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Abstract

Computer assisted image acquisition techniques, including confocal microscopy, require

efficient tools for an automatic sorting of vast amount of generated image data. The com-

plexity of the classification process, absence of adequate tools, and insufficient amount of

reference data has made the automated processing of images challenging. Mastering of

this issue would allow implementation of statistical analysis in research areas such as in

research on formation of t-tubules in cardiac myocytes. We developed a system aimed at

automatic assessment of cardiomyocyte development stages (SAACS). The system clas-

sifies confocal images of cardiomyocytes with fluorescent dye stained sarcolemma. We

based SAACS on a densely connected convolutional network (DenseNet) topology. We

created a set of labelled source images, proposed an appropriate data augmentation

technique and designed a class probability graph. We showed that the DenseNet topol-

ogy, in combination with the augmentation technique is suitable for the given task, and

that high-resolution images are instrumental for image categorization. SAACS, in combi-

nation with the automatic high-throughput confocal imaging, will allow application of sta-

tistical analysis in the research of the tubular system development or remodelling and

loss.

Introduction

The cardiac muscle cells, cardiomyocytes, contract to propel blood flow [1]. In adult heart,

ventricular myocytes contain a system of membraneous transversal tubules (t-tubules) contin-

ual with the sarcolemmal membrane [2]. T-tubules form during postnatal growth and matura-

tion of cardiac myocytes and are prone to remodelling under physiological or pathological

cardiac hypertrophy [3]. As the integrity of the tubular system is essential for the correct func-

tion of adult cardiac myocytes, understanding of their formation, loss and remodelling, and
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factors influencing these processes is paramount for both the study of excitation-contraction

coupling, as well as for the development of mature human induced pluripotent stem cell

derived cardiomyocytes with correct phenotype [4].

Several developmental stages of t-tubule formation were identified in confocal microscopy

images of fluorescently labelled sarcolemma of cardiomyocytes from growing rat hearts; how-

ever, high variability among myocytes of the same heart was observed and therefore the indi-

vidual stages could not be simply assigned to specific period of heart development [5]. An

alternative to quantification of t-tubules in single myocytes could be application of statistical

methods on a large population of cardiomyocytes. This statistical evaluation would allow

assessment of the t-tubule development, loss, and remodelling in different age groups or under

different conditions. Current microscopy technologies, including confocal microscopy, enable

automatic collection of large amounts of images; thus, allowing implementation of the statisti-

cal evaluation of t-tubule formation.

Different sampling modes are used in cardiomyocyte research while taking microscopy

images. In one, the expert identifies and manually localizes individual myocytes in a field of

view. The marked areas are then scanned [6]. Alternatively, signals are recorded at low spa-

tial resolution and measured from the whole field of view. All obtained images may be later

manually processed by the expert [7]. Both alternatives are suitable when a small number of

target objects should be captured, e.g. when recording functional data from live cells, where

several measurements are made from the same cell or culture plate well. Statistical analysis

of morphological features, on the other hand, requires a high number of images of various

individually recorded cells. These images can be easily obtained from the whole culture well

or microscope slide of fixed cells using mosaic scanning functionality of modern confocal

microscopes. Unfortunately, only a part of such created dataset contains high quality images

of whole and healthy myocytes. The rest of the dataset consists of empty images, images of

dead cardiomyocytes, out-of-focus images and images of cell fragments. Thus, before the

data can be statistically analysed, the proper images in the datasets must be identified and

sorted.

So far, when attempting to quantify the t-tubule complexity in cardiac myocytes, expert

needs to identify healthy myocytes in the sample and record high quality images, which are

then quantified using 2D spatial Fourier transform [8–11] or stereological analysis [5]. To sta-

tistically analyse the whole population, the expert would need to assign the t-tubule develop-

ment stage to each observed image of a cardiomyocyte according to a complex set of object

features and classification rules. Such an approach is impractical and prone to subjective

errors. Considering the amount of data required for the statistical analysis, automatic classifi-

cation of the images would be more appropriate. As the cardiomyocytes are objects of high

complexity and show substantial morphological variability, the automatic classification is hin-

dered by lack of implemented methods.

The automatic classification of images is a typical computer vision task known as generic

object categorization [12]. The state-of-the-art image categorization systems rely on deep con-

volutional networks (deep ConvNets) [13]. Deep ConvNets naturally integrate feature extrac-

tion and classification into one compact unit. Before their utilization, they must be trained and

evaluated on sets of labelled samples. Key factors influencing performance of a trained deep

ConvNet-based image categorization system are the quality of the used training set and a

learning capacity of the network.

