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Abstract: Thiophenol (PhSH) belongs to a class of highly reactive and toxic aromatic thiols
with widespread applications in the chemical industry for preparing pesticides, polymers, and
pharmaceuticals. In this review, we comprehensively summarize recent progress in the development
of fluorescent probes for detecting and imaging PhSH. These probes are classified according to
recognition moieties and are detailed on the basis of their structures and sensing performances.
In addition, prospects for future research are also discussed.
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1. Introduction

Thiophenol (PhSH) and its derivatives are highly reactive aromatic thiols which care extensively
used in the chemical industry for preparing pesticides, polymers, and pharmaceuticals [1–3]. Despite
its critical and widespread usage, PhSH is also highly toxic to organisms. Animal model studies
revealed a median lethal concentration of 0.01–0.4 mM for fish and a median lethal dose of 6.2 mg/kg
in mouse [4,5]. Exposure to PhSH can cause serious health problems to the human body including
shortness of breath, muscular weakness, kidney and liver malfunctions, central nervous injuries, and
even death. Thus, it is of great importance to develop highly sensitive and selective methods for
monitoring PhSH in environmental and biological systems.

Analytical assay-based synthetic fluorescent probes are highly attractive and versatile for the
detection of biologically and/or environmentally important species because of their high selectivity
sensitive, ease of operation, tunable photophysical properties, etc. [6–12]. In recent years, significant
progress was made in this field, and numerous effective fluorescent probes were developed for sensing
and imaging applications [13–29]. Thiols (including biothiol, hydrogen sulfide, and thiophenol) are
important compounds with some unique properties such as strong nucleophilicity, coordination ability,
and reducing capacity [30–42]. By exploiting these properties, a number of fluorescent probes were
reported for sensing thiols [43–46]. Among these probes, 2,4-dinitrobenzenesulfonyl (DNPS) and
2,4-dinitrophenyl (DNP) are two commonly used recognition moieties, which can act as favored
sites for nucleophilic attack by thiols [47–50]. Compared with biothiols, such as glutathione (GSH),
cysteine (Cys), and homocysteine (Hcy), PhSH has a higher pKa value (ca. 6.5 for PhSH and ca. 8.5 for
biothiols); thus, it mostly (about 98%) exists as the anionic PhS− under neutral physiological conditions
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(pH = 7.4) while biothiols remain as the neutral form (RSH). Consequently, PhSH can act as a more
powerful nucleophile compared with biothiols. On the basis of the different reactivities, a number of
selective PhSH probes were obtained by incorporating the DNPS or DNP moiety into various screened
fluorophores. Although rapid progress was achieved in recent years in developing fluorescent assays
for sensing PhSH based on synthetic fluorescent probes, these studies are yet to be comprehensively
addressed. In this review, the reports of fluorescent PhSH probes (including several colorimetric and
luminescent probes) are systematically summarized and classified according to recognition moieties.
Prospects for future research are discussed as well.

2. Probes Based on 2,4-Dinitrobenzenesulfonic Amide

Wang et. al. reported the first fluorescent probe (1) for the selective detection of PhSH [51].
The probe was obtained by incorporating DNBS into an NBD (7-nitro-2,1,3-benzoxadiazole) fluorophore
(Figure 1). Due to the blockage of the ICT (intramolecular charge transfer) process and the quenching
effects of the DNBS moiety, probe 1 was non-fluorescent. In an aqueous buffer solution, probe 1
can display a fast turn-on fluorescence response due to the effective cleavage of the sulfonamide by
PhSH via an SNAr (nucleophilic aromatic substitution) process and, thus, release the free fluorophore
NBD-NH2. Notably, the probe demonstrates excellent selectivity over aliphatic thiols and other
common nucleophiles. Considering the relatively low quantum yield (Φ = 0.02) and low sensitivity
(limit of detection, LOD = 2µM) of the probe 1 system, the same research group subsequently developed
a novel PET (photoinduced electron transfer)-based fluorescent probe (2) for sensing PhSH [52], which
displayed a much higher quantum yield (Φ = 0.39; quantum yield was determined by reference to
harmine in 0.1 N H2SO4 (Φ’ = 0.45)) and a higher sensitivity (LOD = 0.2 µM). Probe 2 also displayed
excellent specificity and can work in a phosphate buffer under physiological conditions (pH 7.3, 0.01 M).
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Figure 1. Structures and reactions of probes 1 and 2 with thiophenol (PhSH).

Since the pioneering works by Wang and co-workers, considerable efforts were expended for the
development of efficient fluorescent PhSH probes. By appending DNBS to a naphthalimide-derived
fluorophore, Han and Deng et al. designed a reaction-based fluorescent, probe (3) (Figure 2) for
PhSH [53]. Probe 3 was shown to be selective and sensitive (LOD = 20 nM), which was presumably
ascribed to the suitable electronic structure and spectroscopic property of the probe, benefiting from
the linker moiety of 2,3-dihydroimidazo-[1,2-a] pyridine. In the presence of PhSH (ca. 2.0 equivalents),
the probe solution showed a remarkable turn-on fluorescent response (>60-fold) with a fluorescence
quantum yield of 0.36. Furthermore, probe 3 was used successfully for monitoring PhSH in water
samples from rivers and chemical factories; the feasibility of the proposed assay was also validated
using the traditional GC–FPD (gas chromatography–flame photometric detector) method.
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Figure 2. Structure and reaction of probe 3 with PhSH.

