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A B S T R A C T

Affective disorders including major depressive disorder (MDD), bipolar disorder (BPD), and general anxiety
affect more than 10% of population in the world. Notably, neuronal nitric oxide synthase (nNOS), a downstream
signal molecule of N-methyl-D-aspartate receptors (NMDARs) activation, is abundant in many regions of the
brain such as the prefrontal cortex (PFC), hippocampus, amygdala, dorsal raphe nucleus (DRN), locus coeruleus
(LC), and hypothalamus, which are closely associated with the pathophysiology of affective disorders. Decreased
levels of the neurotransmitters including 5-hydroxytryptamine or serotonin (5-HT), noradrenalin (NA), and
dopamine (DA) as well as hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis are common patho-
logical changes of MDD, BPD, and anxiety. Increasing data suggests that nNOS in the hippocampus play a crucial
role in the etiology of MDD whereas nNOS-related dysregulation of the nitrergic system in the LC is closely
associated with the pathogenesis of BPD. Moreover, hippocampal nNOS is implicated in the role of serotonin
receptor 1 A (5-HTR1 A) in modulating anxiety behaviors. Augment of nNOS and its carboxy-terminal PDZ li-
gand (CAPON) complex mediate stress-induced anxiety and disrupting the nNOS-CAPON interaction by small
molecular drug generates anxiolytic effect. To date, however, the function of nNOS in affective disorders is not
well reviewed. Here, we summarize works about nNOS and its signal mechanisms implicated in the patho-
physiology of affective disorders. On the basis of this review, it is suggested that future research should more
fully focus on the role of nNOS in the pathomechanism and treatment of affective disorders.

Introduction

Affective disorders, with a lifetime risk of 10%–20%, are a family of
serious mental disorders including major depressive disorder (MDD),
bipolar disorder (BPD), and anxiety (Baldwin, 2007). Among them,
MDD and BPD are usually classified as mood disorders (Sanacora et al.,
2008). According to the surveys conducted by the World Health Or-
ganization (WHO), affective disorders will become the second leading
cause of disability by the year 2020 and lead to great ‘burden’ world-
wide (Sanacora et al., 2008; Murray and Lopez, 1996).

Nitric oxide synthases (NOS) are a family of catalytic synthases,
including neuronal NOS (nNOS, or NOS1), endothelial NOS (eNOS, or
NOS3), and inducible NOS (iNOS, or NOS2), which synthesize the
production of NO, a gas signaling molecule (Alderton et al., 2001). The
endothelial isoform, eNOS, is constitutively expressed in the endothelial
cells, while the macrophage isoform, iNOS, is not constitutively ex-
pressed but is induced by cytokines (Hevel et al., 1991; Bredt and
Snyder, 1990). In the brain, nNOS derived NO constitutes the largest
proportion of NO. The protein nNOS exhibits a bidomain structure
containing a reductase domain (C-terminal) plus an oxygenase domain

(N-terminal) and consists of 1434 amino acids (Boissel et al., 1998).
Overall, the oxidation of L-arginine are catalyzed by nNOS to generate
citrulline and NO as products in a wide range of tissues (Zhou and Zhu,
2009). Specifically in the CNS, nNOS is mainly located in neurons, as-
trocytes, and neuroanl stem cells (NSCs) in the mammalian central
nervous system (CNS) (Luo and Zhu, 2011). Changes in nNOS expres-
sion have been detected in sevral CNS disorders such as MDD, BPD,
anxiety, stroke, Parkinson’s disease (PD), Alzheimer’s disease (AD), and
amytrophic lateral sclerosis (ALS) (Calabrese et al., 2007; Lopez et al.,
2017; Zhang et al., 2018a; Suzuki et al., 2010). In excitory neurons,
NMDAR and nNOS are linked by postsynaptic density protein 95
(PSD95) at glutamatergic synapses, mediating the glutamate signal
(Craven and Bredt, 2000; Craven et al., 1999). Activation of nNOS
depends on NMDARs-mediated calcium influx, incerasing the content of
NO. Glutamate is the major excitatory neurotransmitter in the CNS. A
growing body of evidence suggests that the dysfunction of glutama-
tergic neurotransmission is involved in the pathology of MDD, BPD and
anxiety (Riaza Bermudo-Soriano et al., 2012; Amiel and Mathew, 2007;
Cortese and Phan, 2005; Dutta et al., 2015; Gerhard et al., 2016;
Ginsberg et al., 2012; Fountoulakis, 2012). The effects of glutamate in
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the CNS are mainly mediated through glutamate receptors including
NMDARs (Niciu et al., 2012).

The N-methyl-D-aspartate receptors (NMDAR) is one of the three
types of ionotropic glutamate receptors. Stimulation of NMDARs results
in activation of neuronal nitric oxide synthase (nNOS), an enzyme
catalyzing the formation of nitric oxides (NO) from L-arginine
(Garthwaite et al., 1989). NMDARs are predominantly concentrated in
the limbic system, a brain area that has close relationship with MDD,
BPD and anxiety (Paoletti et al., 2013; Buller et al., 1994; Mathews
et al., 2012). It is found that the antagonists of NMDARs exhibit the
property of antidepressants (Nowak et al., 1995; Yuen et al., 2009,
2011). More importantly, clinical antidepressants such as fluoxetine,
metapramine, moclobemide and desipramine bind to the NMDARs and
act directly as antagonists and reduce the activity and expression of
NMDAR (Szasz et al., 2007; Mayer et al., 2009). Ketamine, a non-
competitive NMDA receptor antagonist, repeated treatment of which or
at a single low dose, was proved a fast-acting antidepressant response
(Dutta et al., 2015; Galvez et al., 2018; Grunebaum et al., 2017;
Gurnani and Khurshid, 2017; Medeiros da Frota Ribeiro and Riva-Posse,
2017; Taiminen, 2017; Yang et al., 2018; Zhang et al., 2018b; Li et al.,
2010). Besides, clinical trials demonstrated ketamine’s rapid activity in
patients with treatment-resistant MDD, BPD, and anxiety (Ionescu
et al., 2015; Murrough et al., 2013). Therefore, NMDAR and its down-
stream signaling would be considered as the potential targets for dis-
covery of the fast-onset antidepressant (Abbasi, 2017; Jelen et al.,
2018). The polymorphisms of NR1 subunit of NMDARs have a high
association with BPD (Mundo et al., 2003). Decreased expression of the
NR2 subunit in the anterior cingulate cortex was found in a post
mortem study of BPD patients (Woo et al., 2004). Additionally, in-situ
hybridization assessment revealed that the expression of both NR1 and
NR2 A subunits in the hippocampus were reduced in the patient with
BPD (McCullumsmith et al., 2007). Furthermore, it was observed that a
wide variety of NMDARs antagonists have shown anxiolytic-like effects
(Riaza Bermudo-Soriano et al., 2012). Converging lines of evidences
suggest that NMDARs have important functions in the pathology of
affective disorders and may be a novel therapeutic target (Sanacora
et al., 2008; Mathews et al., 2012; Kemp and McKernan, 2002; Holden,
2003; Serafini et al., 2015; Williams and Schatzberg, 2016; Machado-
Vieira et al., 2009). However, the high risk of neurotoxicity caused by
NMDARs antagonists is concerning (Olney et al., 1991; Farber et al.,
2002). In order to avoid the potential severe side effects, it is necessary
to explore a safe drug target in the downstream signaling of NMDARs.
Since nNOS works as a main downstream molecule of NMDARs
(Mungrue and Bredt, 2004), these studies support a potentially im-
portant role of nNOS in the pathology of affective disorders and nNOS
may be a practical and more selective drug target for treatment of af-
fective disorders. Thus, in this review we will summarize the evidence
of the roles of nNOS in the pathology of MDD, BPD, and anxiety, which
could assist in new drugs discovery for treating affective disorders.

NO plays an important role in the physiology of the CNS (Alderton
et al., 2001; Garthwaite, 1995). However, it turns harmful when in-
volved in some pathological processes mainly due to its reactivity with
reactive oxygen species (ROS), forming peroxynitrite (ONOO·) which
can nitrosylate extensive proteins, lipids, deoxyribonucleic acid (DNA),
ribonucleic Acid (RNA), and other cell constituents (Anand and
Stamler, 2012; Foster et al., 2009, 2003). Of note, biosynthesis of
neurotransmitters can be regulated by NO (Trabace et al., 2004). Ad-
ditionally, hippocampal neurogenesis, neuronal plasticity, nerve
growth factor synthesis, hypothalamic-pituitary-adrenal (HPA) axis
activity and other targets involved in depression are modulated by NO
(Guix et al., 2005; Bishop and Anderson, 2005; Cardenas et al., 2005). It
has been documented that the dysfunction of NO in the brain is related
to the etilogy of MDD, BPD, and anxiety (Baranyi et al., 2015; Dhir and
Kulkarni, 2011; Pitsikas, 2018). However, the function of nNOS
pathway in affective disorders is not comprehensively reviewed. In the
present review, we analyzed studies on the interaction between nNOS

and the signal molecules involved in affective disorders and recognize
that nNOS plays a critical role in the primary pathological changes of
affective disorders.

nNOS expression and distribution in the CNS

More than 10 differently spliced nNOS transcripts were reported,
among which three isoforms of nNOS including nNOSα, nNOSβ, and
nNOSμ are the principal (Kolesnikov et al., 2009). In the CNS, the
160 kDa nNOSα is the predominant splice variant, accounting for the
great majority of catalytic activity in the brain (Mungrue and Bredt,
2004). A radioactive oligonucleotide in situ hybridization experiment
employed the nNOSβ-specific probe indicated that nNOSβ may be re-
sponsible for the major portion of citrulline formation (Eliasson et al.,
1997). The isoform nNOSμ is majorly expressed in striated muscle,
important for muscle homogenates (Mungrue and Bredt, 2004;
Kolesnikov et al., 2009; Percival et al., 2008). Among the three iso-
forms, nNOSα is well-studied in the CNS diseases, with wide distribu-
tion in other cell types including astrocyte and neural stem cells (NSCs),
not only neurons, in the brain (Calabrese et al., 2007; Luo et al., 2010).