The quality of a training set is mainly influenced by selection of training samples, their

correct categorization, and the total number of samples of each category in the training set

[14]. A class balance issue must be also considered whenever class-sensitive learning method is

used [15]. In microscopy image analysis, a limited amount of source data is usually available
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[16–18] which is also the case of confocal microscopy images of the cardiomyocytes. The

lack of data limits sample selection and does not allow creation of a sufficiently large and rep-

resentative training set. To overcome these concerns, data augmentation techniques, such as

image translations, horizontal reflections [17], or rotations [16, 18] are typically applied on

inadequate sets. The representativeness of the sets can be further improved by using images

independently categorized by several experts.

The capacity of a deep ConvNet is predetermined by its topology. A typical topology of the

early deep ConvNets is as follows. The first levels of a network consist of convolutional layers,

typically complemented with rectified linear unit activation functions, and of several pooling

layers [13]. Subsequent levels usually contain fully connected layers including a dropout regu-

larization technique [19–21]. The network is typically closed by a classifier employing a soft-

max function. The layers in the network are arranged in a feed-forward manner and the

capacity of the network can be increased by increasing the number of layers (a depth of the

network) [13]. Such a topology, however, does not allow construction of very deep networks

due to a vanishing gradient problem [22]. Thus, deep ConvNets based on this topology are

appropriate for problems with a relatively simple discriminability of target objects, e.g. for

human epithelial-2 cell image classification [16], for classification of glioblastoma multiform

and low-grade glioma [17], or for classification of red blood cells in sickle cell anemia [23].

This topology is, however, inappropriate for the classification of cardiomyocyte images due

the complexity of the cardiomyocytes.

Modern, more complex deep ConvNet topologies overcome the vanishing gradient prob-

lem to a large extent; hence, they allow construction of very deep networks with great learning

capacities. The new topologies control the capacity by varying width or depth of networks

[21]. Enlarging a deep ConvNet capacity through increasing its width is used e.g. in GoogLe-

Net [24, 25], where several sub-networks are connected in parallel at various levels of the net-

work. The current trends converge towards increased number of layers (the network depth),

while retaining the data processing linearity. Topologies, such as Highway Networks [26],

Residual Networks [27–29], Deep Pyramidal Residual Networks [30], Densely Connected

Convolutional Networks (DenseNets) [31] and Cross-Layer Neurons Networks [32], fall into

this category. All these topologies show very good classification performance even on datasets

with high intraclass variability.

Given the progress in computer vision in last years, we decided to develop a system for

automatic assessment of cardiomyocyte development stages (SAACS) from confocal images.

SAACS is aimed to identify and classify whole and healthy myocytes in a set of images

obtained while scanning the whole culture well or microscope slide of fixed cells, where the

images are classified according to the developmental stages of individual cardiomyocytes. Con-

sidering the complexity of the cardiomyocytes and the limited number of images available for

the forming of the training set, we based SAACS on the DenseNet topology. As the other mod-

ern deep ConvNet topologies, DenseNet topology alleviates the vanishing-gradient problem

and it allows creation of networks with high learning capacity. Furthermore, according to [31],

networks of DenseNet topology are proved to be robust against overfitting on tasks with small

training sets. For a further improvement of the training process, we designed an efficient data

augmentation technique that improved classification performance of SAACS. We show that

SAACS trained on the augmented dataset, consisting of fifteen source images of each class

only, was able to identify the whole and healthy myocytes, and differentiate among five cardio-

myocyte development stages. In addition, we analysed the influence of image resolution on

SAACS performance and implemented a class probability graph to simplify the expert evalua-

tion of SAACS performance.
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Materials and methods

Isolated cardiomyocytes

Ethical statement. Animals were housed and treated according to the European directive

for the protection of animals used for scientific purposes (2010/63/EU) and with the Labora-

tory Animals Act No. 377/2012 and the Decree 436/2012 Z.z. SR. All procedures were

approved by the State Veterinary and Food Administration of the Slovak Republic (3514/14-

221) and by the Ethical committee of the Institute of Molecular Physiology and Genetics, Slo-

vak Academy of Sciences. Adult males and pregnant females were from Dobra Voda, Slovakia.

Confocal microscopy. Sarcolemma of isolated cardiomyocytes was stained using lipo-

philic membrane probes (di-8-ANEPPS or FM4-64, Molecular probes, Oregon, US). Images

were obtained by the Leica TCS SP2 AOBS confocal microscope (Leica Microsystems, Ger-

many) equipped with HCX PL APO CS 63x/1.2 NA water immersion objective. Fluorophores

were excited by 488 nm and combined 496 and 514 nm laser light. Fluorescence emission was

collected from 520 to 800 or 620 nm to 760 nm windows for di-8-ANEPPS or FM 4-64, respec-

tively. Images were recorded in x-y mode with 58 nm to 116 nm per pixel (px) with 4× frame

averaging to increase the signal-to-noise ratio, with the confocal aperture set to 1 Airy unit.

Training and evaluation sets

Classification of object images. The expert identified the live and healthy cardiomyocytes

in images and assigned them into 5 development stages. The least developed cardiomyocytes

were considered to be at stage 1 while the most developed ones were assigned stage 5 (Table 1).

