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Abstract: Acute myeloid leukemia (AML) patients are at risk of bleeding due to disease-related
lack of platelets and systemic coagulopathy. Platelets play a role in hemostasis. Leukemic blasts
have been shown to alter platelet activation in vitro. Here we investigated biomarkers associated
with thrombocytopenia in normal karyotype AML (NK-AML). From The Cancer Genome Atlas
database, case-control study was performed between normal karyotype (NK) platelet-decreased
AML (PD-AML, platelet count < 100 × 109/L, n = 24) and NK platelet-not-decreased AML (PND-
AML, with platelet count ≥ 100 × 109/L, n = 13). Differentially expressed gene analysis, pathway
analysis and modelling for predicting platelet decrease in AML were performed. DEG analysis and
pathway analysis revealed 157 genes and eight pathways specific for PD-AML, respectively. Most
of the eight pathways were significantly involved in G-protein-coupled receptor-related pathway,
cytokine-related pathway, and bone remodeling pathway. Among the key genes involved in at least
one pathway, three genes including CSF1R, TNFSF15 and CLEC10A were selected as promising
biomarkers for predicting PD-AML (0.847 of AUC in support vector machine model). This is the first
study that identified biomarkers using RNA expression data analysis and could help understand the
pathophysiology in AML with low platelet count.

Keywords: acute leukemia; RNA sequencing; TCGA; platelets; thrombocytopenia

1. Introduction

Acute myeloid leukemia (AML) is characterized by malignant myeloid cells that ex-
pose neoplastic proliferation with blockage of differentiation [1]. In patients with AML,
platelet counts at diagnosis vary widely, presenting either as hypoplastic or without
megakaryopoiesis, resulting in reduced platelet counts or even severe thrombocytopenia
(<25 × 109/L), or with normal, dysplastic, or hyperplastic thrombothrophic characteristics,
resulting in normal or elevated platelet counts [2].

Malignant cells activate platelets and the activated platelets can attach to the cancer
cells, forming a layer of platelets, hiding the malignant cell from cellular components of the
immune system [3–5]. The “cloaking” of cancer cells by platelets has mostly been studied
in the context of solid tumor metastasis [6]. Moreover, platelets play an important role in
protecting malignant cells against chemotherapy-induced apoptosis [7]. It is likely to play a
similar role in hematological malignancies. Platelets attach to leukocytes of healthy donors
in vivo and adhere to leukemic cell line, as well as AML cells in vitro [8–10]. Nevertheless,
the interactions of platelets with hematological cancer cells have been less well-studied be-
cause hematological malignancies are often accompanied by thrombocytopenia or platelet
dysfunction [6].

Platelets and AML cells are known to be mutually affected. In AML, platelets show a
wide range of defects, including abnormal metabolism, lifespan and aggregation, and addi-
tional platelet dysfunctions [1]. Platelet dysfunctions include abnormal platelet aggregation,
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unexpected platelet factor-3 activity, dysfunction in the release response and thromboxane
B2 production, abnormal plasma platelet factor-4 (PF-4) and serotonin levels, abnormal
platelet volumes, dense bodies abnormalities, abnormal clot retraction, and increased
bleeding time [1]. In addition, native AML blasts seem to increase the platelet-derived
growth factor (PDGF) and soluble P-selectin (CD62P) secretion in vitro [1,11]. Leukemic
blasts, therefore, alter platelet activation in vitro. On the other hand, the presence of normal
platelets in in vitro culture leads to a dose-dependent increase in both spontaneous and
cytokine-dependent blast proliferation. The addition of platelets also increases constitutive
leukemic cells secretion of interleukin 1β, interleukin 6, granulocyte-macrophage colony-
stimulating factor (GM-CSF), and tumor necrosis factor-α (TNFα) [12]. This is caused by
the direct adhesion and platelet release of soluble mediators, including PDGF, PF-4, and
vascular endothelial growth factor [12–14].