In the brain, nNOS is predominantly expressed in the hippocampus,
cortex, hypothalamus, DRN, amygdala, and other regions (Wang and
Nakai, 1995; Okere and Waterhouse, 2006; Tagliaferro et al., 2001;
Leger et al., 1998; Simpson et al., 2003; Zhang et al., 2010), (Table 1),
the areas of the brain related to stress and affective disorders. Almost all
of the sub-regions of the hippocampus including detate gurus, hilus,
CA3, CA1, and subiculum express nNOS in different cell types such as
interneurons, granular neurons, and pyramidal neurons, indicating that
nNOS plays an important role in the function of the hippocampus (Zhou
et al., 2011a; Oliveira et al., 2008; Liang et al., 2013; Wendland et al.,
1994). Both the periventricular and magnocellular nucleus of the hy-
pothalamus harbor nNOS cells expressing LepRb or Sim1 (Leshan et al.,
2012; Sutton et al., 2014). More importantly, it has been shown that
NOS directly exist in corticotropin-releasing factor (CRF) and arginine
vasopressin (AVP) neurons and modulate the secretion of CRF (Orlando
et al., 2008; Yuan et al., 2006; Harada et al., 1999) (Table 1). In the
amyadala, nNOS is mainly found in the basolateral complex. Various
types of neurons in different regions of the cerebral cortex also contain
nNOS (Table 1), indicating diversified functions of nNOS in the cortex.
Notably, nNOS and 5-HT are co-expressed in the same neurons in dif-
ferent areas of the dorsal raphe nucleus (DRN) (Tagliaferro et al., 2001;
Okere and Waterhouse, 2006, 2006; Tagliaferro et al., 2001; Leger
et al., 1998; Simpson et al., 2003), implying the interaction between
nNOS and 5-HT in the biological function of DRN.

The level of nNOS in other places of the brain is relatively lower
(Table 1). For instance, nNOS-expressing cells are found in the striatum,
and there is evidence showing that nNOS in the striatum is implicated
in the pathology of Aging (Del Moral et al., 2004), Parkinson’s disease
(Chalimoniuk and Langfort, 2007) and Huntington’s disease (Table 1)
(Norris et al., 1996). There is also data showing that nNOS in the locus
coeruleus (LC) is involved in the pathology of BPD (Table 1)
(Karolewicz et al., 2004). Furthermore, nNOS-positive cells are found in
the basal ganglia, olfactory bulb, and cerebellar cortex, though the role
of nNOS in these tissues needs further investigation (Table 1) (Hu et al.,
2012a; Sanchez-Islas and Leon-Olea, 2001; Kishimoto et al., 1993;
Crespo et al., 2003; Abbott and Nahm, 2004). A large number of nNOS
positive cells and nNOS immunoreactive axons are also reported in the
spinal cord, which is involved in the pathology of pain (Table 1)
(Lukacova et al., 2012).

nNOS signaling in the brain

The dimer form is the active form of nNOS, requiring tetra-
hydrobiopterin (BH4), heme and L-arginine binding. Although the
synthesized NO from endogenous L-arginine is the principle signaling
mediator of nNOS, the featured structure of nNOS contributes to its
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flexible signal transduction pathway (Zhou and Zhu, 2009; Luo and
Zhu, 2011). There are two non-overlapping binding sites in the struc-
ture of nNOS, including a canonical PDZ domain (residues 1–99) that
binds PDZ motifs inside other proteins (Jaffrey et al., 1998; Manivet

et al., 2000; Riefler and Firestein, 2001; Chanrion et al., 2007a) and an
“internal” PDZ motif (residues 100–130) that binds PDZ domains of
other proteins (Christopherson et al., 1999; Hillier et al., 1999). Neu-
ronal NOS is an important enzyme in the downstream cascade of the

Table 1
The distribution of nNOS expression in the CNS.

Tissue in the CNS Sub-region Cell types

Hippocampus CA1 Pyramidal cells and interneurons (Zhou et al., 2011a; Liang et al., 2013; Wendland et al., 1994)
CA3 Pyramidal cells and interneurons (Zhou et al., 2011a)
Granular layer Granule cells (Zhou et al., 2011a; Liang et al., 2013)
Molecular layer Interneurons (Romay-Tallon et al., 2010)
Hilus GABA interneurons (Zhou et al., 2011a; Liang et al., 2013)

GAD67 interneurons (Jinno et al., 1999)
Subiculum Interneurons (Oliveira et al., 2008)

Hypothalamus Paraventricular Nucleus LepRb neurons (Leshan et al., 2012);
Sim1 neurons (Sutton et al., 2014);
CRF neurons (Harada et al., 1999)
8-arginine vasopressin neurons (Nylen et al., 2001)

Magnocellular Nucleus Oxytocin neurons (Nylen et al., 2001)
Supraoptic nucleus NA (Srisawat et al., 2004)

Amygdala Basolateral complex GABAergic interneurons (Wang et al., 2017; Vatanparast et al., 2013)
Cerebral cortex Neocortex GABAergic interneurons (Shlosberg et al., 2012)

Prefrontal cortex Interneurons (Zoubovsky et al., 2011; Spiers et al., 2016)
Visual cortex Calretinin- or parvalbumin-positive interneurons (Gu et al., 2015; Lee and Jeon, 2005)
Entorhinal cortex NA (Oliveira et al., 2008)
Temporal cortex GABAergic interneurons (Bernstein et al., 2014)
Barrel cortex GABAergic interneurons (Perrenoud et al., 2012)

Dorsal raphe nucleus Dorsomedial area 5-HT neurons (Tagliaferro et al., 2001; Simpson et al., 2003)
Ventromedial area 5-HT neurons (Tagliaferro et al., 2001; Simpson et al., 2003)
Periventricular part 5-HT neurons (Leger et al., 1998; Simpson et al., 2003)

Striatum Striatal matrix Spiny nitregic neurons (Ramos et al., 2002)
Olfactory bulb Periglomerular region Periglomerular cells (Chen et al., 2004);

GABAergic neurons (Crespo et al., 2003)
Vomeronasal accessory Granule cells (Kishimoto et al., 1993)
Nasal Epithelium Olfactory receptor neurons (Sanchez-Islas and Leon-Olea, 2001)

Basal ganglia Corpus striatum NA (Hu et al., 2012a)
Locus coeruleus NA Neuromelanin-containing neurons (Karolewicz et al., 2004; Bielau et al., 2012b; Karolewicz et al., 2008)
Spinal cord Dorsal horn NA (Lukacova et al., 2012; Davidova et al., 2009)
Cerebellar cortex Molecular layer Stellate, basket, Purkinje and granule cells (Abbott and Nahm, 2004; Martins et al., 2011)

NA means no answer.

Fig. 1. A descriptive model for the signaling pathway of nNOS in excitatory neurons.
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NMDARs. The PDZ domain of nNOS binds to the second PDZ domain of
the postsynaptic density protein-95 (PSD-95), which in turn binds to the
cytosolic tail of the NMDARs (Christopherson et al., 1999) (Fig. 1).
When a large volume of glutamate is released from pre-synapse into the
synaptic gap, NMDARs on the post-synaptic membrane opens in re-
sponse to glutamate binding, allowing Ca2+ influx into the cell (Fig. 1).
The elevated cytosolic Ca2+ concentration is required for Calmodulin
(CaM) to interact with nNOS, leading to activation of nNOS by phos-
phorylation of nNOS, increasing NO production. The nNOS are attached
to the plasma membrane via adapter proteins such as PSD-95, creating
the particulate form of nNOS with a higher probability of activation by
CaM compared to soluble nNOS in the cytoplasm. However, the inter-
action between nNOS and CaM is blocked by the Calmodulin protein
kinase (CaMKII) via phosphorylation of nNOS (Fig. 1). The triple-
complex of NMDAR/PSD-95/nNOS plays an important role in a range
of normal neuronal functions including learning and memory and sy-
naptic plasticity (Garthwaite, 1995; Jaffrey and Snyder, 1995;
Garthwaite et al., 1988), as well as pathophysiological disorders of the
brain such as stroke and pain (Zhou et al., 2010; Aarts et al., 2002;
Florio et al., 2009). The membrane-localized nNOS further physically
couples with another adapter protein called CAPON linked to DexRas 1
to regulate the nitrosylation of DexRas 1 (Jaffrey et al., 1998; Fang
et al., 2000), activating a downstream MAP kinase (MAPK) cascade and
modulate nuclear transcription of cAMP-response element binding
protein (CREB), N-myc proto-oncogene protein (N-Myc), nuclear factor-
kappa B (NF-κB), Tumor protein (p53), and histone deacetylase 2
(HDAC2), etc. (Fig. 1).

