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Background: Recent studies have shown that the gut microbiota is closely related to
the pathogenesis of Inflammatory Bowel Disease (IBD), but the causal nature is largely
unknown. The purpose of this study was to assess the causal relationship between
intestinal bacteria and IBD and to identify specific pathogenic bacterial taxa via the
Mendelian randomization (MR) analysis.

Materials and Methods: MR analysis was performed on genome-wide association
study (GWAS) summary statistics of gut microbiota and IBD. Specifically, the TwinsUK
microbiota GWAS (N = 1,126 twin pairs) was used as exposure. The UK inflammatory
bowel disease (UKIBD) and the Understanding Social Program (USP) study GWAS
(N = 48,328) was used as discovery outcome, and the British IBD study (N = 35,289)
was used as replication outcome. SNPs associated with bacteria abundance at the
suggestive significance level (α = 1.0 × 10−5) were used as instrumental variables.
Bacteria were grouped into families and genera.

Results: In the discovery sample, a total of 30 features were available for analysis,
including 15 families and 15 genera. Three features were nominally significant, including
one family (Verrucomicrobiaceae, 2 IVs, beta = −0.04, p = 0.05) and two genera
(Akkermansia, 2 IVs, beta = 0.04, p = 0.05; Dorea, 2 IVs, beta = −0.07, p = 0.04). All of
them were successfully replicated in the replication sample (Verrucomicrobiaceae and
Akkermansia Preplication = 0.02, Dorea Preplication = 0.01) with consistent effect direction.

Conclusion: We identified specific pathogenic bacteria features that were causally
associated with the risk of IBD, thus offering new insights into the prevention and
diagnosis of IBD.

Keywords: mendelian randomization, gut microbiota, inflammatory bowel disease, ulcerative colitis, causal
relationship

Abbreviations: FDR, false discovery rate; GWAS, genome-wide association study; IBD, inflammatory bowel disease; IV,
instrumental variable; IVW, inverse-variance weighted; LD, linkage disequilibrium; MGWAS, microbiome genome-wide
association study; MR, Mendelian randomization; OTU, operational taxonomic unit; UKB, UK Biobank; USP, understanding
social program.
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INTRODUCTION

Inflammatory bowel disease (IBD) is a chronic non-specific
inflammatory disease that invades colonic mucosa without
gender advantage (Matsuoka et al., 2018). The peak age of IBD is
between 20 and 40 years old (Loftus, 2004; Bernstein et al., 2006;
Cosnes et al., 2011). The main symptoms of IBD are abdominal
pain, diarrhea, mucous bloody stool, as well as extra-intestinal
symptoms. IBD is mostly common in developed countries
including North America, Europe, Australia, and New Zealand,
with incidence rate as high as 20–100 per million people. It is
estimated that as many as 1 million Americans suffer from IBD
(Cohen et al., 2010; Magro et al., 2012). In recent decades, the
incidence of IBD has been rising all over the world, especially in
East Asian (Loftus et al., 2007; Bengtson et al., 2009; Cosnes et al.,
2011; Molodecky et al., 2012).

The pathogenesis of IBD has not been fully elucidated. It
has a strong genetic determinant. For instance, first-degree
relatives of patients with IBD are 4 to 20 times more likely
to develop IBD (Kevans et al., 2016). Recent genome-wide
association studies (GWASs) have identified more than 200
responsible genomic loci associated with IBD (Turpin et al.,
2018). Despite these fruitful findings, its pathogenic mechanism
has not been fully understood yet. On the other hand,
gut microbiota may be related to the pathogenesis of IBD
(Nishida et al., 2018). Imbalance of gut microbiota coupled
with impaired intestinal bacterial clearance could enhance the
invasiveness of pathogens, disrupt intestinal immune response,
accelerate intestinal inflammation, and eventually lead to IBD.
In a recent controlled trial, patients in the fecal microbiota
transplantation group showed significant clinical improvement,
indicating that high-dose fecal microbiota transplantation is an
effective method for the treatment of active IBD (Paramsothy
et al., 2017). Another study indicates that the low abundance
of Phascolarctobacterium is positively correlated with the
occurrence of IBD (Bajer et al., 2017).

Although previous extensive studies have established
observational associations between gut microbiota and IBD
developing risk, the causal nature is largely unclear. Mendelian
randomization (MR) analysis is a statistical approach that aims
to infer causal relationship from observational association
results (Lee and Lim, 2019). With the rapidly increasing genetic
data at both microbiota and complex disease sides, MR has
been widely applied in recent years. MR approach has three
essential assumptions: (1) Instrumental variable (IV) is strongly
associated with exposure; (2) IV is not associated with any
confounders of exposure; and (3) The association of IV with
outcome is only through exposure. It has been used to infer
the causal relationship from gut microbiota to type 2 diabetes,
neurodegenerative diseases, and bone density (Burgess et al.,
2013; Bowden et al., 2015; Goodrich et al., 2016; Quigley, 2017;
Verbanck et al., 2018).