Although interactions between leukemia cells and platelets have been observed
in vitro and in vivo, the factors contributing to thrombocytopenia remain unknown. The
prognostic value of platelet production, such as platelet count and megakaryopoiesis, has
not been clearly determined in AML [15,16]. However, AML patients with thrombocytope-
nia have an increased risk of bleeding and are more likely to receive platelet transfusions.

Thus, we investigated the biomarkers associated with thrombocytopenia in this report.
We studied AML patients with normal karyotypes (NK-AML) to eliminate the effects of
chromosomal abnormalities on platelets. The criterion for thrombocytopenia was set at
100 × 109/L because the normal platelet count ranges from 150 × 109/L to 450 × 109/L,
but there is some dispute as to whether platelet numbers in the range 100 × 109/L to
150 × 109/L should be indicated as having true or borderline thrombocytopenia [17].

2. Results
2.1. Clinical Characteristics of the Patients

We enrolled 37 NK-AML patients. Based on a platelet count cut-off value of 100 × 109/L,
the patients were classified into PD-AML (n = 24, 64.9%) and PND-AML (n = 13, 35.1%)
groups. The clinical features of the patients are shown in Table 1. Hemoglobin showed
a decreased tendency in the PD-AML group (p = 0.078). Except for platelet count and
hemoglobin level, there was no significant difference between the PD-AML and PND-
AML groups in the other clinicopathological factors, including age, gender, ethnicity, bone
marrow findings, and mutation profile.

Table 1. Characteristics of NK-AML patients from platelet-decreased group (PD-AML; platelet count
< 100 × 109/L) and platelet-not decreased group (PND-AML; platelet count ≥ 100 × 109/L).

Groups PD-AML PND-AML p Value

Number 24 13
Age (yrs) 61.1 ± 14.2 63.7 ± 14.8 0.608
Male ratio 54.2% (13/24) 46.2% (6/13) 0.904
Ethnicity 0.550

Asian 4.3% (1/23) 0% (0/13)
Black or African American 4.3% (1/23) 0% (0/13)

White 91.3% (21/23) 100% (13/13)
Laboratory findings

Hb (g/L) 97 ± 18 107 ± 13 0.078
Platelet (×109/L) 51.3 ± 22.3 151.3 ± 36.5 0.000

BM blast (%) 61.0 ± 24.7 46.8 ± 32.6 0.145
BM cellularity (%) 76.1 ± 21.5 67.7 ± 28.3 0.323

CD34 (+) † 94.4% (17/18) 90.0% (9/10) 1.000
CD117 (+) † 100% (21/21) 81.8% (9/11) 0.212
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Table 1. Cont.

Groups PD-AML PND-AML p Value

FAB classification 0.854
M0 12.5% (3/24) 15.4% (2/13)
M1 8.3% (2/24) 23.1% (3/13)
M2 25.0% (6/24) 23.1% (3/13)
M4 29.2% (7/24) 23.1% (3/13)
M5 16.7% (4/24) 15.4% (2/13)
M7 4.2% (1/24) 0% (0/13)

Not classified 4.2% (1/24) 0% (0/13)
Mutation profile

FLT3 25.0% (6/24) 30.8% (4/13) 1.000
IDH1 4.3% (1/23) 7.7% (1/13) 1.000
IDH2 21.7% (5/23) 23.1% (3/13) 1.000
WT1 8.7% (2/23) 7.7% (1/13) 1.000
TP53 4.3% (1/23) 0% (0/13) 1.000

RUNX1 21.7% (5/23) 46.2% (6/13) 0.250
ASXL1 0% (0/23) 7.7% (1/13) 0.769

† Flow cytometry was performed. Age, Hb, platelet, blast and BM cellularity values are in mean ± SD. Abbrevia-
tions: NK-AML, acute myeloid leukemia with normal karyotype; WBC, white blood cells; Hb, hemoglobin; BM,
bone marrow; FAB, French-American-British.