We used the stages to define classes of object images where the stages 1 to 5 correspond to

classes 1 to 5, respectively. The rest of images in the collection (low quality images or images

which do not contain whole and healthy myocytes) belong to the class 0.

Cardiomyocytes with no membrane invaginations were categorized as stage 1. Stage 2 was

characterized by presence of short (~2 μm), regularly spaced, perpendicular invaginations of

the membrane and/or individual long (>10 μm) tubules. In stage 3, a web of longer tubules

(>10 μm), both transverse and longitudinal, was present. A complex system of transversal

tubules with manifest presence of longer (>2 μm) longitudinal tubules and frequent areas

devoid of tubules was classified as stage 4. Stage 5, present in adult cardiomyocytes, was distin-

guished by a complex system of transversal tubules, with sparse longitudinal structures span-

ning usually not more than 1 to 2 sarcomeres (~2 μm to ~4 μm) filling the whole area of the

cell image except nuclei. Examples of development stage categories are shown in Fig 1.

Source images. Confocal microscopy produces high-resolution monochromatic images

of optional dimensions. In our case, images 1024 × 1024 px were considered and each image

contained not more than one target object (cardiomyocyte). An example of original source

image and of its enhancement for better representation in the article are shown in Fig 2. As the

Table 1. Characterization of cardiomyocyte development stages. Experts assess cardiomyocyte development stages according to patterns of longitudinal and transversal

tubules, considering their quantity and character, and according to the complexity of the tubular system.

stage longitudinal tubules transversal tubules system complexity

quantity character quantity character

1 none - none - no

2 low long low short no—very low

3 high long medium medium low—medium

4 medium medium high long high

5 low short high long high

https://doi.org/10.1371/journal.pone.0216720.t001
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images were recorded in the traditional way (manually by an expert), a very limited number

of appropriate images was available to form a training and an evaluation set. Our dataset con-

sisted of the images analysed in [5], to which we added 12 images of class 5, and all class 0

images. In total, 18 images of class 1, 23 images of class 2, 22 images of class 3, 22 images of

class 4, and 26 images of class 5 were available. Compared to classes 1 to 5, the number of avail-

able class 0 images was not limiting. Our collection of source images was imbalanced, which

might compromise training of deep ConvNets [33]. To deal with the imbalanced data issue, a

random under-sampling method [34] was used to form a class-balanced set of source images.

To create the set, we randomly selected 15 images of each class from the original image collec-

tion. The class-balanced set was used as the base for creating the training set. The remaining

(unselected) images were used as source images for the evaluation set. In addition, 15 and 9

source images of class 0 were allocated to the training and the evaluation set, respectively. The

data are available at [35].

Data augmentation. The small number of source images did not allow efficient training

(90 images) or credible evaluation (46 images) of any deep ConvNet [13]. To overcome this

issue, data augmentation techniques were used. To prevent alteration of t-tubule transversal

pattern, which we consider important for correct classification, non-destructive augmentation

techniques were chosen. Specifically, the source images were horizontally flipped, and both

the flipped and the original images were rotated by an angle φ 2 {0, Δφ, 2Δφ, . . ., 2π}, where

Dφ ¼ 2p

144
(first method).

Additionally, to enhance the recognition of the objects of interest, we have developed a sec-

ond augmentation technique, which applies the first method on an extended set of source

Fig 1. Development stages of cardiomyocytes. The images of cardiomyocytes are ordered from left to right according to their

developmental stages, from the least to the most developed (stage 1 to stage 5).

https://doi.org/10.1371/journal.pone.0216720.g001

Fig 2. Example of a source image. The source images are monochromatic images of spatial resolution 1024 × 1024 px

obtained using the confocal microscopy. Objects in source images (a) are poorly visible. Within this article, we use

images enhanced using inversion and gamma correction (b).

https://doi.org/10.1371/journal.pone.0216720.g002
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images. The extended set consisted of the original source images and manually modified

images. The modified images were based on cut-outs of target objects (cardiomyocytes). From

each original source image (Fig 3(a)), the target object was extracted; and from each extraction,

two new source images were created. In both images, the target object was placed on a neutral

or noisy background, at a random position within the image. While the first new image con-

sisted only of the target object and the background (Fig 3(b)), the second one (Fig 3(c)) was

enhanced with non-target objects that naturally occur in the confocal images. The non-target

objects were placed randomly in the image, but they did not overlap with the target object. In

this way, the source images of classes 1 to 5 were extended. Class 0 images were extended by

30 new unique source images. Thus, the set augmented using this technique was three times

larger than the set produced by the first data augmentation technique.