In the present study, in order to explore the causal relationship
from gut microbiota to IBD, and to identify specific pathogenic
bacteria taxa, we conducted a two-sample MR study based
on GWAS summary data. In brief, summary data from the
microbiota GWAS (MGWAS) of the TwinsUK study were used

as exposure, and GWAS summary statistics from two IBD GWAS
were used as discovery and replication outcomes.

MATERIALS AND METHODS

GWAS Summary Statistics
The MR analysis was performed on GWAS summary statistics of
both microbiota and IBD. All data were retrieved from previously
published studies that were released to the public.

The microbiota GWAS summary statistics from the TwinsUK
study (Goodrich et al., 2016) served as exposure. In brief,
The TwinsUK study collected 3,261 fecal samples from 1,126
twin pairs from the TwinsUK Registry in British. Microbiota
16S rRNA was sequenced using Illumina Miseq 2 × 250 bp
sequencing platform, followed by host genome genotyping using
Illumina HumanHap610 Quad Chip. For genotype imputation,
the 1,000 Genomes project (Phase 3) reference panel was used.
Sixty-one bacteria taxa were found to be associated with 307 host
SNPs with p-values ranging from 7.33 × 10−5 to 4.94 × 10−9

(Supplementary Table 1).
The discovery outcome sample UK IBD and Understanding

Social Program (UKIBD and USP) is a GWAS study based on a
general prospective population cohort of European ancestry with
12,924 cases and 35,391 controls. Host genome was genotyped
by the HumanCyto SNP-12 BeadChip and the Immunochip
arrays, and was imputed into the UK IBD Genetics Consortium
and UK10K Consortium reference panel (Burgess et al., 2013).
A total of 38 genomic loci were identified at the genome-wide
significance level (p < 5.0 × 10−8), increasing the number of
known IBD risk sites to 200.

The replication British IBD sample was the GWAS of
16,452 IBD British cases and 18,837 controls. Participants were
genotyped on the Human Core Exome v12.1, the Affymetrix
500K, or the Affymetrix 6.0 genotyping array.

Instrumental Variable Selection
The same criteria were used for IV selection in both discovery and
replication samples. IVs were grouped at family or genus level.
Specifically, a bacterial feature was defined as a family or genus.
SNPs associated with bacterial taxa in one feature were grouped
together for that feature. As a QC step, palindrome SNPs,
which are defined as SNPs with ambiguous strand information
(e.g., A/T or G/C polymorphisms), were removed. SNP-feature
association threshold was set to be 1.0 × 10−5. In order to
eliminate the effect of linkage disequilibrium (LD), SNPs within
each feature were clumped with PLINK (v1.9). The LD threshold
was set to be r2 < 0.1, and the clustering window was set to
be 500 kb. LD was estimated on the 1,000 Genome Project
sequencing data (Phase 3).

In order to minimize the effect of horizontal pleiotropy. MR-
PRESSO global test and outlier test were applied (Verbanck
et al., 2018). The MR-PRESSO outlier test calculates the p-value
for the significance of pleiotropy for each SNP, while the MR-
PRESSO Global test calculates the p-value for the overall level
of pleiotropy. Each individual SNP was deleted in turn and the
MR-PRESSO Outlier test was applied to the set of remaining
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SNPs (Verbanck et al., 2018). All significant SNPs were removed.
A MR-PRESSO Global test was finally performed to monitor
the overall pleiotropic effect. Non-significant SNPs were used for
subsequent MR analysis.

MR Analysis
Upon the selection of qualified SNPs, MR analysis was then
performed for a causal relationship from microbiota feature to
IBD risk. Specifically, each microbiota feature was tested for its
association. For features with multiple IVs, the inverse-variance
weighted (IVW) test (Burgess et al., 2013) was applied. For
features with only one IV, the Wald ratio test was applied. The
results of IVW were also cross-validated by three alternative
tests, including the MR-Egger regression (Bowden et al., 2015),
the weighted median estimator (Bowden et al., 2016) and the
MR-PRESSO (Verbanck et al., 2018).

Nominally significant results identified in the discovery
sample were subjected to be replicated in the replication sample,
with the same analysis procedures.

The horizontal heterogeneity effect was examined by the IVW
test and the MR-Egger regression. Meanwhile, a leave-one-out
sensitivity analysis was performed to monitor if significant
associations were dominated by a single SNP.

All the above analyses (including sensitivity analysis and
MR analysis) were implemented within the R packages

TwoSampleMR1(Hemani et al., 2018) and MRPRESSO2

(Sanna et al., 2019).

