotic calcifications and plaques in patients with
cardiovascular disease (5–7). Recently, [18F]NaF has also been used as a bone imaging biomarker
to assess and quantify bone metabolic processes (i.e., osteoblastic activity) in non-oncologic
musculoskeletal disorders such as osteoarthritis and osteoporosis (8–20). The radiolabeled fluoride
ion exchanges with the hydroxyl groups in hydroxyapatite crystals on the surface of the bonematrix
to form fluoroapatite. Therefore, uptake of [18F]NaF uptake can be used a marker of osteoblastic
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bone metabolism. [18F]NaF PET/CT imaging is a sensitive,
noninvasive, imaging approach to assess bone metabolism (21–
23). Due to its [18F]NaF favorable pharmacokinetics, such as high
bone uptake, minimal binding to serum proteins, rapid single-
pass extraction, and fast clearance from the soft tissues, [18F]NaF
PET is more sensitive for detecting abnormal osteoblastic
activity and lesions than the current clinical gold standard,
99mTechnetium-labeled methylene diphosphonate (99mTc-MDP)
gamma scintigraphy. When compared with 99mTc-MDP gamma
scintigraphy, [18F]NaF PET has higher sensitivity, superior
image resolution, and improved target-to-background ratio (24).
Hybrid imaging modalities such as PET/CT and PET/Magnetic
Resonance Imaging (MRI) are currently used for assessing bone
metabolism (22–25). PET/MRI presents operational challenges
including attenuation correction for PET, longer than desired
MRI image acquisition times when compared with CT, and
reduced field of view when using dedicated MRI coils (e.g., knee
coils) which fail to aid in whole body skeletal assessment (25–27).
Radiation exposure can be a concern due to ionizing radiation
from PET radiotracers (28). Minimizing radiation exposure is
important not only for research subjects and patients, but also
for imaging technologists, nursing personnel and subject/patient
caregivers. It is believed that significant reductions in PET
radiotracer doses will benefit pediatric subjects/patients and
those subjects/patients participating in longitudinal studies with
multiple serial PET studies by reducing cumulative radiation
exposure (29, 30). Many imaging studies have focused on
CT radiation dose reduction without addressing the potential
dose reduction strategies associated with the administered PET
radiotracers (31, 32). Most PET radiotracer dose reduction
has been focused on the widely clinically utilized radiotracer:
2-deoxy-2-[18F]-fluorodeoxyglucose (18F-FDG) (33–36). The
current recommended guidelines for human [18F]NaF injected
doses from the European Association of Nuclear Medicine
(EANM) are weight based. For Adults: 1.5–3.7 MBq /kg
(megabecquerel (MBq) per kilogram (kg) of body weight (BW),
and Pediatrics: 2.2MBq/kg (37). The Society of NuclearMedicine
and Molecular Imaging (SNMMI) guidelines recommend a fixed
dose for adults: 185–370 MBq, and weight-based for Pediatrics
(2.22 MBq/kg) (38). Some clinical studies have examined
[18F]NaF dose reduction and reported no effect on image quality
(30, 39–41). However, comprehensive preclinical [18F]NaF dose
reduction studies in translational large animal models and its
impact on overall PET image quality are missing.

The recent introduction of clinically approved PET/CT
systems equipped with digital photon counting PET (dPET)
detector technology enables new PET imaging approaches
for addressing PET radiotracer dose reduction, faster PET
image acquisition times, and higher definition in PET image
reconstruction (42, 43). Digital photon counting PET detector
technology enables ultra-high definition reconstruction with
voxel volume of 1 × 1 × 1 mm3 and more precisely localizes
PET annihilation events (i.e., reduces partial volume effects)
which improve quantitative PET accuracy for imaging biomarker
assessment (44–46). Additionally, lower PET doses can be
implemented in dPET imaging in accordance with ALARA (As
Low as Reasonably Achievable) while maintaining diagnostic

imaging quality (47–49). With the recent advances in dPET
detector technology, there is an immediate opportunity to
minimize PET radiotracer doses in preclinical research subjects
imaged on these clinical dPET/CT systems and likewise reduce
radiation exposures to PET staff and handling personnel. This
study is an important step to develop and standardize low-dose
hybrid PET-CT imaging methodologies in preclinical imaging,
and to provide guidance for future clinical studies, and clinical
trials applying [18F]NaF PET dose reduction.