Set up of training and evaluation sets. We hypothesized that due to the small size

(~0.1 μm to ~0.3 μm in diameter) and dense spacing (~1.8 μm to ~2.0 μm) of t-tubules, high-

resolution images are key for the efficient assessment of the cardiomyocyte development

stages. The available source images were of dimensions 1024 × 1024 px, with resolution 58 nm

to 116 nm per px. To assess the importance of image resolution on SAACS classification per-

formance, we created low-resolution sets of source images. The original source images were

resized to 512 × 512 px using a resize method with bicubic resampling filter in python imaging

library 5.0.0, resulting in resolution of 116 nm to 232 nm per px.

We applied both augmentation techniques on the resized (512 × 512 px) and the original

(1024 × 1024 px) source images. Using the first augmentation technique (A), we created train-

ing sets T-512-A and T-1024-A, and evaluation sets E-512-A and E-1024-A. Using the second

augmentation technique (B), we formed training sets T-512-B and T-1024-B. The training sets

T-512-A and T-1024-A consisted of 25 920 labelled object images, and the evaluation sets E-

512-A and E-1024-A consisted of 13 248 labelled object images. The training sets T-512-B and

T-1024-B consisted of 77 760 labelled object images.

SAACS

DenseNets. DenseNets are deep ConvNets with an advanced topology. In addition to

commonly used convolutional, pooling and fully connected layers [13], two composite build-

ing elements, dense blocks (DBs) and transition layers (TLs), are used to create a DenseNet

[31].

Fig 3. Augmentation of source images by manually modified images. A cut-out of a cardiomyocyte was created

from the original source image (a). Placing the cardiomyocyte on a noisy and neutral background, two manually

modified source images (b) and (c) were created, respectively. The second manually modified image (c) was enhanced

by cell fragments and out-of-focus cardiomyocytes. Note that the displayed images were inverted and enhanced using

gamma correction for better representation in the article.

https://doi.org/10.1371/journal.pone.0216720.g003
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Dense block. A DB consists of several layers connected in a dense pattern where each

layer takes all preceding feature-maps as its input (Fig 4). The layers are connected using

concatenation and transformed using a non-linear transformation. Let us consider a n-th

DB that is built in a DenseNet of L layers. A non-linear transformation performed within this

DB, placed at the ℓ-th level within the network, produces feature maps xℓ that are given as

x‘ ¼ H‘ð½xin ; xinþ1; . . . ; x‘� 1�Þ; ð1Þ

where Hℓ(�) is the ℓ-th non-linear transformation, ½xin ; xinþ1; . . . ; x‘� 1� refers to the concatena-

tion of the feature maps x produced in layers in, . . ., (ℓ − 1). Note that xin are feature maps fed

into the input of the n-th DB. The input of the DB is placed at the in-th level of the network,

in< ℓ� on, and on is a level at which the output of the n-th DB is placed.

The ℓ-th non-linear transformation Hℓ(�) is a composite function of several consecutive

operations. We used a basic and a bottleneck version of the composite function [31]. The basic

version consists of three operations: batch normalization (BN) [36], followed by a rectified lin-

ear unit (ReLU), followed by a convolution (Conv) [13]. Using a short notation, this version

of the function can be written as BN-ReLU-Conv(h × w, f, s), where s is stride of convolutional

filters, f is number of the filters, and h and w are their height and width, respectively. The

Fig 4. Layout of a general dense block. A dense block consists of d layers where the layers are connected using concatenation and

transformed using non-linear transformations H(�). Typically, a transition layer follows a dense block. The figure shows a

hypothetical dense block of three layers (d = 3) which is placed at the input of a network. Non-linear transformations H(�) within this

block are composite functions which consist of the batch normalization (BN), the rectified linear unit (ReLU) and the convolution

(Conv), respectively. At the first, second and third layer, three, five and two convolutional filters (f1 = 3, f2 = 5, f3 = 2) of height and

width 3 × 3 px (h = w = 3) convolve with stride one (s = 1). The input data of the network x0 is a confocal microscopy image of

resolution 1024 × 1024 px. At the first, second and third layer of the dense block, feature maps x1, x2 and x3 of depth three, five and

two originate, respectively. Spatial resolutions of the feature maps are 1024 × 1024 px. Input of each layer is composed of feature

maps that arose on the preceding layers of the dense block, and of the input of the block (the confocal microscopy image x0 in this

case). The block input data and the feature maps are catenated at the input of each layer.

https://doi.org/10.1371/journal.pone.0216720.g004
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bottleneck version of the composite function is defined as BN-ReLU-Conv(1 × 1, 4f, 1)-

BN-ReLU-Conv(h × w, f, s). If necessary, convolutions were zero-padded to keep the feature-

map size fixed.

Each DB consists of d layers either with the basic or with the bottleneck version of the com-

posite function. For the n-th DB, it holds that dn = on − in. For both versions of the composite

function, the parameters h, w, s, f are identical for all layers within a DB. DBs with basic and

bottleneck version of the function will be denoted as DBa(h × w, s, f, d) and DBb(h × w, s, f, d),

respectively.