2.2. Differentially Expressed Gene Analysis, Pathway Analysis, and Network Analysis

Based on the DEG analysis, a total of 157 genes were dysregulated (Table S1). Among
them, 121 genes were upregulated while 36 genes were downregulated in the PD-AML
group compared with the PND-AML group. Next, pathway analysis and manual cu-
ration (see Materials and Methods section) were performed using the 157 genes. Eight
pathways were identified and they were cytokine–cytokine receptor interaction-Homo sapi-
ens (KEGG, https://www.genome.jp/kegg/ (accessed on 1 November 2021)), G-protein-
coupled receptors (GPCR) downstream signaling, signaling by GPCR and C-type lectin
receptors (Reactome, https://reactome.org/ (accessed on 1 November 2021)), cytokines
and inflammatory response (Wikipathways, https://www.wikipathways.org/index.php/
WikiPathways/ (accessed on 1 November 2021)), GPCR signaling and Janus kinase sig-
nal transducer and activator of transcription (JAK-STAT) Molecular Variation 1 (INOH,
http://www.inoh.org/ (accessed on 1 November 2021)) and bone remodeling (Wikipath-
ways, https://www.wikipathways.org/index.php/WikiPathways/ (accessed on 1 Novem-
ber 2021); BioCarta, http://www.biocarta.com/ (accessed on 1 November 2021)) (Tables 2
and S2). Of the 157 genes, 27 were included in the eight pathways described above: 18 genes
(IL1B, SUCNR1, MUC1, PLXNB1, IFNB1, OR1L4, MUC16, OR1Q1, GRM1, OR1L8, RAMP1,
IFNW1, OR1J1, IL5RA, OR13C4, GDF6, GNG8 and RTP3) were upregulated while nine
genes (OR5B12, CLEC10A, CCR5, PDGFA, WNT10A, DAGLA, TNFSF15, TNFRSF11A, and
CSF1R) were downregulated in the PD-AML group, compared with the PND-AML group
(Figure 1). To investigate the key genes involved in multiple pathways, we performed net-
work analysis using 27 genes and eight pathways. The genes that are involved in multiple
pathways were IFNB1 (five pathways), IL1B (five pathways), PDGFA (four pathways), and
IL5RA (four pathways). These genes were mainly associated with cytokine-related and
GPCR-related pathways (Figure 2).

https://www.genome.jp/kegg/
https://reactome.org/
https://www.wikipathways.org/index.php/WikiPathways/
https://www.wikipathways.org/index.php/WikiPathways/
http://www.inoh.org/
https://www.wikipathways.org/index.php/WikiPathways/
http://www.biocarta.com/
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Figure 1. Cell signaling pathways and component genes altered in the RNA level. All the pathways
were significantly altered (q < 0.05). The most altered cell signaling pathway was cytokine–cytokine
receptor interaction (q = 0.0219).
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Table 2. Selected pathways of interest with known functions in the pathway analysis of the RNA ex-
pression data with platelet-decreased NK-AML (PD-AML; <100 × 109/L) from platelet-not-decreased
(PND-AML; ≥100 × 109/L).

Pathway Name p q Genes (Fold Change) Pathway Source

Cytokine-cytokine receptor
interaction-Homo sapiens

(human)
0.0001 0.0219

IFNW1(5.37), IL5RA(6.69), TNFSF15(0.44), CSF1R(0.49),
GDF6(300), IFNB1(2.73), TNFRSF11A(0.46), IL1B(2.06),

CCR5(0.36)
KEGG

GPCR downstream signaling 0.0020 0.0393

DAGLA(0.42), OR13C4(7.33), IL5RA(6.69),
PLXNB1(2.47), CCR5(0.36), OR1L8(3.82), GNG8(300),

OR5B12(0.09), OR1Q1(3.10), RAMP1(5.35), OR1J1(5.49),
OR1L4(2.98), GRM1(3.57), SUCNR1(2.36), RTP3(300)