By adopting coumarin-3-amino as the fluorophore, Yang et al. developed a fluorescent PhSH
probe (4) (Figure 3) [54]. In a phosphate buffer solution, probe 4 displayed a significant fluorescence
enhancement (>280-fold) with a large Stokes shift (145 nm) for sensing PhSH. Probe 4 also exhibited
excellent selectivity for PhSH over relevant aliphatic thiols. Thus, the probe was directly applied
to detection PhSH in real water samples, which produced good recovery results, indicating that
probe 4 can serve as a promising tool for sensing thiophenol in the environmental field. To further
improve the analytical performances of the coumarin-based fluorescent probe, the same research
group designed a new probe (5) for PhSH via a twist-blockage strategy [55]. The benzo[ij]quinolizine
coumarin-based probe (5) exhibited more advantageous features, including higher fluorescence
enhancement (700-fold) and sensitivity (LOD = 4.5 nM). Probe 5 was also employed for imaging
exogenous PhSH in HEK293 cells.
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Boron dipyrromethene difluoride (BODIPY)-based dyes have several advantages such as a
high molar extinction coefficient and fluorescence quantum yield, excellent photostability, and
narrow emission bands [56–59]. Talukdar et al. reported a BODIPY-based probe (6) (Figure 4) for
fluorescence turn-on detection of PhSH [60]. The fluorescence off–on process was confirmed by
theoretical calculations. Probe 6 displayed a forbidden S0/S1 transition (oscillator strength, f = 0.0561),
while the presumed reaction product of 6 with PhSH allowed the S0/S1 transition (f = 0.4693) (Figure 6c).
In phosphate buffer (containing 1% dimethyl sulfoxide (DMSO), pH 7.3), the fluorescence intensity of
the probe 6 system was found to increase linearly with PhSH concentration. The dynamic range was
2–10 µM with an LOD of 34.4 nM. By employing an extended π-conjugated BODIPY dye, Zhang and
Zhao et al. developed a long-wavelength PhSH probe (7) (Figure 4) with the emission band located
around 640 nm [61]. Based on an amino phenothiazine boranil dye, Chen and Sheng et al. developed
a highly sensitive fluorescent probe (8) (Figure 4) for sensing PhSH [62]. Recently, Thilagar et al.
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synthesized two triarylborane-derived fluorescent PhSH probes (9 and 10) (Figure 4), which displayed
high sensitivity and selectivity, as well as applicability for intracellular imaging [63].
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Figure 4. (a) Fluorescent PhSH probes (6–10) based on boron-containing dyes. (b) Reaction of
probe 6 with PhSH. (c) Energy level diagram of the frontier molecular orbitals (MOs) of probe 6 and
corresponding amine. (d) Ultraviolet–visible light (UV–Vis) absorption spectra of probe 6 before and
after addition of PhSH; photographs were taken under ambient light. (e) Fluorescence spectra of 6
in the presence of different concentrations of PhSH. Photographs taken under a hand-held UV lamp.
Reproduced with permission from Reference [60]; copyright Royal Society of Chemistry.

Luminescent heavy-metal complexes showed some favorable photophysical characteristics
for sensing and bioimaging applications, such as a large Stokes shift and long emission lifetime,
which are very helpful for eliminating autofluorescence in complicated biological and environmental
samples [64–70]. Lu et al. presented a cyclometalated iridium-based phosphorescent probe (11) (Figure 5)
for sensing PhSH [71]. Probe 11 is almost non-fluorescent due to the PET quenching process. PhSH can
trigger a distinct turn-on photoluminescence for the probe system. The photoluminescence lifetimes
were determined to be 1.99 µs for de-aerated and 0.50 µs for aerated samples. The photoluminescence
response was also very sensitive (k = 91.92 × 106 M−1) with a determined LOD of 2.5 nM. Recently,
Zhang and Pu et al. reported another cyclometalated iridium(III) complex (12) (Figure 5) for detecting
PhSH [72].
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spectra of probe 11 in the presence of different concentrations of thiophenol. (d) The correlation between
phosphorescence intensity of probe 11 at 573 nm and concentration of thiophenol. (e) Phosphorescence
spectra of probe 11 in the presence of thiophenol at different reaction times. (f) Fluorescence enhancement
profile of phosphorescence intensity at 573 nm of probe 11 in the presence of thiophenol (five equivalents)
or thiol species (20 equivalents) under nitrogen conditions. Reproduced with permission from
Reference [71]; copyright Royal Society of Chemistry.