The function of nNOS is majorly mediated by the NO-activated so-
luble guanylate cyclase (sGC)- cyclic guanosine monophosphate
(cGMP)- protein kinase G (PKG) pathway, affecting postsynaptic neu-
ronal excitability and targeting several ion channels including sodium,
voltage-gated calcium, calcium-activated and ATP-sensitive potassium,
and cyclic nucleotide-gated channels, as well as AMPA receptors
(AMPARs) to modulate synaptic strength (Calabrese et al., 2007).
Meanwhile, NO also diffuses to presynaptic region and regulates pre-
synaptic neurotransmitter release (Fig. 1). Excessive amounts of NO
produced under pathological conditions are associated with increased
inflammation and oxidative stress reacts with superoxide anion oxygen
(O2)%, to form ONOO% (Pacher et al., 2007). Nitrosylation including
S nitrosylation and nitrotyrosination of proteins are important in phy-
siological and pathological signaling (Anand and Stamler, 2012; Foster
et al., 2009, 2003). Functionally, some receptors such as NMDARs,
sodium channels are inhibited by nitrosylation while other channels or
receptors such as L-type calcium (Ca) channel, calcium activated po-
tassium channel, and GABA-A receptor are activated by nitrosylation
(Choi et al., 2000; Manzoni et al., 1992). The different effects on
channels and receptors precisely regulate a wide spectrum of physio-
logical processes including cell death and injury, synaptic function,
redox response, mitochondrial function, and transcriptional control
(Calabrese et al., 2007). Particularly, nNOS may represent a central
component that regulates synaptic transmission and intercellular sig-
naling, through negative regulation of the NMDARs by S-nitrosylation
(Kim et al., 1999) (Fig. 1). Beside of excitatory neurons, the signaling
pathway of nNOS in interneurons and astrocytes are not well studied
and remain unclear.

Overall, the catalytic activity, protein-protein interaction, and sub-
cellular localization of nNOS are the key factors in its signal transduc-
tion.

Glutamate synthesized and released in the pre-synapse binds to the
NMDARs at the post-synapse, leading to influx of Ca2+ which then
activates nNOS and its signaling pathway.

Affective disorders

Affective disorders, mainly including MDD, BPD, and anxiety dis-
orders, are a set of psychiatric diseases characterized by dramatic

changes or extremes of mood (Baldwin, 2007). MDD is characterized by
feelings of extreme sadness, hopelessness, and a proportion of patients
have suicide attempts (Wong and Licinio, 2001). The clinical medica-
tion for MDD include tricyclic antidepressants (TCAs), tetracyclic an-
tidepressant, SSRIs, serotonin and norepinephrine reuptake inhibitors
(SNRIs), dopamine reuptake blocker, 5-HTR1 A antagonist, 5-HTR2
antagonists, 5-HTR3 antagonist, monoamine oxidase inhibitors
(MAOIs), and noradrenergic antagonist. Classic BPD is featured by
switching of two periods of mood including depression and mania
(Goodwin and Jamison, 2007). The treatment for BPD includes lithium,
an old mood stabilizer, and atypical antipsychotics with greater side
effects, such as aripiprazole, risperidone, quetiapine, ziprasidone, and
clozapine. Anxiety disorders are characterized by feelings of nervous-
ness, anxiety, and even fear (Gross and Hen, 2004). Medication used for
alleviating the symptoms of generalized anxiety disorder includes
benzodiazepines including alprazolam, clonazepam, chlordiazepoxide,
diazepam, and lorazepam, SSRIs, SNRIs, and some of the tricyclic an-
tidepressants. Although similar symptoms and cure strategy and drugs
cause difficulty in precise treatment of affective disorders, these dis-
orders can be distinguished and divided into several subtypes according
to diagnosis criteria with different treatment guidance and principle.

The pathogenesis of affective disorders involves both neurology and
psychiatry; however the molecular mechanism is not fully understood.
Increasing hereditary evidence shows that the affective disorders are
influenced by the interaction between genetic and environmental fac-
tors (Baldwin, 2007). In a given genetic background, dysfunction of
neurotransmitters and hormones in the brain in response to environ-
mental factors, such as stressful life events, play a major role in the
development of affective disorders (Lex et al., 2017; Won and Kim,
2016; Lupien et al., 2009a; de Kloet et al., 2005a). Life events, such as a
traumatic event, personal loss, health problem, family issue, and al-
cohol or drugs abuse, can trigger the pathological changes related to
affective disorders.

Two main types of treatments available for affective disorders are
medication and psychotherapy (DeRubeis et al., 2008). There are many
different medications available for relieving the symptoms (Manji and
Young, 2002; Mitchell, 2002; Montgomery, 2002; Nemeroff and Owens,
2002; Raison et al., 2002). However, the solution of affective disorder
remains still impossible under current typical clinic therapy merely,
driving scientists to search new therapeutic targets. The ‘Monoamine-
Deficiency Hypothesis’, developed from clinical observations cannot
fully explain the mechanism of depression (Berton and Nestler, 2006).
However, abnormality of monoamine level couldn’t completely inter-
pret for depression, indicating that other signal molecules may be cri-
tical in the pathological development of affective disorders. The dis-
tribution of nNOS-positive neurons in the brain, mainly in the
hippocampus, cortex, hypothalamus, DRN, and amygdala (Table 1),
implies a strong link between nNOS and affective disorders. Interest-
ingly, the interaction between nNOS and monoamine was found im-
portant in the antidepressive effect of classic antidepressants (Smith
and Whitton, 2000; Segieth et al., 2001; Chiavegatto et al., 2001;
Strasser et al., 1994; Asano et al., 1997; Bryan-Lluka et al., 2004;
Fossier et al., 1999). Collectively, increasing evidences are showing that
nNOS in different regions of the brain play fundamental roles in the
pathology of MDD, BPD, and anxiety.

nNOS and MDD

MDD is a chronic, recurring and potentially life threatening mental
illness that causes marked diminished interest or pleasure and a per-
sistent feeling of sadness (Belmaker and Agam, 2008; Ignacio et al.,
2018). The diagnosis of MDD requires a distinct change of mood
characterized by sadness or irritability which last a minimum of 2
weeks (Belmaker and Agam, 2008). Since its development in 1960 by
Dr. Hamilton, the Hamilton Depression Rating Scale (HAM-D) has been
widely applied to diagnose depression (Hamilton, 1960). The core
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symptom of MDD is accompanied by at least several psychophysiolo-
gical changes, such as sleep disturbances, reduced appetite, slowed
thinking, suicidal thoughts, and angry outbursts (Belmaker and Agam,
2008).

Numerous theories of the etiology of depression have been devel-
oped. The ‘Monoamine-Deficiency Hypothesis’, an early milestone in
the pathophysiology of depression, is demonstrated by the facts that
monoamine is decreased in the brain and antidepressants effectively
recover it (Millan, 2004). However, serious gaps and limitations have
been revealed in the ‘Monoamine-Deficiency Hypothesis’(Berton and
Nestler, 2006; Millan, 2004). For instance, it takes at least 3–4 weeks to
exert antidepressant effects while the concentrations of monoamine
increase rapidly after antidepressant treatment. Despite this, only a
subset of patients shows recovery after antidepressant treatment by
increasing the concentration of monoamine. Hyperactivity of the HPA
axis is also observed in the majority of patients with depression, as
manifested by hyper-secreted CRF from the hypothalamus and adrenal
hyper-responsiveness to circulating adrenocorticotropic hormone
(ACTH) (de Kloet et al., 2005a; Parker et al., 2003; Wong et al., 2000).
Over the years, the hypotheses on the pathophysiology of depression
and on the molecular mechanisms of antidepressants have greatly ex-
tended (Wong and Licinio, 2001; Berton and Nestler, 2006). Depression
is associated with impairments of structural plasticity and cellular re-
silience. Numerous preclinical and clinical studies have shown that
signaling pathways involved in regulating cell survival and cell death
are long-term targets for the actions of antidepressants, including brain
derived neurotrophic factor (BDNF), CREB, and molecules regulating
adult hippocampal neurogenesis (Eisch et al., 2003; Koch et al., 2002).
Furthermore, the glutamatergic system and gamma aminobutyric acid
(GABA) system also have been demonstrated to be involved in the pa-
thophysiology of depression (Machado-Vieira et al., 2009; Luscher
et al., 2011).

The major function of nNOS is synthesis of NO. There are various
evidences that have demonstrated an imperative role of NO derived
from nNOS positive neurons in MDD (Baranyi et al., 2015; Dhir and
Kulkarni, 2011; Akpinar et al., 2013; Herken et al., 2007; Yu et al.,
2003). Neurons expressing nNOS are predominantly located in the
hippocampus, cortex, hypothalamus, DRN, amygdala (Wang and Nakai,
1995; Okere and Waterhouse, 2006; Tagliaferro et al., 2001; Leger
et al., 1998; Simpson et al., 2003; Zhang et al., 2010), strongly im-
plicated in MDD (Table 1). More and more studies revealed indis-
pensable roles of nNOS-NO pathway in the etiology and treatment of
MDD, which are discussed in the following sessions.