Reactome

Signalling by GPCR 0.0049 0.0499

DAGLA(0.42), PDGFA(0.39), IL5RA(6.69), OR13C4(7.33),
OR1L8(3.82), GNG8(300), RTP3(300), OR5B12(0.09),

OR1Q1(3.10), PLXNB1(2.47), OR1J1(5.49),
WNT10A(0.41), RAMP1(5.35), OR1L4(2.98),

GRM1(3.57), SUCNR1(2.36), CCR5(0.36)

Reactome

Cytokines and Inflammatory
Response 0.0007 0.0393 PDGFA(0.39), IL1B(2.06), IFNB1(2.73) Wikipathways

GPCR signaling 0.0022 0.0393 IFNW1(5.37), PDGFA(0.39), WNT10A(0.41), GDF6(300),
IFNB1(2.73), IL1B(2.06), GRM1(3.57) INOH

C-type lectin receptors 0.0020 0.0393 CLEC10A(0.20), MUC16(3.07), IL1B(2.06), MUC1(2.40) Reactome
JAK-STAT Molecular

Variation 1 0.0034 0.0440 IFNW1(5.37), IL1B(2.06), IL5RA(6.69), IFNB1(2.73) INOH

Bone remodeling 0.0045 0.0499 TNFRSF11A(0.46), IFNB1(2.73) Wikipathways/
BioCarta

Abbreviations: GPCR, G protein-coupled receptor; ERK, extracellular signal-regulated kinases; PKA, protein
kinase A; JAK, Janus kinase; STAT, signal transducer and activator of transcription.

Figure 2. Network analysis between cell signaling pathways and altered genes in platelet-decreased
normal karyotype acute myeloid leukemia (NK-AML) (PD-AML) with platelet count <100 × 109/L.
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2.3. Feature Selection, Modelling, and Performance Evaluation

After the DEG analysis, pathway analysis and filtering steps, 15 genes were found to
be involved in cell signaling pathways and to have statistically different expression levels
between PD-AML and PND-AML. Next, the MDG of 15 genes (CSF1R, TNFSF15, CLEC10A,
CCR5, PDGFA, WNT10A, TNFRSF11A, MUC1, DAGLA, IL1B, RAMP1, SUCNR1, MUC16,
PLXNB1, and IL5RA) were calculated (Figure 3A). In the PCA analysis using the features, a
good separation between the PD-AML and PND-AML groups was observed and PC1 and
PC2 accounted for 28.1% and 12.4% of the variance, respectively (Figure 3B). Considering
the pattern of the MDGs (Figure 3A), three LR, RF, and SVM models discriminating the two
groups were generated using three features (CSF1R, TNFSF15, and CLEC10A). To evaluate
the performance of the models, ROC curves were plotted and are shown in Figure 3C.
The AUCs for the LR, RF, and SVM models to predict PD-AML were 0.790, 0.841, and
0.847, respectively. The LR model had a sensitivity of 65.1% and a specificity of 79.3%.
The RF model had a sensitivity of 69.3% and a specificity of 85.3%. The SVM model had a
sensitivity of 69.4% and a specificity of 90%.

Figure 3. (A) Variable importance in random forests considering mean decrease in Gini index.
(B) Principal component (PC) analysis reveals differences between platelet-decreased acute myeloid
leukemia (PD-AML; red circle) and platelet-not-decreased AML (PND-AML; sky blue circle). X and
Y axes show PC1 and PC2, respectively, and the percent variation explained by each component is
shown in parentheses. (C) Receiver operating characteristic curves were plotted and the areas under
curve (AUC) of the top three features models (logistic regression, random forest and support vector
machine) were calculated. The AUC values, sensitivities, and specificities are in the right panel.

3. Discussion

In this study, we identified three biomarkers, namely, CSF1R, TNFSF15, and CLEC10A
that affect platelet count in AML with normal karyotype by analyzing RNA expression
data in the TCGA downloaded from the GDAC.