The aim of the study was to assess the quality and
reproducibility of reducing the injected [18F]NaF dose while
maintaining diagnostic imaging quality in bone imaging in a
preclinical skeletal model using digital photon counting PET
(dPET) detector technology.

We hypothesized that 5- to 60-fold reductions in administered
[18F]NaF activity would provide equivalent image quality on
dPET/CT when compared with the standard [18F]NaF doses.

MATERIALS AND METHODS

Animals
This study was conducted according to NIH guidelines, and
according to protocols approved by the Institutional Animal Care
and Use Committee (IACUC) of The Ohio State University. Nine
healthy skeletally mature male beagles [weight (kg) mean± SEM;
15± 4.7] were used.

Positron Emission Tomography/Computed
Tomography Acquisition
Subjects underwent general anesthesia induced by acepromazine
[Aceproject; Henry Schein Animal Health, Dublin OH;
intravenously (IV), 0.1 mg/kg], ketamine (Ketasthesia; Henry
Schein Animal Health, Dublin OH; IV, 10 mg/kg), and diazepam
(Hospira; Lake Forest, IL; IV, 0.25 mg/kg) and maintained by
isoflurane (Isothesia; Henry Schein Animal Health, Dublin, OH;
1–4%). The subjects were place in supine position with the front
and distal extremities extended and supported in a custom-made
multimodal imaging positioning device to mimic human scans
and to improve the precision and positional consistency among
scans (13, 50). Subjects were intravenously administered 3
different [18F]NaF target doses: 111 MBq (standard dose/SD;
n = 5), 20 ± 7.8 MBq [mean ± standard error of the mean
(SEM); low dose/LD; n= 5], and 1.9 MBq (ultra- low dose/ULD;
n= 9) (see Table 1).

All imaging was performed using the Vereos dPET/CT system
(Philips, Cleveland, Ohio). A low-dose computed tomography
(CT) scan was performed for attenuation correction and
coregistration. For the low dose (LD) and ultra-low dose (ULD),
whole-body PET imaging began at ∼45min post-injection using
acquisitions times of 180 s/bed position in list-mode for 10
bed positions (total dPET image acquisition time ∼30min).
The standard dose (SD) (n = 5) began at ∼30min and was
acquired with 120 sec/bed. All SD dPET acquisitions were
retrospectively list-mode clipped from 120 s/bed to 4 s/bed
to simulate the same count density as ULD. In addition, all
LD dPET acquisitions were retrospectively list-mode clipped
from 180 s/bed to 18 s/bed to simulate the same count density
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TABLE 1 | Dogs and corresponding standard (SD), low (LD) [mean ± standard

error of the mean (SEM)], and ultra-Low (ULD) [18F]NaF doses.

Dog Standard

dose

(111 MBq)

Low dose (20 ± 7.8 MBq) Ultra-low

dose

(1.9 MBq)37 MBq 18.5 MBq 3.7 MBq

111 X X

112 X X

113 X X X

114 X X X

115 X

116 X X

117 X X

118 X XX

107 X

as ULD. All list-mode clipped SD, list-mode clipped LD, and
ULD acquisitions were reconstructed using Time-of-Flight and
ultra-high-definition (voxel volume = 1 × 1 × 1 mm3), three
iterations, and three subsets. Point spread function (PSF) was
modeled and Gaussian filtering was applied (Figures 1, 2)
(Supplementary Material).

Qualitative Image Analysis
Philips Intellispace Portal was used to generate the images
for subsequent review by a blinded reader panel using
REDCap survey platform. Each dPET scan was presented
with three non-rotating maximum intensity projection (MIP)
images, with 0◦ (ventral projection), 108◦ (right posterior
oblique projection) and−90◦ (left lateral projection) angles,
with a PET SUV window level of 0–10. REDCap surveys
recorded the reader assessment of [18F]NaF dPET image
quality (Figure 1). The images were reviewed by three authors
(CW, MVK, MIM) working independently and blinded to
radiotracer dose administered. Reviewers performed imaging
assessment of the entire imaging dataset twice with at
least 1 week between reader assessments to control for
visual memory. The image datasets were randomly ordered
between surveys.