Near-infrared (NIR) fluorescent probes attracted great attention due to their better capability for
deep tissue penetration and reducing phototoxicity [73–75]. Up to now, several near-infrared probes
based on the recognition unit of 2,4-dinitrobenzenesulfonic amide were reported for sensing PhSH.
Based on a dicyanomethylene–benzopyran-derived dye, Feng et al. developed an NIR fluorescent probe
(13) (Figure 6a) for sensing and imaging PhSH [76]. Upon addition of PhSH, the probe buffer solution
displayed a distinct turn-on NIR fluorescence around 670 nm. The probe system showed large Stokes
shift, high selectivity, and fast response time. The linear dynamic range was 1–10 µM with an LOD of
0.15 µM. Furthermore, probe 13 was demonstrated to be capable of imaging PhSH in living Hela cells
(Figure 6b–e). Subsequently, three other NIR fluorescent PhSH probes (14 [77], 15 [78,79], and 16 [79])
emerged by adopting different fluorophores, including porphyrin, dicyanoisophorone, and Nile blue
(Figure 7). By incorporating 2,4-dinitrobenzenesulfonic amide into other fluorophores, a number of
fluorescent PhSH probes (17 [80], 18 [80], 19 [81], 20 [82], and 21 [83]) were also constructed (Figure 8).
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Reference [76]; copyright American Chemical Society.
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Figure 8. Fluorescent PhSH probes (17–21) based on the recognition unit of 2,4-dinitrobenzenesulfonic amide.

Recently, by introducing piperazine as a linker for connecting the fluorophore and the recognition
moiety, a series of new fluorescent probes were developed for monitoring PhSH. Yu and Li et al.
reported a 1,8-naphthalimide-based fluorescent PhSH probe (22) (Figure 9) [84]. In a mixed solvent of
water/ethanol (7:3, v/v), the probe displayed a turn-on fluorescence response toward PhSH, which can
be ascribed to target-induced cleavage of the 2,4-dinitrobenzenesulfonyl group and, thus, the release of
the piperazine-appended 1,8-naphthalimide fluorophore. This sensing process was verified by NMR
(nuclear magnetic resonance) and MS (mass spectroscopy) studies. Probe 22 was also shown to be
very sensitive for PhSH, as the LOD was determined to be 10.3 nM. Based on the similar designing
strategy, several other fluorescent probes (23 [85], 24 [86], 25 [79], and 26 [87]) bearing a piperazine
linker were also built for the detection of PhSH (Figure 10). Notably, probe 26, which was developed
by He and Chen et al., consisted of two types of fluorophores (naphthalimide and dansyl) linked by the
piperazine group. The dansyl group behaves not only as a recognition moiety but also as a signaling
reporter. Probe 26 alone displayed a typical naphthalimide emission at 534 nm, while a blue-shifted
peak at 414 nm was gradually observed in the presence of PhSH, which can be attributed to the release
of the dansyl derivative. Thus, the ratiometric detection for PhSH was achieved.Molecules 2019, 24, x FOR PEER REVIEW 7 of 30 
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Figure 10. Fluorescent PhSH probes (23–26) containing the piperazine linker.

Photochromic molecules, which can perform a reversible phototransformation between two
forms that have different absorption spectra, showed many promising applications in molecular
switches, photonic devices, and sensors. Based on a photochromic diarylethene derivative, Cheng and
Zhang et al. developed a colorimetric PhSH probe (27) (Figure 11) [88]. Probe 27, which was obtained
by appending 2,4-dinitrobenzenesulfonyl groups to the bisthienylethene perfluordiarylethene, shows
excellent reversible photochromic properties. It can be photoswitched between a colorless open form
and a colored closed form upon irradiation with ultraviolet (UV) light/visible light. After reacting with
PhSH, the photochromism of the probe system can be effectively inhibited, with the photocyclization
quantum yields (Φo-c) decreasing from 0.25 to 0.01.
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3. Probes Based on 2,4-Dinitrobenzenesulfonate

By using 2,4-dinitrobenzene-sulfonate as the recognition moiety, Zhang et al. reported the first
two-photon fluorescent probe (28) (Figure 12) for PhSH detection [89]. The signal reporter of this
probe is a TBET (through-bond energy transfer) system which was obtained by combining a donor
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of two-photon naphthalene with an acceptor of red-emissive BODIPY dye. The TBET fluorophore
displayed a high energy transfer efficiency (93.5%) from the donor to the acceptor. In the presence of
PhSH, the probe exhibited a high-sensitivity turn-on fluorescence response of the BODIPY acceptor
at 586 nm. The linear range of the PhSH was 0.05–2 µM, and the LOD corresponded to 4.9 nM.
Furthermore, probe 28 was utilized for thymidine phosphorylase (TP) bioimaging PhSH in Hela cells,
as well as in rat liver tissue slices.
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Figure 12. (a) Structure and reaction of probe 28 with PhSH. (b,d,f) Thymidine phosphorylase (TP)
images of probe 28 in Hela cells from the green channel without thiophenol, with thiophenol, and
with both NEM (N-ethylmaleimide) and thiophenol, respectively. (c,e,g) are corresponding TP images
of (b,d,f) from the red channel, respectively. Reproduced with permissions from [89]. Copyright
American Chemical Society.