Antidepressant properties of nNOS inhibitors

More and more clinical and pre-clinical studies strongly suggest the
implication of the NO cascade in the pathology of depression (Dhir and
Kulkarni, 2011; Wegener and Volke, 2010; Ostadhadi et al., 2016a;
Zomkowski et al., 2010; Jesse et al., 2010, 2008; Dhir and Kulkarni,
2007a; Almeida et al., 2006; Harkin et al., 1999, 2004). Jefferys and
Funder showed that L-N-arginine methyl ester or NG-nitro-L-arginine
methyl ester (L-NAME), a type of general NOS inhibitor, decreased
immobility of rats in the Porsolt forced swimming test, which was re-
versed by pre-treatment with L-arginine (the NOS substrate) (Jefferys
and Funder, 1996). Both acute and chronic treatment of L-NAME pro-
duced antidepressive-like response in FST (Harkin et al., 1999). NG-
monomethyl-L-arginine (L-NMMA), another NOS inhibitor, also elicited
antidepressive-like effect in FST (Harkin et al., 1999). In line with this
finding, studies found that NG-nitro-L-arginine (L-NA or L-NNA), an-
other type of non-preferential NOS inhibitor, resulted in antidepressant-
like effects in the forced swimming test (FST) and augmented the be-
havioral effect of antidepressants (Gigliucci et al., 2010; Karolewicz
et al., 2001; Harkin et al., 2003) (Table 2). Co-treatment with the non-
selective 5-HT receptor antagonist metergoline, preferential 5-HTR2 A
antagonist ketanserin, or the 5-HTR2C antagonist RO-430440, but not

5-HTR1 A antagonist WAY 100,635 or the 5-HTR1B antagonist GR
127935, attenuated the L-NA-induced reduction in immobility in FST
(Gigliucci et al., 2010). Administration of lipopolysacharide (LPS) is a
model of depression in rodents. It was found that NOS inhibitors, in-
cluding L-NAME, aminoguanidine, and sildenafil prevented the LPS-
induced depression-like behavioral and neurochemical alterations
(Tomaz et al., 2014).

Selective nNOS inhibitors produced acute antidepressant-like effects
in behavioral measurement (Volke et al., 2003; Joca and Guimaraes,
2006; Silva et al., 2012). For instance, 7-nitroindazole (7-NI), a pre-
ferential inhibitor of nNOS, and 1-(2-trifluoromethylphenyl)imidazole
(TRIM), a stronger preferential inhibitor of nNOS, decreased immobility
time in the FST (Volke et al., 2003; Joca and Guimaraes, 2006; Silva
et al., 2012; Ulak et al., 2010). Moreover, 7-NI augmented the beha-
vioral effects of imipramine and fluoxetine in FST (Harkin et al., 2004).
Studies showed an increase in Fos expression in several brain regions
after stress which were attenuated by 7-NI similar to fluoxetine and
venlafaxine, suggesting that these drugs share common neurobiological
substrates [Silva et al., 2012). Consistently, acute stress-induced in-
crease in c-FOS immunoreactivity in the brain was reduced following
treatment with L-NA or TRIM (Sherwin et al., 2017). Additionally, 7-NI
administration altered the expression of genes related to transcription
in the cAMP response element-binding pathway, which possibly ac-
count for the antidepressant-like effects induced by nNOS inhibition
(Ferreira et al., 2012). The antidepressive property targeting nNOS was
also documented by the effect of Nω-propyl-L-arginine (NPA), another
preferential nNOS inhibitor (Garthwaite et al., 1989; Sales et al., 2017).
Notably, microinjection of NPA into the dorsal hippocampus induced
dose-dependent antidepressant-like effects, which were counteracted
by a 5 H TR1 A antagonist (Hiroaki-Sato et al., 2014). It was recently
shown that acute stress exposure increased nNOS expression, the con-
centration of NO in the hippocampus, and both NPA and [1H-[1,2,4]
Oxadiazole[4,3-a]quinoxalin-1-one] (ODQ), an inhibitor of sGC, in-
duced an antidepressant-like effect [Sales et al., 2017; Heiberg et al.,
2002; Pereira et al., 2015; Diniz et al., 2016). Carboxy-PTIO (c-PTIO), a
type of NO scavenger, produced antidepressant-like effects in the FST
(Pereira et al., 2015; Diniz et al., 2016; Poleszak et al., 2007). Inter-
estingly, hippocampal NO was shown to play a role in the anti-
depressant-like effect of ketamine (Liebenberg et al., 2015). Our lab
found that nNOS knockout mice possess an antidepressant-like pheno-
type (Zhou et al., 2007). More importantly, we found that chronic stress
caused overexpression of nNOS in the hippocampus and inhibition of
nNOS activity reversed chronic stress-induced depressive behaviors
(Zhou et al., 2011a, 2007). Repeated treatment with 7-NI (30mg/kg),
at which dose increased BDNF protein levels in the hippocampus, at-
tenuated learned helplessness development (Sherwin et al., 2017). Al-
though the selectivity of 7-NI was concerned, the dose exerting anti-
depressive effect (30mg/kg) did not changed the enzymatic activities of
iNOS and eNOS (Zhou et al., 2007). Additionally, it was shown that
repeated administration of TRIM improved the depression behavior of
mice exposed to chronic stress (Mutlu et al., 2009).

Altogether, extensive evidence indicates that the nNOS-NO-sGC
pathway plays an important role in depression-related behavior and the
signaling of 5-HT in the hippocampus is implicated in the anti-
depressive effect of nNOS inhibitors (Table 2).

nNOS as the target of stress

Life stress is a primary cause of depression (Bech, 2005). The cortex,
hippocampus, amygdala, and the HPA axis are all involved in the pa-
thology of depression (Krishnan and Nestler, 2008; Shelton, 2007).
Increasing data suggest that life stress leads to enhancement of nNOS
expression and activity in these brain regions. Acute restraint stress
evoked an increase in the content of NO₂/NO₃ in the dorsal hippo-
campus (Moraes-Neto et al., 2014). Five days after a single or repeated
restraint stress, there was an additional increase in NADPH- or nNOS-
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positive neurons in the CA1, CA3 sub-region of the hippocampus, and
the entorhinal cortex (Echeverry et al., 2004). In addition, 21 days CMS
exposure increased nNOS expression in all fields of the hippocampus
(CA1, CA3, DG, and subiculum) (Zhou et al., 2011a, b). The total hip-
pocampal nNOS activity, nNOS protein levels and mRNA expression
were increased after stress in the Flinders rat, a genetic animal model of
depression (Wegener et al., 2010).

After 2 h of immobilization stress, nNOS mRNA expression in the
anterior pituitary and adrenal cortex was up-regulated with 1.5 and 2-
fold respectively (Kishimoto et al., 1996). The nNOS mRNA signals in
hypothalamic paraventricular nucleus (PVN) significantly increased
after the stress for 6 h (Joung et al., 2012). However, some studies
showed that NOS+ cell density and number in the PVN were sig-
nificantly decreased in rats after chronic stress, and in humans with
depression (Gao et al., 2014; Bernstein et al., 1998; de Oliveira et al.,
2000). Thus, how nNOS changes in the PVN after stress or in patients
with depression require more evidence. Acute restraint stress induced a
significant increase in the density of neurons expressing NADPH-d and
nNOS in the amygdala nuclei (Echeverry et al., 2004). In addition, a
significant increase of NOS enzyme activity in the anterior pituitary,
adrenal cortex, and adrenal medulla was observed in the stressed ani-
mals (immobilization of 6 h) as compared to non-stressed control rats
(Kishimoto et al., 1996; Krukoff and Khalili, 1997).

NO primarily mediates the biological function of nNOS (Zhou and
Zhu, 2009). Researchers provide evidence that NO mediates the func-
tion of nNOS after stress exposure. An early study found elevated
plasma nitrate levels in patients with major depression compared with
both patients with anxiety disorder and normal control subjects (Suzuki
et al., 2001). It was also showed that plasma NOx levels among suicidal
depressive patients are higher than among non-suicidal depressive pa-
tients and normal controls (Kim et al., 2006). More specifically, stress
caused activation of NO-producing neurons in the brain of rat (Krukoff

and Khalili, 1997). Furthermore, following treatment of depressed pa-
tients with paroxetine, levels of serum nitrate and nitrite, both of which
are degradation products of NO, was significantly reduced. The same
authors showed that paroxetine indeed inhibited conversion of L-argi-
nine to citrulline and NO in vitro (Kim et al., 2006). Consistently, NO
levels in the plasma were significantly increased in rats exposed to
chronic unpredictable stress (Gao et al., 2014). Our previous work de-
monstrated that hippocampal injection of SIN-1 induced depressive
behavior in mice and clearance of NO by c-PTIO in the hippocampus
counteracted chronic stress-induced depressive behavior (Zhou et al.,
2011a). Collectively, increasing evidences show that nNOS located in
several regions of the CNS such as the hippocampus, hypothalamus and
pituitary is reactive to stress stimuli, indicating an important role of
nNOS in the development of MDD.