First, we selected AML patients with normal karyotype from the RNA database and
identified significant genes and pathways suggested to be involved in platelet physiol-
ogy through DEG and pathway analyses. Most of the genes shown to have significant
differential RNA expression were associated with the cytokine- and GPCR-related path-
ways. Platelets play distinct roles in inflammatory response and immune regulation based
on their ability to bind to infectious pathogens, to release various immunomodulatory
cytokines and chemokines and to present receptors for several immune effects and regu-
latory functions [18–21]. GPCRs located on the platelet membrane induce the activation
of platelet adhesion receptors, mainly the integrin αIIbβ3, which mediate platelet adhe-
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sion and aggregation by binding with collagen released at sites of blood vessel injury
and inflammation or with soluble platelet agonists released from platelets during platelet
activation [22,23]. The major pathways detected by the DEG and pathway analyses were
generally associated with platelet activation. C-type lectin receptors, JAK-STAT Molecular
Variation 1 and bone remodeling pathways were also identified. C-type lectin-like type II
transmembrane receptors (CLEC) are expressed by platelets and immune cells and bind to
the transmembrane glycoprotein podoplanin (PDPN) expressed in lymphatic endothelial
cells [23,24]. The CLEC-mediated platelet adhesion to PDPN is important in the devel-
opment and dissociation of lymphatics from blood vessels, in supporting the integrity
of the blood-lymphatic vessel junctions, in preventing blood cell efflux into lymphatics
and in maintaining vascular integrity during inflammation [23]. There were reports that
PDPN related to platelet aggregation and annexin A2 (ANXA2) related to hyperfibrinolysis
were related to life-threatening coagulopathy in acute promyelocytic leukemia (APL) and
non-APL, respectively [25,26]. The JAK-STAT pathway is involved in immune response,
inflammation and tumorigenesis [27,28]. Platelet activation is enhanced by the phospho-
rylation of JAK and STAT by thrombopoietin [29]. Platelets also play a critical role in
repairing bone fractures [30]. Previous studies on the supportive effects of platelets on bone
formation have shown that PDGF induces bone formation by influencing cell proliferation,
chemotactic differentiation, and extracellular matrix synthesis [30,31].