Squaraines, which possess a donor–acceptor–donor (D-A-D′) and resonance-stabilized zwitterionic
structure, exhibited several unique photophysical features for the construction of fluorescent probes,
such as narrow and strong absorption and emission bands in the red to NIR region, excellent
photostability, and tunable fluorescence emission properties [90–92]. Based on an arylidene–squaraine
fluorophore, Lu et al. developed a far-red/near-infrared fluorescent probe (29) (Figure 13) for sensing
PhSH [93]. Probe 29 exhibited both a sensitive colorimetric response (from pink to blue) and a fluorogenic
response toward PhSH. Due to the desirable electronic and spatial structures of the employed donating
building blocks (D: benzindolylmethylene group and D′: 2,4,6-trihydroxyphenyl group) connected
to the squaraine core, the cyclobutene ring displayed good stability against nucleophilic attack by
biothiols, such as GSH and Cys. Thus, the probe exhibited good selectivity. The probe was also very
sensitive toward PhSH; the dynamic range and LOD were 0–5 µM and 9.9 nM, respectively.Molecules 2019, 24, x FOR PEER REVIEW 9 of 30 
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By incorporating 2,4-dinitrobenzene-sulfonate into an aldehyded dicyanomethylene–benzopyran-
derived dye, Li et al. constructed near-infrared probe (30) (Figure 14) for colorimetric and fluorogenic
detection of PhSH [94]. With the addition of PhSH to a phosphate buffer/DMSO (v/v, 1:1, pH = 7.4)
solution of probe 30, the probe solution displayed a distinct color change from yellow to red with the
evolution of a fluorescence emission at 658 nm. The probe displayed excellent selectivity for PhSH
amongst a selection of nucleophiles, including aniline, Cys, Hcy, and GSH. The LOD was calculated to
be 0.22 µM. The probe was also employed for sensing PhSH in tap water and in river water samples,
as well as imaging the target in living Hela cells.
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Figure 14. Structure and reaction of probe 30 with PhSH.

By exploiting natural curcumin as the fluorophore, Martínez-Máñez and Yin et al. developed
a turn-on fluorescent PhSH probe (31) (Figure 15) [95]. In a mixed solvent of HEPES
(N-2-hydroxyethylpiperazine-N-2′-ethanesulfonic acid)–MeOH (methanol) (1:1, v/v, pH = 7.4), PhSH
can rapidly react with probe 31 and produce a significant fluorescence enhancement (20-fold) at
around 536 nm. The reaction was complete within dozens of seconds. The probe was also used
for detection of PhSH in HepG2 cells. Combining 2,4-dinitrobenzene-sulfonate with various other
fluorophores, including coumarin, benzoxazinone, naphthalene, and BODIPY, further yielded a number
of fluorescent PhSH probes (31 [95], 32 [96], 33 [97], 34 [98], 35 [99], 36 [100], 37 [101], 38 [102], and
39 [103]) (Figure 15).
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4. Probes Based on the Recognition Unit of 2,4-Dinitrophenyl Ether

Lin et al. firstly proposed constructing a fluorescent PhSH probe (40) (Figure 16) by exploiting
the target-induced thiolysis of a dinitrophenyl ether moiety [104]. The probe (40) was obtained by
coupling a dinitrophenyl group to a 7-hydroxy coumarin. In a solution of phosphate buffer/DMF
(N,N-dimethylformamide) (55:45, v/v, 25 mM, pH = 7.0), the probe is almost non-fluorescent (Φ = 0.006),
while PhSH can effectively mediate thiolysis of dinitrophenyl ether and result in the release of the
highly emissive coumarin fluorophore (Φ = 0.5). The quantum yield was calculated using the equation
of Φs = Φr (ArFs/AsFr) (ns/nr)2, where As and Ar are the absorbance of the sample and the reference at
the excitation wavelength, respectively, Fs and Fr are the corresponding relative integrated fluorescence
intensities, n is the refractive index of the solvent, and Φs and Φr are the quantum yields of the sample
and the reference, respectively; quinine sulfate (Φr = 0.546 in 1 N H2SO4) was used as the reference.
The kinetic results indicated that the probe can react rapidly with the target. The spectral response of the
probe solution was found to be very sensitive toward PhSH. A linear dynamic range of 4.0 nM–3.0 µM
was obtained between the logarithm of ((I − I0)/I0), and the LOD was calculated to be 1.8 nM. Moreover,
the probe was used for the first time to monitor PhSH in environmental and biological samples.
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Compared with the intensity-dependent single-band emission probe, the ratiometric fluorescent
probe, which relies on the change in the ratio of two emission bands, is more attractive due to
its potential capability to eliminate the influence of probe distribution and instrumental difference.
The fluorescence resonance energy transfer (FRET) system, which consists of two dyes (donor and
acceptor), is a commonly used platform for constructing ratiometric fluorescent assays [105–108].
Feng et al. developed a FRET-based ratiometric PhSH probe (41) (Figure 17) by using a pair of
fluorophores, coumarin and naphthalimide [109]. As the fluorescence of the naphthalimide acceptor
was quenched by dinitrophenyl ether, probe 41 alone displayed the typical emission (λem = 481 nm) of
the coumarin donor. PhSH can selectively remove the dinitrophenyl ether and trigger the occurrence
of the FRET process, thus achieving a good ratiometric fluorescent response.
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Figure 17. Structure and reaction of probe 41 with PhSH. Reproduced with permission from
Reference [109]; copyright Royal Society of Chemistry.