The role of nNOS in serotonergic signaling in depression

The monoamines including 5-HT, NA, and DA are involved in the
pathogenesis of affective disorders (Shelton, 2007; Hornykiewicz,
1974). Particularly, the role of the 5-HT pathway is well established and
recognized in the pathogenesis of depression (Castren, 2005). A defi-
ciency of 5-HT was discovered very early from post-mortem studies of
patients with major depression [Hornykiewicz, 1974; Shaw et al., 1967;
Asberg et al., 1976). Based on this result, several types of anti-
depressants increasing the concentration of 5-HT in the synaptic cleft
were developed. In the brain, several places including the hippo-
campus, amygdala, frontal cortex, and hypothalamus (post-synaptic
tissues) receive serotonergic input from the DRN (pre-synaptic tissues).
The dysfunction of serotonergic neurons is found both in the pre-sy-
naptic tissues and post-synaptic tissues. The central theory of depres-
sion supported by these findings is called ‘Monoamine-Deficiency Hy-
pothesis’ or ‘Monoamine theory’. Nitric oxide is ubiquitously

Table 2
Antidepressant properties of nNOS inhibitors.

Drugs Species Condition Treatment Test (post treatment) Mechanism

L-NAME Rat Physical state 50mg/kg, i.p., 1 time FST (30min) Nitric Oxides (Jefferys and Funder, 1996)
Mice Physical state 10mg/kg, i.p., 1 time FST (1 hour) Nitric Oxides (Harkin et al., 1999; Zhu et al., 2018)
Mice Physical state 5mg/kg, i.p., 1 time FST (1 hour) Nitric Oxides (Chaudhari et al., 2010)
Mice Physical state 5mg/kg, i.p., 1 time FST (1 hour) 5-HTR1 A/5-HTR1B (Chaudhari et al., 2010)
Mice Physical state 5mg/kg, i.p., 1 time FST (1 hour) Adrenergic system (Chaudhari et al., 2010)
Mice LPS treatment 30mg/kg, i.p., 1 time FST, SPT (24 hours) NO-cGMP pathway (Tomaz et al., 2014)
Mice Clonidine treatment 10mg/kg, i.p., 1 time FST (1 hour) NA (Chaudhari et al., 2010)
Mice Reserpine treatment 10mg/kg, i.p., 1 time FST (1 hour) NA (Chaudhari et al., 2010)

L-NMMA Mice Physical state 30mg/kg, i.p., 1 time FST (1 hour) Nitric Oxides (Harkin et al., 1999)
L-NA Rat Physical state 20mg/kg, i.p., 1 time FST (1 hour) 5-HT (Harkin et al., 2003)

Rat Physical state 10mg/kg, i.p., 1 time FST (1 hour) Neuronal activation in the
DG, CA1, and DRN (Sherwin et al., 2017)

Mice Physical state 1 mg/kg, i.p., 1 time FST (1 hour) Nitric Oxides (Karolewicz et al., 2001)
Mice Physical state 10mg/kg, i.p., 1 time FST (5 or 24 hours) 5-HT, 5-HTR2 A, 5-HTR2C (Gigliucci et al., 2010)

7-NI Rat Physical state Intrahippocampal injection, 100nmol FST (30min) Nitric Oxides in
the dorsal hippocampus (Joca and Guimaraes, 2006)

Rat Physical state 30mg/kg, i.p., 1 time FST (1 hour) 5-HT (Silva et al., 2012)
Rat Physical state 20mg/kg, i.p., 1 time FST (1 hour) 5-HT (Harkin et al., 2003)
Mice Physical state 50mg/kg, i.p., 1 time FST (50min) Nitric Oxides (Volke et al., 2003)
Mice Physical state 50mg/kg, i.p., 7 days FST (1 hour) Hippocampal 5-HT (da Silva Leal et al., 2017)
Mice Chronic stress 30mg/kg, i.p., 4 days Coat State, FST, TST

(1 month)
Hippocampal neurogenesis (Zhou et al., 2007)

Mice Corticosterone 30mg/kg, i.p., 7 days FST, TST, SPT (1 month) Glucocorticoids receptor (Zhou et al., 2011a)
Mice Learned helplessness 30mg/kg, i.p., 7 days LH development (24 hours) Hippocampal BDNF level (Sherwin et al., 2017)

TRIM Rat Physical state 50mg/kg, i.p., 1 time FST (50min) 5-HTR1 A (Ulak et al., 2010)
Rat Physical state 50mg/kg, i.p., 1 time FST (1 hour) Neuronal activation in the

DG, CA1, and DRN (Sherwin et al., 2017)
Mice Physical state 50mg/kg, i.p., 1 time FST (50min) Nitric Oxides (Volke et al., 2003)
Mice Chronic stress 30mg/kg, i.p., 35 days Coat State, Splash test

(3 weeks)
Nitric Oxides (Mutlu et al., 2009)

NPA Rat Acute stress Intrahippocampal injection, 0.01 pmol FST (1 hour) Hippocampal 5-HTR1 A (Hiroaki-Sato et al., 2014)
Rat Acute stress Intrahippocampal injection, 0.001 nmol FST (24 hours) NO-sGC pathway

in the dorsal hippocampus (Sales et al., 2017)

NA means no answer.
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synthesized by nNOS in these tissues, playing a fundamental role in
extensive physiological and pathological processes. The coexistence of
the two transmitters offers the high probability that they act together in
depression.

A growing body of evidence suggest that nNOS regulates the
synthesis, release, and uptake of 5-HT. Tryptophan hydroxylase (TH),
the rate-limiting enzyme in biosynthesis of 5-HT, is inactivated by
ONOO·, which is mediated by sulfhydryl oxidation, in a concentration-
dependent manner (Kuhn and Geddes, 1999; Kuhn et al., 1999; Ara
et al., 1998). In addition, NO donor S-nitroso-N-penicillamine (SNAP)
was shown to decrease 5 H T release in the raphe nucleus but increase
release in the frontal cortex (Smith and Whitton, 2000). Both local in-
fusion of 7-NI into the hippocampus and systemic administration sig-
nificantly increased extracellular level of 5-HT (Segieth et al., 2001).
Consistently, Chiavegatto et al revealed that nNOS knockout mice had
increased levels of 5-HT in several brain regions regulating emotion,
including cerebral cortex, hypothalamus, hippocampus, and amygdala
(Chiavegatto et al., 2001). In contrast, administration of L-Arg, the
substrate for catalyzing NO, decreased the level of 5-HT in the hippo-
campus (Strasser et al., 1994). Sodium nitroprusside (SNP), a NO donor,
inhibited the uptaking of 5-HT into synaptosomes in the rat brain
without effecting the 5-HT transporter (Asano et al., 1997). However,
other types of NO donors such as (Z)-1-[N-methyl-N-[6-(N-methy-
lammoniohexyl)-amino]]diazen-1-ium-1,2-diolate (MAHMA/NO) and
5-amino-3-(4-morpholinyl)-1,2,3-oxadiazolium chloride (SIN-1) in-
hibited 5-HT uptake by SERT in COS-7 cells expressing human SERT
(Bryan-Lluka et al., 2004). In an early study, it was shown that SERT
was transformed into an inactive form to reduce 5-HT in the presence of
3-morpholinosydnonimine, a nitric oxide donor or endogenous nitric
oxide synthase was activated (Fossier et al., 1999). The activation of
NMDA receptors has been substantially linked to the production of the
signaling molecule NO in the CNS (Garthwaite, 1995). Previous studies
demonstrated that the NMDA receptor antagonists, MK-801 and D-AP5,
increased extracellular levels of 5-HT and DA in the ventral hippo-
campus in vivo (Whitton et al., 1994). Thus, it is possible that en-
dogenous NO functions through negative control of the levels of 5-HT in
the hippocampus. Furthermore, the antidepressive effect of inhibition
of NO synthase depends on the level of 5-HT (Harkin et al., 2004,
2003). In the hippocampus, postsynaptic 5-HTR1 A is an important
signal mediator of 5-HT (Zhang et al., 2010). Post-mortem studies find
diminished 5-HTR1 A numbers and lowered receptor affinity in the
hippocampi of depressed suicide victims. Stress and high concentration
of glucocorticoid similar to the level under stressful conditions stimu-
lates a great quantity of NO production by up-regulating nNOS ex-
pression and activity in the hippocampus (Zhou et al., 2011a). Both
glucocorticoid and chronic stress also have been shown to induce
downregulation of 5-HT1A receptor density and messenger RNA
(mRNA) content in the hippocampus. Additionally, our research found
that NO donator DETA/NONOate (100 μM) depressed hippocampal 5-
HTR1 A expression in vitro and in vivo (data not published). These data
together let us postulate that high concentration of glucocorticoids re-
sponding to the stimulation of stressful life events enhance nNOS
function in the hippocampus. Therefore, endogenous NO derived from
nNOS under chronic stressful stimuli in the hippocampus may partici-
pate in the pathophysiology of depression by negatively regulating the
5-HT pathway (Fig. 2).