Second, the importance of 15 genes selected through sequential filtering steps was
calculated as MDG scores to determine the highly specific genes associated with PD-AML.
The top three genes were CSF1R, TNFSF15, and CLEC10A. These genes were associated
with the cytokine-related and CLEC pathways and were downregulated in PD-AML
(Figure S1). The associations between these genes and platelet counts were positively
correlated (Figure 4A–C). In this study, CSF1R discriminated PD-AML and PND-AML
better than TNFSF15 and CLEC10A (Figure 4D–F). CSF1R encodes a receptor for colony-
stimulating factor 1 (CSF1) and is mainly expressed in macrophages. The receptor regulates
the production, differentiation, and function of macrophages by CSF1. Macrophages are
known to have a pro-inflammatory or anti-inflammatory phenotype [32]. In early stage
and metastatic cancer, the phenotype showing tumor promotion with anti-inflammatory
and immune-regulatory activities is called dominant tumor-associated macrophage (TAM)
or M2 macrophage. Conversely, the phenotype showing pro-inflammatory and tumoricidal
activities is called classically activated macrophage or M1 macrophage. TAMs have been
reported to promote cancer growth, angiogenesis, invasion, and metastasis and are resistant
to treatment. Intratumoural infiltration of TAM has been shown to have negative prognostic
relevance in most tumor types [33–35]. TAM is a consequence of the persistent presence
of CSF1. CSF1R-mediated signaling is particularly important for the differentiation and
survival of the mononuclear phagocyte system and macrophages [36]. The intratumoural
presence of CSF1R-positive macrophages correlates with poor survival in various cancer
types [35,37]. Several reports have shown that high CSF1R expression decreases the
overall survival of follicular lymphoma, correlates with increased invasiveness and adverse
prognostic factors such as high histological grade of breast cancer, and shows an advanced
clinical stage at detection of breast cancer [38,39]. Thus, targeting CSF1R signaling in TAM
might be another therapeutic strategy to eliminate or repolarize these malignant cells.
Clinical trials for CSF1R inhibitors are ongoing [40]. TNFSF15 encodes tumor necrosis
factor superfamily-15, a multifaceted cytokine, is mainly produced by endothelial cell
in established blood vessels, and in turn inhibits angiogenesis [41]. Increased TNFSF15
expression levels can inhibit growth of colon cancers and are associated with early stage of
chronic lymphocytic leukemia [42,43]. CLEC10A encodes C-type lectin domain containing
10A. CLEC10A is expressed on a number of immune cells and involved in CLEC pathway
and many immune system-related processes [44]. The CLEC10A expression in most cancers
was significantly lower compared with non-tumoral tissue, and the decreased expression
was related to poor prognosis [44,45]. The prognostic significance of platelet counts at
diagnosis of AML remains controversial. However, Foss, et al. [1] showed that platelets
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might interact with malignant myeloid cells and contribute to tumor proliferation, apoptosis
regulation, responsiveness to intensive chemotherapy, and disease relapse. Recently, it has
been reported that low platelet count is associated with good prognosis in patients with
intermediate-risk AML [46]. The association of biomarkers identified in PD-AML with
low platelet counts remains unclear, but considering the gene expression levels of CSF1R,
which is known as a poor prognostic factor and is the most important biomarker in our
study, were downregulated in PD-AML, it is possible that CSF1R may be correlated with
low platelet counts in NK-AML. These findings need further research.

Figure 4. Association between the RNA expression of genes (CSF1R, TNFSF15, and CLEC10A) and
platelet counts in normal karyotype acute myeloid leukemia (NK-AML). (A–C) The expression levels
of the genes had a positive correlation with the platelet counts in NK-AML. (D–F) Scatter plot with
marginal histograms of the prevalence of platelet-decreased NK-AML (PD-AML; light orange) and
platelet-not-decreased NK-AML (PND-AML; blue) in gene expression values.

Finally, three gene models were generated using LR, RF, and SVM. Comparing these
models, it was observed that the SVM and RF algorithms performed better than the
LR algorithm (AUCs of 0.847 and 0.841 vs. 0.790, respectively). The sensitivities and
specificities of the models were less than 70% and greater than about 80%, respectively.
The relatively low sensitivities may be due to the delayed diagnosis of some cases in the
PND-AML group. If this hypothesis is reasonable, future studies should set a higher
sensitivity cut-off.

This study has several limitations. First, we divided the two groups based on a
platelet count cut-off of 100 × 109/L which does not reflect the actual risk of bleeding in
acute leukemia because platelets are usually transfused when the platelet count is less than
10 × 109/L to 20 × 109/L. Second, RNA expression data in the TCGA downloaded from the
GDAC did not contain data from normal populations. The biomarkers in this study were
selected and evaluated using the significant difference in RNA expression between PD- and
PND-AML groups. Hence, the models for the biomarkers showed excellent performance
in the ROC analysis. However, if data from normal populations were included, more
meaningful results could be obtained. Third, the size of the patients studied was small and
there was a lack of validation cohort to correctly assess the power of the algorithms. To
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validate our models, we used LOOCV which is a special case of k-fold cross-validation with
k = n, the number of observations. Although the LOOCV is feasible when the sample size
is small, we have not used methods such as meta-analysis or validation in other cohorts.
However, it is expected that these limitations will be resolved through further studies.
Although we did not evaluate the relationship between the biomarkers and the risk of
bleeding in this study, we identified a biomarker related to low platelet counts in NK-AML
and further studies using this may be possible.