Transition layer. Let us consider a TL connected at the output of the n-th DB (i.e. the

layer is placed at the (on + 1)-th level of the network). Feature maps produced by this layer are

given as

xonþ1 ¼ Honþ1ð½xin ; xinþ1; . . . ; xon �Þ; ð2Þ

where ½xin ; xinþ1; . . . ; xon � denotes the concatenation of all feature maps that appear in the n-th

DB. The non-linear transformation Honþ1 is also a composite function. The function was

defined as BN-ReLU-Conv(1 × 1, f, 1)-AP(2 × 2, 2), where AP(2 × 2, 2) denotes an average

pooling with pools 2 × 2 and stride 2 [31]. The function of transition layers is demonstrated in

Fig 5.

The 1 × 1 convolution incorporated in the TL allows improvement of network compact-

ness. The number of convolutional filters f controls the number of feature maps produced by

the TL. Considering that the n-th DB produces mn feature maps, the number of feature maps

Fig 5. Layout of a transition layer. Primary, transition layers reduce spatial resolution of the feature maps x to reduce

the number of parameters of the network. They are placed behind dense blocks. In this case, the transition layer is

placed behind the dense block from Fig 4. The input of the network x0 and the feature maps x1, x2, x3 are catenated and

processed by the non-linear transformations H4(�). The transformation is a composite function which consists of the

batch normalization (BN), the rectified linear unit (ReLU), the convolution (Conv) and the average pooling (AP),

respectively. Five convolution filters (f = 5) of height and width 1 × 1 px (h = w = 1) with stride one (s = 1) are used.

The number of the convolution filters f controls the number of feature maps produced by the transition layer, i.e.

depth of the feature maps x4 is five in this case. Pools 2 × 2 px and stride 2 are used in AP. Thus, the original data of

spatial resolution 1024 × 1024 px are reduced to 512 × 512 px.

https://doi.org/10.1371/journal.pone.0216720.g005
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produced by the (on + 1)-th TL is given as fonþ1 ¼ bymnc, where θ is a compression factor, and

y 2 ½m� 1
n ; 1�.

SAACS structure. SAACS is a DenseNet that performs feature extraction and classifica-

tion on size-normalized object images. We designed and implemented two variants of SAACS

(i.e. two DenseNets). One variant (DenseNet-512) was aimed at object images of dimensions

512 × 512 px and the second one (DenseNet-1024) at object images of dimensions 1024 × 1024

px. As the object images are monochromatic, numbers of input channels of the networks

(depths of the network inputs) are one.

Both the DenseNet-512 (Table 2) and the DenseNet-1024 (Table 3) are opened by one DBa

followed by a max pooling layer (MPL). The DBa consists of one layer (d = 1) with 2k convolu-

tional filters (f = 2k) with kernels of size 7 × 7 px (h = w = 7), stride by 2 px (s = 2). The variable

k is a hyperparameter determining the number of filters f in all DBs within the network. We

used k = 20 and k = 15 for DenseNet-512 and DenseNet-1024, respectively. At the MPL, 3 × 3

px (h = w = 3) pools stride by 2 (s = 2) were used.

The inner parts of the networks consist of several DBbs where each DBb is followed by one

TL. In DenseNet-512, 4 DBbs are used. They have 6, 9, 12 and 15 layers, respectively. In Dense-

Net-1024, 5 DBbs are incorporated. They have 6, 8, 8, 10, and 15 layers, respectively. Both the

DenseNet-512 and the DenseNet-1024 are closed by one additional DBb, followed by a global

average pooling (GAP) and a classifier. The classifier consists of one fully connected layer of

six neurons followed by the softmax function. The number of layers within the closing DBb is

18 and 15 for the DenseNet-512 and the DenseNet-1024, respectively. In both variants of Den-

seNets, kernels of size 3 × 3 px stride by 1 px are used in all DBbs, and f = k for all of them. The

compression factor θ = 0.5 is used for both networks. Structures of both networks and their

parameters were determined based on a pilot study.

Table 2. Structure of the DenseNet-512 classifying 512 × 512 px confocal microscopy images of cardiomyocytes into development stages.

DBa MPL DBb TL DBb TL DBb TL DBb TL DBb GAP C

h 7 3 3 - 3 - 3 - 3 - 3 7 -

w 7 3 3 - 3 - 3 - 3 - 3 7 -

s 2 2 1 - 1 - 1 - 1 - 1 7 -

f 2k - k - k - k - k - k - -

d 1 - 6 - 9 - 12 - 15 - 18 - -

In the first row, the used building components are listed with respect to their placement in the network (the first block is the leftmost one); where DBa and DBb are the

basic and the bottleneck versions of the dense blocks; MPL is the max pooling layer; TL is the transition layer, GAP denotes the global average pooling, and C is used for

a classifier that consists of one fully connected layer followed by the softmax function. The parameters h and w are the height and weight of the filter kernel or of the

pool; s is stride of the kernel of the pool; f is the number of filters at one convolution in the dense block; and d is the number of layers in the dense block.

https://doi.org/10.1371/journal.pone.0216720.t002

Table 3. Structure of the DenseNet-1024 classifying 1024 × 1024 px confocal microscopy images of cardiomyocytes into development stages.