Based on the strategy of target-induced in situ formation of a red-emissive coumarin fluorophore,
Song et al. reported a reaction-based turn-on fluorescent probe (42) (Figure 18) for sensing PhSH [110].
Firstly, the probe underwent a target-mediated cleavage of the dinitrophenyl ether moiety in the
presence of PhSH. Then, the liberated phenolic oxygen could subsequently perform an intramolecular
nucleophilic attack on the nitrile group, leading to the generation of the cyclized iminocoumarin scaffold
acting as the signal reporter. The sensing process was further verified by HPLC (high-performance
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liquid chromatography), NMR, and MS analysis. The probe also displayed a very fast reaction rate
(within 120 s) for response to PhSH. Exploiting a similar sensing strategy, Chen and Sheng et al.
consequently reported a phenothiazine–coumarin-based red-emitting probe (43) for detection of
PhSH [111]. In aqueous solution, the formed imino group via PhSH-induced cleavage and an
intramolecular cyclization process could further be converted to oxygen via a hydrolysis reaction.
Probe 43 exhibited an unusually large Stokes shift (140 nm) and a high sensitivity (LOD = 2.9 nM) for
sensing PhSH.
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By integrating different fluorophores and reaction sites into a single molecular probe, Song et al.
established a potent sensing platform (probe 44) for differentiating various thiols (including Cys/Hcy,
GSH/H2S, and thiophenol) [112]. Probe 44 incorporated three latent fluorometric fluorophores,
blue-emitting coumarin, green-emitting NBD, and a red-emitting coumarin analogue. As shown in
Figure 19a, Cys/Hcy, GSH/H2S, and thiophenol can generate different combinations of fluorescence
signals, corresponding to blue–green, blue, and blue–red, respectively. Moreover, this probe system
also can be utilized for discriminating these groups of thiols (Cys/Hcy, GSH/H2S, and thiophenol) in
living cells via recording fluorescence signals in different spectral channels (Figure 19b).
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Figure 19. (a) Schematic illustration of the sensing mechanism of probe 44 for differentiating cysteine
(Cys)/homocysteine (Hcy), glutathione (GSH)/H2S, and thiophenol. (b) Images of Hela cells incubated
with different regents. Reproduced with permission from Reference [112]; copyright American
Chemical Society.
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Excited-state intramolecular proton transfer (ESIPT)-based fluorescent probes are highly attractive
due to their unique optical features, such as large Stokes shift, high fluorescence quantum yield,
tunable structure and emission wavelength, and potential for ratiometric sensing [8,113]. By coupling
2,4-dinitrophenyl ether to a green-emissive ESIPT fluorophore, 3-hydroxyphthalimide, Song et al.
synthesized a turn-on fluorescent PhSH probe (45) (Figure 20) [114]. Due to the PET process from the
fluorophore to the dinitrophenyl ether moiety, probe 45 is non-fluorescent (ΦF < 0.001). Upon addition
of PhSH, the dinitrophenyl ether group of the probe can be cleaved to liberate 3-hydroxyphthalimide
which can undergo an ESIPT process under photoexcitation and exhibit the keto-form emission
at 516 nm. The probe system displayed a large Stokes shift (161 nm). The dynamic range and
LOD for sensing PhSH are 0–10 µM and 3.5 nM, respectively. By using other ESIPT fluorophores,
including 2-(2′-hydroxy-phenyl)benzothiazole (HBT), an imidazo [1,5-α]pyridine derivative, and
phenothiazine-HBT compound, three other fluorescent PhSH probes (46 [115,116], 47 [117], and
48 [118]) were also presented (Figure 20).Molecules 2019, 24, x FOR PEER REVIEW 13 of 30 
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Figure 20. Fluorescent PhSH probes (45–48) based on excited-state intramolecular proton transfer
(ESIPT) fluorophores.