In conclusion, we identified the biomarkers related to low platelet counts in NK-AML
by RNA expression data analysis. Although there have been studies about the interaction
between platelets and leukemic cells in vivo and in vitro, there have been no studies that
identified biomarkers using RNA expression data analysis. This can help clarify the
pathophysiology of AML with low platelet count. To fully study the clinical significance of
low platelet counts in NK-AML, a large-scale multi-cohort study must be done.

4. Materials and Methods
4.1. Data Acquisition and Case Definition

RNA expression data and clinical information (Gene level 3) of 200 AML cases in The
Cancer Genome Atlas (TCGA) were downloaded from the Genomic Data Analysis Center
(GDAC) Firehose Repository (https://gdac.broadinstitute.org/ (accessed on 1 November
2021)). Cases without RNA expression data or clinical information were excluded. NK-
AML cases with no definite driver mutation were selected for analysis. Patients with NPM1
and CEBPA mutations, which are often observed in NK-AML, were also excluded. To
investigate the clinicopathological difference between platelet-decreased AML (PD-AML)
and platelet-not-decreased AML (PND-AML), AML cases with platelet counts <100 × 109/L
were selected as case group while AML cases with platelet counts ≥100 × 109/L were
considered the control group.

4.2. Differentially Expressed Gene (DEG) Analysis and Pathway Analysis

To select DEGs, we performed t-test for the genes that passed the normality tests
(Kolmogorov–Smirnov and Shapiro–Wilk test) using the RNA expression values of each
gene between the PD-AML and PND-AML groups. Otherwise, for the genes that did not
pass the normality tests, Wilcoxon rank sum test and DESeq2 package in R [47] were applied.
Fold-change was calculated using the mean RNA expression values of the two groups
and genes with p < 0.05 and |log2FC| > 1 were considered as DEGs. For the pathway
analysis, over-representation analysis was performed using 4681 predefined pathways
from the Consensus Pathway Database (CPDB, http://consensuspathdb.org/ (accessed
on 1 November 2021)). Twenty-seven pathways with q value < 0.05 were selected. After
literature review and manual curation, eight pathways previously reported to be related
with platelet signaling were finally selected [18–23,29,30,48].

4.3. Feature Selection

Genes with normalized read count < 1 in >50% of the cases were excluded. To select
the key features discriminating between the two groups, we calculated the mean decrease
Gini (MDG) for each gene using the randomForest package in R [49]. The Gini impurity
index was calculated as follows:

G = ∑m
i=1 fi(1 − fi)

where m is the number of classes in the target variable and fi is the ratio of this class. The
higher the MDG value, the higher the importance of the feature in the model. We selected
the top ranked features (MDG > 1.5) that significantly decreased in the Gini impurity index.

4.4. Computational Modelling and Validation

Using selected features, logistic regression (LR), randomForest (RF), and support
vector machine (SVM) were performed. The models were validated using leave-one-

https://gdac.broadinstitute.org/
http://consensuspathdb.org/
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out cross validation (LOOCV). To evaluate the performance of the models, the receiver
operating characteristic (ROC) curve was plotted using the R package, ROCR [50]. The
area under curve (AUC), sensitivity, and specificity were calculated.

4.5. Statistical Analysis and Visualization

Clinical characteristics were presented as number or mean with percentage or standard
deviation and p values were inferred from an independent t-test, Wilcoxon rank sum test,
chi-square for trend or Fisher’s exact test, as appropriate. All statistical analyses were
performed using R version 3.6.3 (https://www.r-project.org (accessed on 18 July 2021)).
Principal component analysis (PCA) and visualization were performed using the factoextra
R package (https://cran.r-project.org/web/packages/factoextra (accessed on 1 November
2021)). The heatmap was drawn using the R package gplots (http://cran.r-project.org/
web/packages/gplots (accessed on 1 November 2021)). Network analysis and visualization
were done using Cytoscape software (version 3.8.2) [51]. p values < 0.05 were considered
statistically significant.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms23147772/s1.
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