Qualitative reader assessment outcome parameters included:
overall diagnostic quality of the images, and regional bone
[18F]NaF uptake of the following regions of interest (ROI):
cervical, thoracic, and lumbar, spine, skull, proximal long bones
(scapula, humerus, and radius and ulna), distal long bones
(femur, tibia, and pelvis), short bones (carpal joint bones,
metacarpal bones, tarsal joint bones, metatarsal bones, proximal,
middle, and distal phalanges) (Table 2).

The qualitative [18F]NaF uptake was scored 1–4
(1 = not acceptable; 2 = insufficient; 3 = acceptable;
4= excellent).

Semi-Quantitative Image Analysis
Maximum and mean standardized uptake values (SUVmax

and SUVmean) for [18F]NaF activity were assessed using two-
dimensional (2D) ROI, manually traced over representative

FIGURE 1 | Continued
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FIGURE 1 | Representative whole-body [18F]NaF PET maximum intensity

projections (MIPs) REDCap surveys showing the same subject with standard

(SD), low (LD), and ultra-low dose (ULD) from top to bottom. Subject scans

were presented with three maximum intensity projections (MIPs), with 0◦,

108◦, and −90◦ angles (from left to right), with a gray level of 10.00. All images

were reconstructed using ultra-high-definition (voxel volume = 1 × 1 × 1

mm3 ), 3 iterations, and 3 subsets. Point spread function (PSF) was modeled

and Gaussian filtering was applied. SD and LD were retrospectively list-mode

clipped accordingly to simulate the same count density as ULD.

FIGURE 2 | Representative whole-body [18F]NaF PET/CT uptake fusion

showing the metabolic bone activity. Standard dose [SD; (A)] and ultra-low

dose [ULD; (B)] dorsal (left) and sagittal (right) images.

osseous structures including mandible, carpus, first lumbar
vertebral body, distal femur, tarsus, caudal vertebrae, and a region
of the liver (Tables 3, 4).

Statistical Analysis
Reviewer ratings of images are reported as rating frequencies
and percentages for each ROI are represented in Table 2.
Continuous outcome variables for dPET: SUVmax, and SUVmean

were modeled using linear mixed models with random intercepts
and categorical fixed effects representing dose (Tables 3, 4).
The random intercepts account for correlation between repeated
measures on each canine. Results are reported as model
based estimated means and 95% confidence intervals. Overall
p-values for groups effects are also reported. All hypothesis
tests were conducted at a 5% type I error level. All statistical
analyses were conducted using SAS version 9.4 (SAS Institute,
Cary, NC).

RESULTS

All dPET/CT imaging studies were completed and all dPET
image datasets (n= 19) were deemed evaluable.

Qualitative Image Analysis
The overall diagnostic quality of all images was scored as excellent
(61%) and acceptable (39%) by the three reviewers (Table 2).
The skull images scored excellent (66%) and acceptable (34%).
Both thoracic and lumbar spine images were scored excellent
(98%) and acceptable (2%). The proximal long bones images
were scored excellent (61%) and acceptable (39%). Cervical
spine images were scored excellent (43%), acceptable (54%),
and insufficient (4%). Distal long bones images were scored
excellent (41%), acceptable (58%), and insufficient (1%). Short
bones images were scored excellent (46%), acceptable (52%),
and insufficient (2%). Only between 1 and 4% of the cervical
spine, distal long bones, and short bones images were scored
as insufficient [18F]NaF uptake compared to 96–99% acceptable
and excellent uptake scores. None of the ROI images were
scored as not acceptable. Table 2 summarizes the reviewer’s score
frequency for each skeletal ROI.