Positively charged dyes showed great potential for the construction of fluorescent probes, due to
their favorable electronic structures and optical properties, improved water solubility, and mitochondrial
targeting ability [119–121]. By using 7-hydroxy quinolinium as the fluorophore, Song et al. developed
an off–on fluorescent probe (49) (Figure 21) for sensing PhSH [122]. The probe can quickly respond to
PhSH with a rate constant of k = 24 M−1

·s−1. Studies on pH effects revealed that the probe can effectively
react with PhSH under neutral physiological conditions. Liu and Song et al. reported a red-emissive
fluorescent PhSH probe (50) (Figure 21) based on a methylated chromenoquinoline dye [123]. The probe
system displayed a large Stokes shift (108 nm) and a high sensitivity (LOD = 8.1 nM) for sensing PhSH.
Kinetic studies revealed that the reaction with probe 50 can be completed within 2 min. The probe also
showed excellent specificity for PhSH as other nucleophilic reagents (including Cys, Hcy, GSH, and HS−)
did not generate any fluorescence response. Guo et al. presented a mitochondrial-targeted fluorescent
PhSH probe (51) (Figure 21) by using a rhodol–methylpyridinium derivative as the fluorophore [124].
Probe 51 can display both a distinct colorimetric and a fluorogenic response toward PhSH in a solvent
of phosphate buffer (pH = 7.4, 20 mM, containing 20% DMF). Cellular co-localization experiments
showed that the probe can stain mitochondria with a high coefficient (0.95) using Mito Tracker Green
FM as the reference. The effects of endogenous reactive oxygen species (ROS) on the fluorescence
response of probe 51 to PhSH in living cells were also inspected, which revealed that endogenous
ROS could eliminate the fluorescence of the probe system. The results implied that thiophenols can
participate in oxidative stress and redox regulation reactions. Zeng and Yuan et al. developed a
selective NIR fluorescent probe (52) (Figure 21) for sensing and imaging PhSH by screening a library of
seven fluorescent probes which were established by installing nitrobenzenesulfonyl or nitrophenyl
groups onto NIR chromenylium–cyanine fluorophores [125]. The probe has both excitation and
emission in the NIR region, corresponding to 680 and 706 nm, respectively. In a phosphate buffer
solution (25 mM, pH 7.4, containing 1% DMSO), the emitted fluorescence intensity of probe 51 at
706 nm increased linearly with concentration of PhSH in a range of 1–15 µM with an LOD of 280 nM.
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Furthermore, the probe exhibited excellent biocompatibility and cell-membrane permeability, and was
successfully exploited for imaging PhSH in living HeLa cells, as well as in living mice.
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The emissive ruthenium complex is a promising luminescent material for sensing and
imaging applications due to its unique photophysical properties, such as high molar extinction
coefficient, high luminescent efficiency, large Stokes shift, long luminescence lifetime, and
enhanced thermal and photo-chemical stabilities [126–130]. By utilizing 2,2’-bipyridine (bpy) and
4-(4-(2,4-dinitrophenoxy)phenyl)-2,2’-bipyridine (DNP-bpy) as ligands, Yuan et al. synthesized a series
of Ru derivatives (53–55) (Figure 22a), [Ru(bpy)3-n(DNP-bpy)n](PF6)2 (n = 1, 2, 3), for luminescent
sensing PhSH [131]. Due to the PET process from the luminescent Ru center to the 2,4-dinitrophenyl
moiety, these probes are only weakly emissive. The luminescent behaviors of probes 53–55 and their
responses toward PhSH were systematically studied. Among these probes, [Ru(bpy)(DNP-bpy)2]2+

(54) had the lowest quantum yield and displayed the most remarkable turn-on luminescent response
to PhSH. The results also demonstrate that the symmetry of the ligands is a critical factor influencing
the luminescence features of the Ru-complex. In an aqueous buffer solution (20 mM HEPES, pH 7.0),
probe 54 could sensitively respond to PhSH with a linear dynamic range of 1–12 µM and an LOD
of 32.9 nM. Moreover, all these probes showed high specificity toward PhSH. Probe 54 can also
be exploited for imaging exogenous PhSH in living cells (Figure 22b). Further cellular imaging
experiments demonstrated that probe 54 has excellent intracellular retention, long-term stability to
resist photobleaching, low cytotoxicity, and the tendency of nuclear localization.
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Figure 22. (a) Structure and reaction of probes 53–55 with PhSH. (b) Images of 54-loaded Hela cells
incubated with PhSH for different times, from A1 to A8 (0, 5, 10, 20, 30, 40, 50, 60 min); scale bar: 10 µm.
Reproduced with permission from Reference [131]; copyright American Chemical Society.
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Chemiluminescence- and bioluminescence-based analytical assays have a number of advantages
including simple procedures and equipment as no excitation light is needed, low background signal
and high sensitivity, and good biocompatibility [132,133]. Li et al. reported a dual bioluminescent
and chemiluminescent PhSH probe (56) (Figure 23) based on coelenterazine [134]. In Tris-HCl buffer
(50 mM, pH 7.4) with the addition of luciferase, the probe system can be used for bioluminescent
sensing of PhSH with an emission peak at 445 nm. When replacing luciferase with dimethyl sulfoxide
(DMSO), the probe system can act as a chemiluminescent sensor for PhSH with an emission peak at
522 nm. Both of these luminescent assays displayed a linear range of 0.5–20 µM for PhSH. Moreover,
probe 56 can be employed for quantitative chemiluminescent monitoring of PhSH in plasma samples
without the addition of luciferase or DMSO.Molecules 2019, 24, x FOR PEER REVIEW 15 of 30 
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Figure 23. The chemiluminescent and bioluminescent sensing of probe 56 for PhSH.