Interestingly, nNOS in turn works in downstream of the 5-HT cas-
cade. Activation of hippocampal 5-HTR1 A inhibits postsynaptic Ca2+

influx through the NMDARs. Serotonin 5 H TR1B agonists abolished
NMDAR-evoked enhancement of NOS activity. Administration of ser-
otonergic antidepressants decreased hippocampal nNOS activity
(Wegener et al., 2003; Luo and Tan, 2001). Interestingly, other lines of
antidepressant targeting NA and DA also involved in suppression of
NOS (Krass et al., 2011; Ostadhadi et al., 2016b). Methylene blue with
structural similarities to tricyclic antidepressants had antidepressant
properties. It was also found that methylene blue treatment reduced

hippocampal nitrate levels (Harvey et al., 2010). The antidepressant-
like effect of bupropion [(+/-)-alpha-t-butylamino-3-chlor-
opropiophenone], a dopamine reuptake inhibitor, was prevented by
pretreatment with L-arginine, the substrate for nitric oxide synthase.
Additionally, pretreatment of mice with 7-nitroindazole potentiated the
effect of bupropion (Dhir and Kulkarni, 2007b). Treatment with nNOS
inhibitor, 7-nitroindazole, augmented the behavioral effects of imipra-
mine and fluoxetine, respectively (Harkin et al., 2004). The anti-
depressant-like effect of venlafaxine (8mg/kg, i.p.) was prevented by
pretreatment with L-arginine (750mg/kg, i.p.), the substrate for nitric
oxide synthase, demonstrating that the antidepressant-like effect of
venlafaxine in the FST involved an interaction with the L-arginine-NO-
cGMP pathway (Jesse et al., 2010, 2008; Dhir and Kulkarni, 2007a). An
article found that treatment with 1-(2-trifluoromethylphenyl)-imida-
zole (TRIM) (20mg/kg), a nNOS inhibitor, augmented the behavioral
effect of tricyclic antidepressant imipramine, selective serotonin re-
uptake inhibitor (SSRI) citalopram and fluoxetine or selective serotonin
reuptake enhancer tianeptine (Ulak et al., 2008). Although pretreat-
ment with L-arginine counteracted the antidepressant-like effect of
imipramine, venlafaxine, bupropion but not fluoxetine, our research
revealed that the blockage of nNOS accounted for the modulation of
anxiety-related behavior of fluoxetine (Zhang et al., 2010(Krass et al.,
2011).

DRN as the resource of 5-HT is critically linked to the occurrence of
depressive symptoms and the effects of antidepressants (Soiza-Reilly
and Commons, 2014). However, the role of DRN in depression is
completely different from the hippocampus. In the DRN, 5-HT reduces
the firing rate of neurons by stimulating the 5-HTR1 A which serves as
the predominant autoreceptor, implicated in mental illness (Albert
et al., 2011). Higher raphe autoreceptor binding and expression are
detected in patients with depression and in post-mortem raphe tissue
from depressed suicide victims (Stockmeier, 1997; Stockmeier et al.,
1998). Moreover, these autoreceptors desensitized after 2–3 weeks of
antidepressant treatments (Gray et al., 2013). A recent study demon-
strates that 5-HT1 A autoreceptor levels determine vulnerability to
stress and response to antidepressants (Richardson-Jones et al., 2010).
A large number of nNOS immunoreactive cells co-labeled with 5-HT or
SERT are found in the DRN (Chanrion et al., 2007b; Lu et al., 2010).
Moreover, a study found that 7-NI, a selective nNOS inhibitor, de-
creased raphe 5-HT release with a concomitant increasing in the frontal
cortex. Chanrion et al. found that nNOS had a physical association with

Fig. 2. The interaction between nNOS and serotonergic signaling in depression.
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the SERT by PDZ domain, reducing SERT activity in DRN (Chanrion
et al., 2007a). The expression of nNOS or the interaction between nNOS
and SERT in the DRN may be regulated by elevated glucocorticoids
after stress, accounting for the dysfunction of the postsynaptic ser-
otonergic pathway (Fig. 2).

This model describes the potential role of the interaction between
nNOS and serotonergic signaling in depression. Increased glucocorti-
coids after stress arrive at the hippocampus and DRN via circulation. In
the hippocampus, glucocorticoids up-regulate the expression of nNOS,
causing reduced postsynaptic 5-HT1AR content. In the DRN, gluco-
corticoids modulate the 5-HT release by influencing the interaction
between nNOS and SERT.

nNOS in the hyperactivity of HPA axis

The HPA axis is a multifaceted regulatory system that integrates
neuronal and endocrine function (de Kloet et al., 2005b, c). It comprises
the tissues of the hypothalamus, pituitary and adrenal cortex, and the
associated regulatory inputs, releasing factors and hormones. In brief,
the neurosecretory cells of the PVN of the hypothalamus secrete CRF
and arginine vasopressin (AVP) into the circulatory system of the pi-
tuitary stalk. These hormones induce the release of ACTH from the
anterior lobe of the pituitary into systemic circulation. In turn, ACTH,
promotes the release of the glucocorticoids (cortisol in human, corti-
costerone in rodent) from the adrenal cortex (Lupien et al., 2009b). The
effects of glucocorticoids are mediated mainly by two types of in-
tracellular, specialized steroid receptor family subtypes (de Kloet et al.,
2005b): type I, the high-affinity mineralocorticoid receptor (MR), and
the type II, low-affinity glucocorticoid receptor (GR). Decreased levels
of GR in the hippocampus are thought to be the primary etiology of
HPA axis hyperactivity in depression. Hyperactivity of the HPA axis is a
characteristic feature of depressive illness. New data suggested an im-
portant role of the nNOS-NO pathway in HPA axis hyperactivity (Zhou
et al., 2011a).

The hippocampus is the primary negative regulator of HPA axis
activity in the brain (Jankord and Herman, 2008). The loss of this ne-
gative control contributes to HPA axis hyperactivity after chronic stress
(Herman et al., 1989). Glucocorticoids mediate chronic stress-induced
hippocampal nNOS overexpression via activating MR (Zhou et al.,
2011a; Zhu et al., 2014a). In turn, hippocampal excessive NO sig-
nificantly down-regulates local GR expression through soluble guany-
late cyclase (sGC)/cGMP and ONOO·/extracellular signal-regulated ki-
nase signaling pathways (Zhou et al., 2011a) (Fig. 3). By creating
transgenic mice blocking neurogenesis, Snyder et al. showed that killing
newborn neurons in the adult hippocampus causes elevated HPA axis
activation, contributing to the etiology of depression (Snyder et al.,
2011). Therefore, overexpressed nNOS in the DG may lead to HPA
hyperactivity via reduction of hippocampal neurogenesis.

The PVN of the hypothalamus, which drives the HPA axis, provides
a negative feedback of the activity of the HPA axis. The mRNA of nNOS
is detected in the PVN in rats by in situ hybridization histochemistry
(Kurose et al., 2001). The NO generated in the PVN is involved in
regulating HPA axis activity (Reis et al., 2003). Direct in-
tracerebroventricular injection of NO donor 3-morpholino-sydnonimine
(SIN-1) up-regulated transcription of CRF and vasopressin in the PVN,
causing increased releasing of adrenocorticotropic hormone (ACTH)
(Lee et al., 1999). In contrast, intracerebroventricular injection of S-
nitroso-N-acetylpenicillamine (SNAP), which spontaneously breaks
down to form NO, caused a transient dose-related decrease in the
plasma vasopressin concentration (Ota et al., 1993). Administration of
7-nitroindazole (7-NI), a specific neuronal inhibitor of nNOS abolished
the stimulatory action of CRF on ACTH (Gadek-Michalska and Bugajski,
2008). However, no evidence shows that excessive amount of NO is
produced in the PVN in patient with MDD or in animal model of de-
pression. While the expression level of nNOS mRNA is up-regulated by
nociceptive and endotoxin stimulation, the nNOS expression in the PVN

is not altered by stress (Zhu et al., 2014a; Uribe et al., 1999). Although
glucocorticoids elevated throughout the body including the hippo-
campus and the hypothalamus, nNOS in the PVN of the hypothalamus
does not contribute to HPA axis hyperactivity due to a low level of MR
in the PVN compared with the hippocampus (Zhu et al., 2014a) (Fig. 3).

This model describes the mechanism of the different roles of glu-
cocorticoids in the hippocampus and hypothalamus in modulation of
the HPA axis. Acute stress-stimulated glucocorticoids bind to MR in the
hippocampus, up-regulating nNOS expression and NO production. The
excessive NO down-regulates GR via the sGC/cGMP pathway, impairing
the negative feedback modulation of the synthesis of CRF in PVN
neurons in the hypothalamus. However, glucocorticoids in the hy-
pothalamus exert negative regulation on the synthesis of CRF in PVN
neurons due to a lack of MR content in the hypothalamus.