DBa MPL DBb TL DBb TL DBb TL DBb TL DBb TL DBb GAP C

h 7 3 3 - 3 - 3 - 3 - 3 - 3 7 -

w 7 3 3 - 3 - 3 - 3 - 3 - 3 7 -

s 2 2 1 - 1 - 1 - 1 - 1 - 1 7 -

f 2k - k - k - k - k - k - k - -

d 1 - 6 - 8 - 8 - 10 - 15 - 15 - -

The meaning of the symbols and variables is explained in Table 2.

https://doi.org/10.1371/journal.pone.0216720.t003
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SAACS evaluation

For the SAACS performance evaluation, we used an average per-class accuracy (acc), a macro-

averaging precision (prM), and a macro-averaging recall (reM) [37]. These standard measures

are sufficiently informative if the evaluation is performed on a set with non-overlapping

classes.

As the growth of cardiomyocytes and t-tubules is a continuous process, an individual myo-

cyte might possess a combination of features belonging to different neighbouring classes (i.e.

the classes may overlap). It means that both the expert assessments and the SAACS classifica-

tions may vary, which negatively influences the information value of the performance mea-

sures. Thus, we designed a class probability graph for a more precise evaluation of the SAACS

performance.

SAACS classifies object images presented on its input. For an object image, the softmax

function produces class label probability scores. The class probability graph displays scores of

each sample (object image) in an evaluation set as a bar of fixed height. Starting with class 0,

the bar is coloured from the top down, respecting the order of the classes. We organized sam-

ples in the evaluation set with respect to source images, their rotation and flipping. The bars

(samples) are divided into non-flipped and flipped columns.

Simply, Fig 6 depicts hypothetical evaluation results obtained on a set of 24 rotations (by

Dφ ¼ 2p

23
) of 6 source images, one of each class. The classes 0 to 5 are associated with black, red,

yellow, green, light blue and dark blue colour, respectively. The source images are sorted in

ascending order according to their class and displayed from top to bottom. The samples are

sorted in ascending order according to their rotation angle φ (the angle in degrees is stated

above the first row of bars).

In this example, all samples of the classes 0, 1 and 4 are correctly classified. The first 10 sam-

ples created from the source image 2 (class 2) were incorrectly classified as class 3. Similarly,

the 7-th sample based on the source image 3 (class 3) was incorrectly classified as class 4. Such

errors are questionable (classes 2 and 3, or classes 3 and 4 are neighbour classes), and should

be reviewed by an expert. However, the incorrect assignment of the 1-st sample based on the

source image 5 (class 5) is unjustifiable (classes 5 and 0 are not neighbours).

SAACS implementation

The DenseNet-512 and the DenseNet-1024 were trained using an ADAM optimizer [38].

The learning rate α was set up at 5 � 10−4, and the exponential decay rate for the first and

Fig 6. Class probability graph. The class probability graph displays label probability scores of 144 samples that are

based on 6 source images. The samples were created by rotation of the source images about Dφ ¼ 2p

23
. Rotations of the

samples are shown at the first line (in degrees). Each class is associated with one colour. The class of the source image is

highlighted using the appropriate colour. The assigned probability scores of the sample are displayed using the

coloured bar.

https://doi.org/10.1371/journal.pone.0216720.g006
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second moment estimates β1 and β2 were setup at 0.95 and 0.999, respectively. The opti-

mizer and setting of the hyperparameters were determined based on a pilot study. A cross

entropy function was minimized. The DenseNet-512 was trained on the sets T-512-A and

T-512-B. The DenseNet-1024 was trained on the sets T-1024-A and T-1024-B. We used

batches of size 9 and 3 samples while training the DenseNet-512 and the DenseNet-1024,

respectively. Size of the batches was given by the capabilities of a used hardware. To

ensure comparability of the results, the networks were trained on the same total number

of samples (i.e. the same total number of iterations was carried out). Specifically, the net-

works were trained for 15 epochs on T-512-A and T-1024-A, and for 5 epochs on T-512-B

and T-1024-B.

To keep comparability of the results, the DenseNet-512 trained on T-512-A or T-512-B was

evaluated on the set E-512-A. Similarly, the DenseNet-1024 trained on T-1024-A or T-1024-B

was evaluated on the set E-1024-A. Performance of the trained networks was assessed using

acc, prM and reM. Further, class probability graphs were used for expert assessment of SAACS

performance.

We trained and evaluated the networks on a computer with 64 GB RAM, Ryzen 5 1600

CPU, and a graphic card nVidia GTX-1050 Ti with 4 GB GDDR5. The batches were formed

from a shuffled queue of training samples. The training and evaluation of the networks was

carried out in a python 3.6.4 environment using Tensorflow 1.5 [39]. Python implementations

of the networks, of training and evaluation routines, likewise of a code which delineates class

probability graphs are provided in a supplementary file S1 File.