Electrochemiluminescence (also referred to as electrogenerated chemiluminescence, ECL) sensors
drew a great deal of attention due to their distinct advantages such as high sensitivity and
real-time analysis [135]. The commonly used ECL luminophores include transition-metal complexes,
polyaromatic hydrocarbons, and semiconductor nanocrystals [136]. Among them, transition-metal
complexes (i.e., Ru, Ir, and Os) are particularly attractive because of their wide variety of structures
and photophysics properties. Using 1-phenylisoquinoline/4′-formyl-1-phenylisoquinoline and
acetylacetone as the ligands, Hong et al. developed two cyclometalated iridium(III) complexes
(57, 58) as both photoluminescence (PL) and ECL probes for sensing PhSH [137]. The structures
and ECL sensing mechanisms of these probes are shown in Figure 24. Probe 58 contained an
electron-withdrawing formyl group on the quinoline ligand and, thus, displayed faster kinetics and
higher sensitivity for responding to PhSH compared with probe 57. The ECL sensing process involved
four steps (i.e., probe 58): (i) PhSH-mediated thiolysis of dinitrophenyl ether and the release of the
Ir-based luminophore; (ii) oxidation of probe 58 at Pt electrode to generate (58-DNP)•+; (iii) one-electron
transfer from the tripropylamine radical TPrA• to (58-DNP)•+ to afford (58-DNP)*; (iv) excited-state
(58-DNP)* emission of light. The sensing mechanism was also confirmed by density functional theory
(DFT) calculations via theoretically predicting highest occupied molecular orbital (HOMO) and lowest
unoccupied molecular orbital (LUMO) energies of different species. In a mixed solvent of aqueous
HEPES buffer and CH3CN (1:1, v/v, 10 mM, pH 7.4, containing TprA (tripropylamine) as the co-reactant
and TBAP (tetrabutylammonium perchlorate) as the supporting electrolyte), probe 58 displayed a
sensitive ECL response to PhSH at 1.4 V. Two linear dynamic ranges were obtained between the ECL
intensities and PhSH concentration, 0.5–20 µM (y = 0.26x − 1.1) and 0–100 nM (y = (1.7 × 10−2)x + 1.0).
The LOD was calculated to be 3.8 nM. Competitive analysis revealed that other analytes could not
generate any noticeable ECL changes, while remarkable ECL signals could be observed by adding
PhSH to mixtures of probe 58 with other interference, except for the oxidation-sensitive anion of iodide.
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Figure 24. (a) Structures and reactions of probes 57–58 with PhSH. (b) Electrochemiluminescence (ECL)
sensing mechanism of probe 58 for PhSH. Reproduced with permission from Reference [137]; copyright
American Chemical Society.

By using a well-known pH indicator, phenolphthalein, as the signaling reporter, Park and
Yoon et al. reported a colorimetric probe (59) (Figure 25) for sensing PhSH [138]. Incorporation of
dinitrophenyl ether into a number of other fluorophores afforded PhSH probes with different emission
colors (Figures 25 and 26): cyan (60 [139]), green (61 [140], 62 [141], 63 [142], 64 [143], 65 [144], 66 [145],
and 67 [146]), yellow–green (68 [147] and 69 [148]), orange (70 [142]), red (71 [149], 72 [150], and
73 [151]), and near-infrared (74 [152], 75 [153], and 76 [154]).
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5. Probes Based on Other Recognition Moieties

By utilizing several modified pyrimidine ethers as the recognition moieties and fluorescein/

resorufin as the fluorophores, Wang and Tang et al. established a fluorescent probe library for screening
selective probes toward certain sulfhydryl compounds [155]. Among them, probe Flu-3 (77), which
was obtained by reacting fluorescein with 4-chloropyrimidine, exhibited high sensitivity and specificity
for sensing PhSH. The structure and sensing mechanism of probe 77 for PhSH is shown in Figure 27.
In HEPES buffer solution (20 mM, pH 7.4), the emission of probe 77 centered at 519 nm, corresponding
to the emission of fluorescein, was found to be significantly enhanced upon the addition of PhSH.
A good linearity between the fluorescence intensity and the concentration of PhSH in the range of
0–100 µM was obtained, and the LOD was determined to be 1.8 µM. Probe 77 was also employed for
fluorescence imaging of thiophenol in HepG2 cells.
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Figure 27. Structure and sensing mechanism of probe 77 for PhSH.