Semi-Quantitative Image Analysis
Sodium fluoride ([18F]NaF) SUVmean showed no statistically
significant differences among the three doses (SD, LD, and ULD)
in any of the osseous structures assessed (i.e., mandible, carpus,
first lumbar vertebra, distal femur, tarsus, caudal vertebrae, and a
region of the liver) (Table 3). For the [18F]NaF SUVmax (Table 4),
only the first lumbar vertebra showed statistically significant
differences among the three doses with the SUVmax at SD
significantly lower than the SUVmax values at LD (p < 0.03)
and ULD (p < 0.02). The mandible, carpus, distal femur, tarsus,
caudal vertebrae, and a region of the liver showed no statistically
significant differences among the three doses.

DISCUSSION

This study demonstrates that a 60-fold sodium fluoride
([18F]NaF) dose (ULD) reduction did not significantly differ
in image quality and quantification compared to the standard
dose (SD) in a healthy canine model. Our findings present a
feasible option to markedly reduce [18F]NaF radiotracer doses
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TABLE 2 | Qualitative image analysis as score frequencies and percentages (%)

for the overall image quality and the skeletal regions of interest using standard

(SD), low (LD), and ultra-low (ULD) [18F]NaF doses.

Region of interest Score Standard

dose

(111 MBq)

Low

dose

(20 MBq)

Ultra-low

dose

(1.9 MBq)

Overall image quality

Excellent 25 (62.5%) 24 (60.0%) 39 (54.2%)

Acceptable 15 (37.5%) 16 (40.0%) 33 (45.8%)

Insufficient 0 (0.0%) 0 (0.0%) 0 (0.0%)

Not acceptable 0 (0.0%) 0 (0.0%) 0 (0.0%)

Cervical spine

Excellent 16 (40.0%) 20 (50.0%) 34 (47.2%)

Acceptable 22 (55.0%) 18 (45.0%) 38 (52.8%)

Insufficient 2 (5.0%) 2 (5.0%) 0 (0.0%)

Not acceptable 0 (0.0%) 0 (0.0%) 0 (0.0%)

Thoracic spine

Excellent 40

(100.0%)

39 (97.5%) 69 (97.2%)

Acceptable 0 (0.0%) 1 (2.5%) 2 (2.8%)

Insufficient 0 (0.0%) 0 (0.0%) 0 (0.0%)

Not acceptable 0 (0.0%) 0 (0.0%) 0 (0.0%)

Lumbar spine

Excellent 40

(100.0%)

39 (97.5%) 70 (97.2%)

Acceptable 0 (0.0%) 1 (2.5%) 2 (2.8%)

Insufficient 0 (0.0%) 0 (0.0%) 0 (0.0%)

Not acceptable 0 (0.0%) 0 (0.0%) 0 (0.0%)

Skull

Excellent 15 (37.5%) 15 (38.5%) 27 (37.5%)

Acceptable 25 (62.5%) 24 (61.5%) 45 (62.5%)

Insufficient 0 (0.0%) 0 (0.0%) 0 (0.0%)

Not acceptable 0 (0.0%) 0 (0.0%) 0 (0.0%)

Proximal long bones

Excellent 18 (45.0%) 17 (42.5%) 28 (38.9%)

Acceptable 22 (55.0%) 23 (57.5%) 44 (61.1%)

Insufficient 0 (0.0%) 0 (0.0%) 0 (0.0%)

Not acceptable 0 (0.0%) 0 (0.0%) 0 (0.0%)

Distal long bones

Excellent 19 (47.5%) 19 (48.7%) 27 (37.5%)

Acceptable 21 (52.5%) 20 (51.3%) 42 (58.3%)

Insufficient 0 (0.0%) 0 (0.0%) 3 (4.2%)

Not acceptable 0 (0.0%) 0 (0.0%) 0 (0.0%)

Short bones

Excellent 20 (50.0%) 20 (50.0%) 32 (44.4%)

Acceptable 20 (50.0%) 16 (40.0%) 40 (55.6%)

Insufficient 0 (0.0%) 4 (10.0%) 0 (0.0%)

Not acceptable 0 (0.0%) 0 (0.0%) 0 (0.0%)

Reviewer’s scores are combined.

in a translational preclinical system of bone imaging using a
dPET/CT system without loss of overall imaging quality.