The role of nNOS in neurogenesis: implication in depression

In the last decade, it has been shown that neurogenesis persistently
occurs mainly in two regions of adult brain: the subventricular zone
(SVZ) of lateral ventricle (LV) and the subgranular zone (SGZ) of the
hippocampus (Lledo et al., 2006; Gould, 2007). Clinical studies suggest
decreased hippocampal volume which was consistent with decreased
neurogenesis and neuron degeneration in patients with depression
(Sapolsky, 2000). The causal relationship between hippocampal neu-
rogenesis and depression is supported by multiple aspects of research.
(i) Different types of stress cause reduced neurogenesis in the DG of the
hippocampus. (ii) Almost all antidepressant therapies stimulate the
hippocampal neurogenesis. (iii) Hippocampal neurogenesis is required
for the behavioral effects of antidepressant (Santarelli et al., 2003;
Henn and Vollmayr, 2004; Steckler and Prickaerts, 2004; Sapolsky,
2004). Therefore, in recent years, decreased hippocampal neurogenesis
is considered a common pathway of the etiology of depression. The
molecules involved in the modulation of hippocampal neurogenesis
may be a novel target for developing antidepressant in the future.

nNOS is an endogenous factor that dampens the neurogenesis in the
adult brain (Packer et al., 2003). The number of new cells generated in
the hippocampus is strongly augmented in nNOS knockout mice(Zhou
et al., 2007; Packer et al., 2003). Administration of nNOS inhibitors
increases proliferation of neural stem cells (NSCs) and survival rate of
newborn neurons in the adult hippocampus (Zhou et al., 2007; Fritzen
et al., 2007; Luo et al., 2007). The antidepressant effects of nNOS in-
hibition requires hippocampal neurogenesis (Zhou et al., 2007).
Chronic stress up-regulates the expression of nNOS in the hippocampus
(Zhou et al., 2007). Overexpression of nNOS-induced reduction in
hippocampal neurogenesis contributes to the depressive behavior after
chronic stress (Zhou et al., 2007). It has been shown that glucocorti-
coids decreases new cell formation in the hippocampus (Cameron and
Gould, 1994; Cameron and McKay, 1999; Gould and Tanapat, 1999).
The elevation of corticosterone, the glucocorticoids in rodents, accounts
for the nNOS overexpression in the hippocampus induced by stress
(Zhou et al., 2011a). Corticosterone represses the proliferation of pro-
genitor cells in the hippocampus in part through increased nitric oxide
formation (Pinnock et al., 2007).

Telomerase, which maintains the length of telomere by adding DNA
bases, is crucial for prolonged persistence of stem cells (Rufer et al.,
1999; Sarin et al., 2005; Zhou et al., 2017). Telomerase reverse tran-
scriptase (TERT) knockout mice exhibit aggressive and depressive
phenotypes (Zhou et al., 2016). Inhibition of TERT activity by 3′-azido-
deoxythymidine (AZT) generates depression-like behavior and sup-
presses hippocampal neurogenesis. Meanwhile, overexpression of TERT
exerts antidepressant-like effect, which is blocked by the disruption of
hippocampal neurogenesis via X ray-irradiation (Zhou et al., 2011b).
Most notably, repression of TERT catalytic activity counteracts the
antidepressant-like effects of nNOS inhibition (Zhou et al., 2007). It is
possible that nNOS interacts with TERT in regulating hippocampal
neurogenesis and depressive mood.
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The role of nNOS in depression: the gender difference

Neurological illnesses, such as MDD, Alzheimer’s disease (AD), an-
xiety disorders, schizophrenia, stroke, autism, and addiction, show sex
differences in their incidence (Shors, 2002; Klein and Corwin, 2002;
Jazin and Cahill, 2010). Sexual dimorphism including behavioral dif-
ferences, anatomic characteristics, and molecular distinctions generally
exists in the brain of different genders [Jazin and Cahill, 2010;
Godfroid, 1999). These substantial differences underlie the sex gap in
neurological disorders (Fischette et al., 1983; Chiari et al., 1999).
Markedly, men and women exhibit significant sex differences in the
development of depression and anxiety disorder (Payne et al., 1983).
Notably, epidemiological investigations found that the prevalence of
MDD for women is much higher for men (Gordon and O’Dell, 1983).
Gender differences were demonstrated in both monoamine transmitter
system and HPA axis, which may be the fundamental bases for differ-
ential susceptibility to MDD. Sex differences in monoaminergic
changes, including serotonin, norepinephrine as well as dopamine, and
their receptors expression and binding were observed between male
and female rats (Fischette et al., 1983; Zhang et al., 1999; Dervola et al.,
2015; Bernardi et al., 2015; Pohjalainen et al., 1998; Bangasser et al.,
2016, 2013). Pronounced sex differences in several aspects of basal
HPA axis function were documented: 1) Higher secretion and con-
centration of corticosterone was detected in females; 2) Females ex-
hibited a greater duration of HPA in response to stressors (Oldehinkel
and Bouma, 2011; Uhart et al., 2006; Seeman et al., 2001). Although
extensive sex dimorphism in gene expression levels in the rodent brain
were observed (Yang et al., 2006), the underlying molecular mechan-
isms for gender difference in MDD are not well characterized.

Sex hormones including testosterone and estrogen contribute to the
mental state via androgen receptor (AR) and estrogen receptor (ER) in
different gender (Fink et al., 1996, 1998). Interestingly, it was found
that estrogen rather than testosterone determined the gender difference
in the expression level of nNOS. An early study found that estrogen
stimulated the expression of nNOS and the production of NO in human
neutrophils, whereas a reduction of nNOS in the adult hippocampus
was detected after estrogen treatment in later studies (Garcia-Duran
et al., 1999; Grohe et al., 2004; Hu et al., 2012b). It was shown that ERα
involved in the regulation of nNOS in preoptic area while ERβ was

responsible for the nNOS expression change in the hippocampus [Hu
et al., 2012b; Scordalakes et al., 2002). The regulation of nNOS by
estrogen may be involved in the estrogen-mediated neuroprotective
effect(Wen et al., 2004). Several researches demonstrated that chronic
stress increased nNOS expression and activity in the hippocampus of
male mice and rat, contributing to stress-induced depressive behavior
(Zhou et al., 2007; Wegener et al., 2010; Chen et al., 2015). In contrast,
the expression of nNOS in the hippocampus was diminished after
chronic stress in female mice, accounting for stress-related deficit in
learning and memory (Palumbo et al., 2007). In our lab, Hu et al found
a much higher basal level of NO in the hippocampus of male mice than
female mice [Hu et al., 2012b). The diversity was caused by different
expression level of nNOS in the hippocampus, which due to the re-
pressive regulation of nNOS expression by estrogen via ERβ, accounting
for the sex difference in depression-like behaviors [Hu et al., 2012b).
Additionally, it was shown that endogenous estradiol promoted NMDA
receptor/PSD-95/nNOS coupling in the hypothalamic preoptic region
of adult female rats (d’Anglemont de Tassigny et al., 2007, 2009). In-
terestingly, another study showed that acute stress increased the ex-
pression of nNOS in the hippocampus of female but not male rats (Keser
et al., 2011). These evidences indicate that nNOS is an important down-
streamer of endogenous estrogen signaling, contributing to the mod-
ulation of neural function by the female sex hormones.

nNOS and BPD

BPD, also known as manic-depressive illness, is characterized by
recurrent shifted episodes of mania and depression as well as changes in
psychovegetative function and cognitive performance, and it is one of
the most severely debilitating of affective illnesses (Schloesser et al.,
2008). BPD affects more than 1% of the world’s population and is one of
the leading causes of disability among young people (Grande et al.,
2016). According to the longitudinal course, BPD is classified into four
basic types including Bipolar I Disorder, Bipolar II Disorder, Cy-
clothymic Disorder, and other specified and unspecified bipolar and
related disorders. Although depressive symptoms of BPD and MDD are
diagnosed by the same HAM-D, certain features are used to discriminate
them. More frequent depressive episodes, shorter duration of sadness,
abrupt onset and offset and earlier onset age are characterized in BPD

Fig. 3. The role of nNOS in regulating the HPA axis.
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(Grande et al., 2016). Compared with MDD, the key manic symptoms of
BPD, including extremely energized, elation, grandiosity, and increased
goal activity, is unique.

The understanding of the neurobiological underpinnings of BPD is
elucidated by preclinical and clinical researches. The monoamine
neurotransmitters are implicated in the etiology of bipolar disorder.
Similar abnormalities of the serotonergic and dopamine system in de-
pression have been found in some studies of BPD (Goodwin and
Jamison, 2007; Zarate et al., 2006). However, increased noradrenergic
function has been observed in mania (Goodwin and Jamison, 2007).
Interestingly, significant reductions in cortex GABA levels are only
detected in depression, not in BPD (Sanacora et al., 1999; Krystal et al.,
2002). Chronic treatment with lithium increases uptake of glutamate at
the synaptosome in mice (Dixon and Hokin, 1998) and reduces gluta-
mate-induced and NMDA-mediated excitatory toxicity (Nonaka and
Chuang, 1998). Hyperactivity of the HPA axis is also detected in many
patients with BPD (Young et al., 2004).

Altered NO signaling has been associated with the pathophysiology
of BPD (Baggott and Singh, 2004). Significantly lower level of NOx-
including NO2- and NO3- levels were observed in peripheral blood of
patients suffering from BPD (Kittel-Schneider et al., 2015). Con-
sistently, another clinical study reported that patients with BPD showed
reduced NOS activity in platelets compared with health volunteers
(Fontoura et al., 2012). Additionally, lithium, a classic medicine for
treatment of BPD, increased the level of NO in patients with BPD during
depressive episodes (de Sousa et al., 2014). However, contrary results
were observed by other groups, reporting that the value of plasma NO
levels and total nitrite level in the BPD patients were higher than those
of controls (Savas et al., 2002; Yanik et al., 2004). Especially, elevated
serum NO was detected in patients with BPD in euthymic phase (Savas
et al., 2006). Thus, the correlation between NO in the blood and BPD
requires more study. Nevertheless, NO metabolites in the plasma may
serve as biomarkers for BPD.