Niu and Yang et al. reported a chlorinated BODIPY-based fluorescent probe (78) (Figure 28) for
ratiometric sensing PhSH [156]. In a solution of acetonitrile/HEPES buffer (1:3 v/v, 20 mM, pH 7.4),
the probe displayed an absorption maximum at 518 nm and a distinct green emission (λem = 540 nm)
upon reacting with PhSH via nucleophilic substitution. The absorption band shifted to 558 nm with
the solution color changing from orange to pink (Figure 28b), and the emission band shifted to 580 nm
corresponding to a bright-yellow fluorescence (Figure 28c). The ratio of fluorescence intensities at 581
and 540 nm (I581/I540) could remarkably increase (up to 640-fold) in the presence of an excess amount
of PhSH. A good linear relationship was obtained between the fluorescence ratio and concentration
of PhSH in the range of 0–18 µM (R2 = 0.997). The LOD was determined to be 36.9 nM. The probe
also displayed excellent selectivity and anti-interference ability for sensing PhSH. Furthermore, probe
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78 was successfully exploited for ratiometric imaging of PhSH in living HeLa cells via observing the
intracellular fluorescence in both green and red channels (Figure 28d–k).
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Figure 28. (a) Structure and reaction of probe 78 for PhSH. (b) Absorption and (c) emission spectra
of 78 in the presence of PhSH with different concentrations. (d–k) Confocal fluorescence images of
living HeLa cells: (d–g) cells loaded with probe 78; (h–k) PhSH-incubated cells loaded with probe
78; (d,h) green channel images (500–550 nm); (e,i) red channel images (570–620 nM); (f,j) bright-field
images; (g) ratio image merged from (d,e); (k) ratio image merged from (h,i). Reproduced with
permission from Reference [156]; copyright 2017 Elsevier B.V., New York, NY, USA.

In previous studies, nitrobenzoxadiazole (NBD)-appended dual-fluorophore (NBD-O-F) systems
were artfully employed for differentiating H2S/GSH and Cys/Hcy (Figure 29a) [157–159]. Typically,
thiols can readily react with NBD-O-F via nucleophilic aromatic substitution to produce NBD-SR (or
NBD-SH for H2S) and another free fluorophore (marked as F). In cases of Cys and Hcy, the generated
NBD-SR can undergo subsequent intermolecular rearrangement with adjacent amine groups to form
emissive NBD–NHR derivatives, while such a process cannot occur for H2S and GSH. Recently, Chen
and Zeng et al. synthesized an NBD-O-porphyrin (probe 79) (Figure 29b) by installing NBD onto a
porphyrin dye at the aromatic ortho-position [160]. Interestingly, probe 79 displayed selective turn-on
fluorescence toward PhSH. The markedly suppressed reactivities of the probe for other thiols (Cys, Hcy,
GSH) can be ascribed to the increased steric hindrance effect of these biothiols. Probe 79 also showed
great sensing performance for PhSH, including fast response (60 s), high sensitivity (LOD = 54 nM),
and deep-red to NIR emission.
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Figure 29. (a) Schematic illustration of nitrobenzoxadiazole (NBD)-appended dual-fluorophore system
for differentiating H2S/GSH and Cys/Hcy. (b) Structure and reaction of probe 79 for PhSH.

6. Conclusions

Since Wang et al. reported the first synthetic chemodosimeter for the selective detection of PhSH
in 2007, a great deal of effort was devoted to the development of fluorescent PhSH probes. In this
review, we comprehensively overviewed the recently reported fluorogenic and colorimetric probes
for sensing PhSH. Table 1 shows the structures and analytical performances of some representative
probes for sensing PhSH. Notably, luminophores for chemiluminescence sensing of PhSH were also
devised, which could provide a new strategy for extending the applications of synthetic organic probes
in other advanced analytical techniques. By adapting various fluorophores, the developed fluorescent
PhSH probes cover spectral regions from ultraviolet to visible and even near-infrared. Some of these
fluorescent probes displayed superior analytical performance, such as high sensitivity, fast response,
good specificity, high photo- and chemical stabilities, high quantum yields, etc. Although substantial
and rapid progress h was made in the development of effective fluorescent probes for PhSH, the
recognition moieties and reaction types of these probes for PhSH are still quite limited. Most of
these probes were obtained by directly appending amine- or hydroxyl-containing fluorophores with
the recognition unit of 2,4-dinitrobenzenesulfonyl/2,4-dinitrophenyl groups, which have dramatic
fluorescence-quenching effects. Upon PhSH-mediated cleavage of the recognition unit, the probe
system can restore the fluorescence spectra of the fluorophore; thus, these probes display “turn-on”
fluorescence behavior. Future efforts can aim at exploring new appropriate electron-deficient or
potential leaving groups as the recognition moieties to sensitively respond to PhSH. Introducing a
self-immolative linker between the fluorophore and the recognition unit is also a feasible approach for
establishing ratiometric probes.
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Table 1. Comparison of fluorescent probes for thiophenol (PhSH).

Probes λex/λem
(nm) Media LOD Response

Time
Real

Samples Ref.
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N,N-dimethylformamide, HEPES: N-2-hydroxyethylpiperazine-N-2′-ethanesulfonic acid, CTAB: 
cetyltrimethylammonium bromide 
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Table 1. Cont.

Probes λex/λem
(nm) Media LOD Response

Time
Real

Samples Ref.
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TBAP tetrabutylammonium perchlorate
PBS phosphate buffer saline
CTAB cetyltrimethylammonium bromide
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