Results

The ability of SAACS to assess cardiomyocyte development stages from confocal micros-

copy images varied with respect to the composition of training sets and with respect to

the resolution of object images (Table 4). The DenseNet-512 (variant of SAACS aimed at

512 × 512 px object images) trained on T-512-B (larger training set) showed better average

per-class accuracy (acc ¼ 51:97 %), macro-averaging precision (prM = 68.74%), and

macro-averaging recall (reM = 45.16%); compared to the DenseNet-512 trained on T-512-A

(acc ¼ 42:72 %; prM ¼ 53:35 %; reM ¼ 41:33 %). The same trend could be observed in the

results obtained by the DenseNet-1024 (SAACS processing object images of dimensions

1024 × 1024 px). We obtained acc ¼ 79:67 %; prM ¼ 72:08 %; reM ¼ 71:29 % for the Den-

seNet-1024 trained on T-1024-B, and acc ¼ 64:98 %; prM ¼ 63:88 %; reM ¼ 64:01 % for

the network trained on T-1024-A. Average evaluation time was 0.46 and 0.54 seconds per

image for the DenseNet-512 and DenseNet-1024, respectively.

For each combination of network and training set, we obtained one class probability graph.

The graphs obtained for the DenseNet-512 (Figs 7 and 8) showed incapability of this network

Table 4. Evaluation results.

network training set DenseNet-512 DenseNet-1024

T-512-A T-512-B T-1024-A T-1024-B

acc 42.72% 51.97% 64.98% 79.67%

prM 53.35% 68.74% 63.88% 72.08%

reM 41.33% 45.16% 64.01% 71.29%

The DenseNet-512 and the DenseNet-1024 were trained on sets created using the first (T-512-A and T-1024-A) and the second data augmentation technique (T-512-B

and T-1024-B). The trained networks were evaluated using average per-class accuracy (acc), macro-averaging precision (prM), and macro-averaging recall (reM). To

provide comparable results, the same total number of iterations was carried out while training the networks.

https://doi.org/10.1371/journal.pone.0216720.t004
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to recognize samples of the classes 0 and 1. The DenseNet-512 trained on T-512-A labelled

most of the samples as class 2 or 3, even if they belonged to the class 5 (Fig 7). The same net-

work trained on T-512-B tended to classify the samples as the classes 3 or 5. In this case, incor-

rectly classified samples were more often assigned to neighbour classes (Fig 8). Compared to

the DenseNet-512, the DenseNet-1024 trained on T-1024-A was more accurate in classifica-

tion of samples from classes 1 to 5 (Fig 9). Moreover, incorrectly classified samples were mostly

assigned to the neighbour classes. Unfortunately, the DenseNet-1024 trained on T-1024-A was

unable to recognize samples of the class 0. Finally, the DenseNet-1024 trained on T-1024-B

showed similar performance considering the classes 1 to 5 but it also correctly identified sam-

ples of the class 0 (Fig 10).

Discussion

The automatic assessment of cardiomyocyte development stages in confocal microscopy

images is a complex task due to the high variability of the cardiomyocytes in the images. We

proved the DenseNet topology is suitable for this task. Considering the evaluation results

(Table 4), we find the DenseNet-1024 trained on T-1024-B to be ideal for SAACS implementa-

tion, as it nearly correctly classified samples of all classes (Fig 10). Although the classes 1 to 4

still contained a number of wrongly classified samples, the errors were acceptable, as a typical

Fig 7. Class probability graph obtained for the DenseNet-512 trained on T-512-A. The trained network assigns most of the samples

either to the class 2 or 3. Classes 0, 1 and 5 not recognized at all.

https://doi.org/10.1371/journal.pone.0216720.g007
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error was an assignment of the sample into a neighbouring class. We expect that further

improvement of SAACS performance will be possible once SAACS is applied in practice, as

SAACS can be retrained on its outputs in semi-supervised manner.

SAACS based on DenseNet-1024, in combination with the automatic high-throughput con-

focal imaging, opens the possibility to use statistical analysis of large cell populations in the

research of the tubular system development or remodelling and loss. This approach has several

advantages compared to the conventional methods such as 2D spatial Fourier transform [8–

11] and stereological analysis [5]. The 2D spatial Fourier transform is efficient only for late

development stages, where discerned patterns of tubules running perpendicular to the long

axis of the cell are formed. The stereological analysis can be theoretically applied over a whole

range of developmental stages, but it is impractical due to the necessity to analyse hundreds of

images by experts in high detail. Our approach allowed studying of the development process

in its full range, from the earliest to the latest developmental stages and needed only 90 images

assessed by the expert.