Regardless of the [18F]NaF dose, the overall dPET image
quality assessment demonstrated diagnostic image quality in

TABLE 3 | [18F]NaF mean standardized uptake values (SUVmean ) of regions of

interest (ROIs).

Standard

dose

(111 MBq)

Low

dose

(20 MBq)

Ultra-low

dose

(1.9 MBq)

Overall

p-value

ROI Mean (95%CI) Mean (95%CI) Mean (95%CI)

First lumbar 8.6 (7.0, 10.1) 8.8 (7.3, 10.4) 9.2 (8.0, 10.3) 0.7723

Distal femur 3.1 (2.6, 3.6) 3.1 (2.6, 3.6) 2.5 (2.1, 2.9) 0.0528

Carpus 3.2 (2.2, 4.1) 2.8 (1.8, 3.9) 2.9 (2.2, 3.6) 0.8394

Mandible 2.5 (2.1, 3.0) 2.3 (1.9, 2.8) 2.5 (2.1, 2.9) 0.6241

Tarsus 2.9 (2.2, 3.6) 2.6 (1.9, 3.3) 2.1 (1.6, 2.7) 0.2124

Caudal vertebrae 0.7 (0.2, 1.2) 1.2 (0.7, 1.7) 1.2 (0.9, 1.6) 0.1776

Liver 0.6 (0.4, 0.9) 0.5 (0.2, 0.8) 0.7 (0.5, 0.9) 0.4803

[18F]NaF, sodium fluoride; CI, confidence intervals. *p < 0.05 considered significant.

TABLE 4 | [18F]NaF maximum standardized uptake values (SUVmax) of regions of

interest (ROIs).

Standard

dose

(111 MBq)

Low

dose

(20 MBq)

Ultra-low

dose

(1.9 MBq)

Overall

p-value

ROI Mean (95%CI) Mean (95%CI) Mean (95%CI)

First lumbar 14.8

(11.7, 17.9)*

19.6

(16.5, 22.7)

19.7

(17.3, 22.0)

0.0380

Distal femur 4.6 (3.8, 5.3) 4.1 (3.1, 5.0) 3.6 (3.0, 4.3) 0.1025

Carpus 7.2 (5.4, 9.1) 7.7 (5.7, 9.8) 7.2 (5.8, 8.6) 0.8861

Mandible 6.9 (5.6, 8.2) 7.4 (5.8, 8.9) 8.6 (7.6, 9.6) 0.0821

Tarsus 6.3 (4.9, 7.7) 7.4 (6.0, 8.8) 6.1 (5.1, 7.2) 0.3149

Caudal vertebrae 6.3 (4.2, 8.5) 6.2 (3.5, 8.9) 6.2 (4.6, 7.9) 0.9951

Liver max 0.7 (0.4, 1.0) 0.6 (0.3, 1.0) 1.0 (0.8, 1.2) 0.1428

[18F]NaF, sodium fluoride; CI, confidence intervals. *p < 0.05 considered significant.

all [18F]NaF dPET image data sets with 61% of the scans
scored as excellent and 39% scored as acceptable. No dPET
imaging study received an insufficient or not acceptable score.
These results indicate that ULD [18F]NaF dPET image quality
was comparable to SD and even LD [18F]NaF dPET images
(Table 2). ULD imaging is readily achieved with the new dPET
detector capabilities enabled by improved spatial and temporal
resolutions, reduced dead time, and higher dynamic count rate
range when compared with conventional, analog photomultiplier
tube based PET (cPET) detectors which has been previously
described (43, 45, 46, 51, 52). In existing cPET systems, multiple
scintillation crystals are coupled to multiple photomultiplier
tube-based detectors whereas each scintillation crystal is coupled
1:1 with a single digital photon counting dPET detector. Hence,
the combination of the direct coupling (1:1), with the enhanced
time of flight (TOF) improves the timing and volumetric
resolutions of the digital over the analog PET (44–46). The
advantages of the dPET compared to cPET, leveraged with
the reconstruction capabilities that allow for a 64-fold matrix
reduction (from 4 × 4 × 4 to 1 × 1 × 1 mm3) favor radiation
exposure reduction without sacrificing image quality.
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It allows us to move preclinical nuclear medicine imaging
forward with substantial reduced exposure levels while
preserving image quality.