The LC is a nucleus in the brainstem involved in sympathetic effects
during stress. The LC comprises the largest group of NA containing
neurons in the mammalian brain and the number of NE neurons is re-
duced in depressed bipolar suicides (Wiste et al., 2008). The LC also
harbors a high density of NMDARs (Allgaier et al., 2001; Van Bockstaele
and Colago, 1996), activating which result in higher activation of
nNOS. It was found that the amounts of NR2C subunit of NMDAR were
significantly higher in the LC of patients with BPD, implying a role of
nNOS in BPD. Indeed, nNOS locates in norepinephrinergic neurons in
the LC, generating NO, suggesting the existence of a glutamate/ni-
trergic transduction pathway in monoamine neurotransmitter neurons
(Bielau et al., 2012a). A postmortem study suggested that nNOS protein
level in the LC of depressive subjects is significantly lower than controls
(Karolewicz et al., 2004). Similarly, a lower number of nNOS-im-
munoreactive neurons was detected in the LC of postmortem human
suffered from BPD than healthy controls (Bielau et al., 2012a; Bielau
et al., 2012b). However, there is lack of correlation between nNOS gene
expression and the occurrence of BPD (Silberberg et al., 2010). The
nucleotide polymorphism of rs41279104 in nNOS gene had been shown
no significant association with BPD (Okumura et al., 2010). These
sparked reports indicate that the impairment of nNOS may due to cell
loss rather than genetic level alteration. The literature is poor, future
research is necessary to elucidate the mechanisms underlying the
function of nNOS in the LC in the pathogenesis and etiology of BPD.
Collectively, all current data strongly suggest a nNOS-related dysregu-
lation of the nitrergic system in the LC related to the pathology of BPD.

nNOS and Anxiety

Anxiety is a crucial and adaptive behavioral response to dangerous
situations. Transient anxiety elicits appropriate responses to protect the
body (Millan, 2003). Anxiety disorders are a common group of mental
disorders, characterized by long-lasting anxiety, which is accompanied

by a characteristic series of physiological and behavioral responses in-
cluding vigilance, avoidance and arousal (Gross and Hen, 2004). Ac-
cording to the Diagnostic and Statistical Manual of the American Psy-
chiatric Association, anxiety disorders are divided into six discrete
categories including generalized anxiety disorder (GAD), social phobia,
simple phobia, panic disorder, post-traumatic stress disorder, and ob-
sessive compulsive disorder, among which GAD is the most highly
prevalent. Cognitive behavioral therapy, benzodiazepines, buspirone,
and antidepressants are common treatment of anxiety disorders in
clinic.

A variety of molecular targets, including neurotransmitters and
transcript factors, involved in anxiety, have been revealed (Gross and
Hen, 2004). Benzodiazepines (BZPs), a type of classic medicine for
treatment of anxiety enhance the effect of GABA at the GABAA receptor,
resulting in anxiolytic properties (Millan, 2003). The serotonergic
system is extensively implicated in anxiety. Knockout of 5-HT1A re-
ceptor leads to an anxiogenic phenotype and selective serotonin re-
uptake inhibitors (SSRIs) are used as the first-line compounds for
clinical treatment of anxiety (Gross and Hen, 2004; Heisler et al., 1998;
Ramboz et al., 1998; Gross et al., 2002). Decreased level of CREB and
neuropeptide Y system (NPY) are also implicated in anxiety-related
behaviors (Valverde et al., 2004; Pandey, 2003). Moreover, a pertur-
bation of glutamatergic transmission is implicated in affective disorders
including anxious states (Moghaddam, 2002).

The implication of NO in anxiety has been proposed by a series of
studies (Situmorang et al., 2018; Kumar and Chanana, 2017; Gulati
et al., 2017). The distribution of neurons expressing NOS in brain areas
such as the medial amygdala (MeA), the dorsolateral periaqueductal
grey (dlPAG), the hypothalamus, and the hippocampus indicate po-
tential function of NO in anxiety (Vincent and Kimura, 1992; Dun et al.,
1994). Benzodiazepines (BZDs), such as diazepam, are a type of early
found and classic anxiolytic drug (Gross and Hen, 2004; Tan et al.,
2010). Acute administration of 7-NI, a typical nNOS inhibitor, resulted
in anxiolysis similar to diazepam (Dunn et al., 1998). Indeed, inhibition
of nNOS activity by 7-NI treatment reduced anxiety-like responses to
social stimuli in rodents (Workman et al., 2008; Volke et al., 1997).
Mice lacking gene that encodes nNOS expressed abnormal anxiety le-
vels compared to WT mice (Workman et al., 2008; Bilbo et al., 2003;
Wultsch et al., 2007). It was demonstrated that the anxiolytic effect of
nNOS inhibition was mediated by reduced production of NO in the
brain (Joung et al., 2012). However, a serial of studies found that NO
donor including sodium nitroprusside and molsidomine induced an-
xiolytic-like behavior (Kalouda and Pitsikas, 2015; Trevlopoulou et al.,
2016). But it was not well demonstrated the effect was attributed to the
generation of NO or the chemicals themselves. The interaction between
NO and classic anxiolytic drugs also support an anxiolytic property of
NO reduction. In our lab, Zhang et al found that repression of nNOS-NO
pathway in the hippocampus accounts for the regulatory role of 5-HT1A
receptor by fluoxetine, producing anxiolytic effect (Zhang et al., 2010).
The neurosteroid dehydroepiandrosterone sulphate (DHEAS) exerted
anxiolytic effect, which was potentiated by NO precursor L-arginine
(Ovsiukova et al., 2003; Chakraborti et al., 2011). In contrast, the an-
xiolytic effects of DHEAS were abolished by a type of NOS inhibitor, L-
NAME, pretreatment [Chakraborti et al., 2011). Moreover, the anxio-
lytic effects of morphine were partially modulated by NO [Dun et al.,
1994; Joshi et al., 2015). These evidences suggest suppression of NO
generation exert anxiolytic-like effect. But it is not clear whether and
how over-activity of nNOS-NO signaling plays an important role in the
pathogenesis of anxiety, which will be discussed in the following
paragraph.

Restraint stress can induce psychological and physical changes in-
cluding anxiogenic-like behavior, endocrine dysfunction, and auto-
nomic alterations in rodents (Resstel et al., 2009; Busnardo et al., 2013,
2010). Increased nNOS expression in the PFC and hippocampus is as-
sociated with stress-triggered anxiety states (Vila-Verde et al., 2016).
Besides the expression level changes, interestingly, Zhu et al found that
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chronic mild stress caused augment of nNOS-CAPON-Dexras 1 complex
in the hippocampus (Zhu et al., 2014b). Consequently, the nNOS-
CAPON association led to a large amount of NO generation, resulting in
a high level of S-ntriosyation of Dexras 1 binding to CAPON (Fig. 4).
After S-nitrosylation, Dexras 1 down-regulated ERK phosphorylation,
thereby causing anxiogenic-like phenotype (Zhu et al., 2014b). Re-
cently, we found that this mechanism mediated the effect of NF-κB in
stress-induced anxiety behaviors (Zhu et al., 2018). Decreased 5-HT in
the hippocampus after stress contributes to the etiology of anxiety. Si-
lencing of 5-HTR1 A signaling up-regulated the expression of nNOS in
the hippocampus, regulating anxiety-related behaviors (Zhang et al.,
2010). The nNOS-NO pathway have strong suppressive effect on ERK
phosphorylation (Cai et al., 2017). Collectively, the dysfunction of 5-
HTR1 A and the excessive coupling of nNOS with CAPON have similar
biological end mediating the pathology of anxiety behavior (Fig. 4).
However, ERK has common and wide biological effects, rendering it not
a satisfactory target for drug discovery. The disruption of nNOS :
CAPON interaction only modulate ERK in certain pathway in specific
cells, might representing a suitable drug target for anxiety treatment
and other neuronal diseases (Li et al., 2015).

Chronic mild stress augments the nNOS-CAPON-Dexras 1 complex,
repressing the phosphorylation of ERK. Disruption of the association of
nNOS and CAPON reverses this process and exerts an anxiolytic effect.
Fluoxetine produces anxiolytic function through down-regulating the
expression of nNOS and CREB activity.

Conclusions and perspectives

In summary, nNOS is closely implicated in a wide range of pathol-
ogies and molecular mechanisms of affective disorders. The expression
of nNOS in the CNS is widely distributed. In the hippocampus, nNOS
tightly correlates with MDD and anxiety while the function of nNOS in
the LC in the pathology of BPD attracts more attention. Besides, the role
of nNOS in other places such as the cortex, hypothalamus, and dorsal
raphe, etc. in the pathophysiology of affective disorders is also very
important. Thus, we are still at the starting line for understanding the
full roles of nNOS in modulating motion and mood. Due to the im-
pairment of memory formation after nNOS activity inhibition, the de-
velopment of drugs for curing affective disorders is limited.

Fortunately, uncoupling nNOS–PSD95 and nNOS-CAPON interactions
did not cause this severe side effect. We believe that after further un-
derstanding of nNOS and its signaling mechanism and the expected
development of new technologies, nNOS will be an important target for
treatment and cure of affective disorders.
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