The results in Table 4 further show that, compared to the conventional data augmentation

techniques (T-512-A and T-1024-A), the augmentation of training sets using manually modi-

fied images (T-512-B and T-1024-B) improves performance of both SAACS versions (Dense-

Net-512 and DenseNet-1024). In our experiments, two new images were created from each

Fig 8. Class probability graph obtained for the DenseNet-512 trained on T-512-B. The trained network almost correctly recognizes the

class 5 but same samples of other classes are also labelled as class 5. The network tends to label samples of other classes as the class 3;

however, some samples of the classes 0 to 4 are correctly recognized.

https://doi.org/10.1371/journal.pone.0216720.g008
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source image. As expected, such groups of images emphasize differences between target (Fig

3b)) and non-target objects (Fig 3c)). This approach allowed us to improve correct recognition

of class 0 samples which is especially evident in the DenseNet-1024 results (Figs 9 and 10). As

this data augmentation technique proved to be highly efficient, we recommend its utilization

whenever only a limited set of source images is available.

We observed a marked difference in performance between the DenseNet-512 and the Den-

seNet-1024 (Table 4), where the DenseNet-1024 showed better performance. The obtained

results confirm our hypothesis that the high-resolution images are essential for proper opera-

tion of SAACS. We find the explanation for the better performance of SAACS with high-reso-

lution images in the fine pattern of t-tubules, which is one of the most important distinctive

characteristics of cardiomyocyte development stages. The need for high-resolution microscopy

images was also observed in a study that used a deep ConvNet in digital histopathology images

of resolution 224 × 224 px to classify glioblastoma multiform and low-grade glioma [17]. We

expect that fine patterns are important in many similar tasks within biology. As the fine pat-

terns disappear while down-sampling the images, high-resolution object images must be used

to ensure optimal performance of image categorization systems in cases where the fine pattern

is distinctive, even accounting for the higher computational costs in processing large images.

We feel the need to highlight this fact since low-resolution images are preferred in practice for

Fig 9. Class probability graph obtained for the DenseNet-1024 trained on T-1024-A. Except the class 0, the network correctly

recognizes more than 50% of samples in each class; however, the 50% border line is exceeded only slightly for most of the classes. The only

exception is the class 5 where almost all samples are correctly categorized.

https://doi.org/10.1371/journal.pone.0216720.g009

Automatic assessment of the cardiomyocyte development stages from microscopy images using deep ConvNets

PLOS ONE | https://doi.org/10.1371/journal.pone.0216720 May 30, 2019 14 / 18

https://doi.org/10.1371/journal.pone.0216720.g009
https://doi.org/10.1371/journal.pone.0216720


their low computational cost. For example, 78 × 78 px object images were used for HEp-2 cell

image classification [16], and for classification of red blood cells in sickle cell anemia [23]. The

basic prerequisite for the successful use of low-resolution images for object categorization is

the existence of discriminatory features in these images. In the cases of the HEp-2 cell [16] and

red blood cells images [23], expressive patterns and distorted morphologies, respectively, were

the adequate features for the given classification tasks.

Conclusion

We developed the system for automatic assessment of cardiomyocyte development stages in

confocal microscopy images (SAACS). In combination with automatic high-throughput con-

focal imaging, SAACS will allow the use of statistical analysis for the research on the tubular

system development, remodelling and loss. Classification of large cardiomyocyte populations

and studying the class distribution in populations under different conditions may become a

new approach in the study of structural remodelling associated with physiological or patholog-

ical processes, as well as in the development of protocols for the induction of maturation in

induced pluripotent cell derived cardiomyocytes.

Fig 10. Class probability graph obtained for the DenseNet-1024 trained on T-1024-B. The trained network perfectly recognizes

samples of the class 5. It does also very well on samples of the class 0. Some samples of other categories are incorrectly classifieds, but they

are mostly assigned into neighbour classes.

https://doi.org/10.1371/journal.pone.0216720.g010
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The development of SAACS was complicated by: a) high variability in the cardiomyocyte

shape and structure, and b) lack of source images. To face these issues, we based SAACS on

the DenseNet topology and we modified the standard data augmentation technique with man-

ually adjusting source images. As both issues are common in biology, we recommend using

the DenseNet and the augmentation technique in biological applications, such as morphology-

based cell sorting, identification of regions of interest or projects that today require Citizen sci-

ence approach. DenseNets should be used instead of the commonly used early deep ConvNets

topologies [16, 17, 23] especially if target objects exhibit high variability in their shapes and

structures. We also advise to use the manually modified images whenever only a limited collec-

tion of source images is available, especially if there is problem with recognition of the object

of interest. Considering the fact that the DenseNets can process any type of images (mono-

chromatic, colour, hyperspectral, etc.), DenseNets in combination with the data augmentation

technique are ideal means for creation of image categorization systems for various tasks in

biology.

Supporting information

S1 File. Implementation of the SAACS in python. Codes that were used for training and

evaluation of the DenseNet-512 and DenseNet-1024, including code which delineates class

probability graphs.
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