This study showed that using a clinical dPET/CT system
in a large animal model might provide guidance to perform
translational studies that currently are only feasible in small
laboratory animals using specialized micro PET/CT systems.

In the regional image quality assessment, the skull, thoracic
and lumbar spine, and proximal long bones were scored excellent
and acceptable, with the thoracic and lumbar spine scoring the
highest on image quality. This finding is consistent with a study
in skeletally immature healthy canines (53), and a human study
of the spine with [18F]NaF in healthy individuals were thoracic
and lumbar spine had significant higher uptake compared to
the cervical spine (54). An intriguing finding of the current
study was that the cervical spine images were scored excellent
and acceptable for most of the samples (96%) and 4% were
scored insufficient. The atlas (C1) and the axis (C2) showed an
uptake similar to the skull and lower than the rest of the cervical
vertebrae (C3–C7) (Table 2). This may be due to anatomical
differences and blood perfusion in those vertebrae, and the fact
that C1–C2 lack vertebral bodies and marrow cavities, which
provide capacity for higher blood perfusion (and hence bone
radiotracer uptake), in addition to have anatomically different
spinous and transverse processes. The short bones images were
scored excellent and acceptable (98%) with a 2% that were
scored insufficient, this small percentage may be due to the
lower uptake of the distal phalanges due to a relatively decreased
peripheral blood flow which leads to less radiotracer availability
regionally in these areas when compared with the axial skeletal
structures. Additionally, if the distal extremities were relatively
colder to the axial skeleton, peripheral vasoconstriction would
have decreased the relative blood flow to these regions and
therefore, the [18F]NaF radiotracer uptake.

Overall, ULD [18F]NaF dPET imaging demonstrated the
feasibility of marked radiotracer dose reduction without
impairing diagnostic image quality. Additionally, the dPET
image data sets were quantitatively assessed and ULD [18F]NaF
dPET did not significantly underrepresent SUVmean and SUVmax

values when compared with LD and SD. As expected in a
healthy canine, the average skeletal osteoblastic activity (i.e.,
SUVmean) showed no statistically significant differences among
the 3 doses (Table 3). This further suggests that ULD [18F]NaF
dPET is feasible. In addition, quantitative assessment in terms
of SUVmax showed no statistically significant differences among
SD, LD and ULD doses except in the first lumbar vertebra
(Table 4). The first lumbar vertebra demonstrated SUVmax values
significantly lower on SD when compared with LD or ULD
but no significant differences in SUVmean value were noted for
these 3 doses. This may be due to an increase heterogeneity
of [18F]NaF uptake in the lumbar vertebrae among subjects
which the SUVmax will highlight and the SUVmean will not.
The caudal vertebrae (tail), which contains several small bones
more distally located, showed no differences among doses
in our qualitative and quantitative assessments. This further
supports that ULD [18F]NaF dPET is sufficient for assessing

normal osteoblastic activity even in small distal bones which are
biomechanically active.

This study showed that using a clinical dPET system in a large
animal model might provide guidance to perform translational
studies that currently are only feasible in small laboratory animals
using specialized micro PET/CT systems. A limitation of the
study was that not all dogs received the three doses (ULD, LD,
and SD); however, eight of the nine dogs received the ULD
in addition to either the SD or LD. The use of a translational
large animal model is expensive, requires extensive preparation
and coordination, and presents more challenges when compared
to smaller laboratory animals. Future studies will be needed to
further assess this ULD [18F]NaF dPET/CT imaging approach for
oncologic and non-oncologic osteoblastic diseases in preclinical
large animal models.

Ultra-low dose [18F]NaF dPET/CT demonstrated a
comparable diagnostic image quality and quantitative
accuracy when compared with SD. This ULD dPET
approach is consistent with the goals of ALARA in terms
of minimizing radiation exposure not only to research
subjects but also PET technologists, veterinary personnel,
and caretakers.
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