RESULTS

The flow chart of the present study is displayed in Figure 1.
In the discovery sample, there are 237 host SNPs that are
associated with gut microbiota features at the significance
threshold p < 1.0 × 10−5. After clumping, 168 and 80
SNPs are left for 15 families and 15 genera, respectively
(Supplementary Table 2). Two families with the largest number
of SNPs are Lachnospiraceae (51 SNPs) and Ruminococcaceae
(51 SNPs), followed by Bacteroidaceae (36 SNPs). There are
five families, Barnesiellaceae, Enterobacteriaceae, Rikenellaceae,
Streptococcaceae, and Veillonellaceae, each having only one SNP.
At the genus level, the genus with the largest number of SNPs is
Bacteroides (36 SNPs), followed by Faecalibacterium (9 SNPs) and
Coprococcus (6 SNPs). There are four genera each having only one
SNP, Anaerostipes, Dorea, Streptococcus, and Veillonella. Of note,
genus is a child taxon of family, therefore SNPs contained in both
features may overlap. For example, the genus Faecalibacterium is

1https://github.com/MRCIEU/TwoSampleMR
2https://github.com/rondolab/MR-PRESSO

FIGURE 1 | Diagrammatic description of MR analysis in the discovery and replication. (A) The whole workflow of MR analysis. (B) The main results and the change
in the number of SNPs.
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a child taxon of the family Ruminococcaceae. The SNPs in them
are partly identical.

For features containing multiple IVs, no outliers were
detected using the MR-PRESSO outlier test and no evidence
of horizontal pleiotropy (both MR-PRESSO Global test
p > 0.05/15 = p > 3.3 × 10−3 and MR-Egger regression
p > 0.05) was observed.

MR Analysis
In the discovery sample, after removing potentially pleiotropic
SNPs, one family and two genera are significant at the nominal
level (p < = 0.05): family Verrucomicrobiaceae (2 IVs, beta = 0.04,
p = 0.05), genus Akkermansia (2 IVs, beta = 0.04, p = 0.05) and
genus Dorea (1 IV, beta =−0.07, p = 0.04).

In sum, three features (one family++ two genera) are causally
associated with IBD in the discovery sample. These three features
were replicated in the British IBD replication sample. The same
IVs are available in the replication sample. Using the same IVW
test, the replication p-value is significant (p = 0.02) and the
effect direction is consistent for family Verrucomicrobiaceae and
genus Akkermansia (Table 1). For the other genus Dorea, only
one SNP rs10743315 is qualified as the IV. Using the Wald
ratio test, the MR p-value is 0.01, again with consistent effect
direction. Moreover, there is no evidence of heterogeneity at the
three identified features in both discovery and replication sample.
Detailed information of the 3 IVs is listed in Table 2.

DISCUSSION

In this study, we used MR analysis to evaluate the causal
relationship between gut microbiota and IBD. Using the
summary statistics of one microbiota GWAS and 2 IBD GWASs,
we identified and replicated three bacterial taxa, one family
Verrucomicrobiaceae and two genera Akkermansia and Dorea,
that may have causal relationship with IBD. Our study confirmed
that gut microbiota can aggravate IBD, suggesting that gut
microbiota plays a regulatory role in IBD.

The gut microbiota is an intricate and dynamic collective
of ecological microbial communities that are colonized in
the human gut, even called a “forgotten organ” (O’Hara
and Shanahan, 2006; Backhed et al., 2015). Gut microbiota

is not only an important part of immune and metabolic
health, but also regulate central nervous system and relevant
disorders, including movement disorders, neurodegenerative
diseases, behavioral disorders, neuroimmune-mediated diseases,
and Cerebrovascular accident (Strandwitz, 2018). More than 90%
of the gut microbiota that maintain intestinal health and balance
in adults consist of four phylums of Firmicutes, Bacteroides,
Actinobacteria, and Proteobacteria (Matsuoka and Kanai, 2015).
The large intestine comprises the densest and metabolism-active
microorganism in healthy individuals, which is predominated by
anaerobic microbiota, two phyla Firmicutes and Bacteroidetes,
apart from Actinobacteria, Proteobacteria, and Verrucomicrobia
(Eckburg et al., 2005).

The Dorea identified in this study belongs to the
Lachnospiraceae family, which mainly exists in the gut
microbiota of mammals and humans. One previous study
has established a link between Lachnospiraceae and IBD (Lee
et al., 2020). Another recent studies has also confirmed that
the level of Lachnospiraceae and butyric acid gets decreased in
IBD patients (Sasaki et al., 2019). The genus Akkermansia is
present abundantly in the human gastrointestinal tract where it is
believed to be a key symbiont member of the microbiota (Collado
et al., 2007; Derrien et al., 2008; van Passel et al., 2011; Clarke
et al., 2014; Guo et al., 2016). Extensive studies demonstrate that
the lower level of Akkermansia is found in patients with IBD
and other metabolic disorders, suggesting that Akkermansia may
have potential anti-inflammatory properties (Zhang et al., 2016).

Previous studies have shown that the imbalance of gut
microbiota is one of the pathogenic factors of IBD, but the
specific regulatory mechanism is yet poorly understood. One
possible mechanism, among others, is that the anti-inflammatory
activity of IBD model is related to the regulation of inflammatory
cytokines such as iNOS, MPO, IL-4, IL-10, EGF, MUC2, IL-
6 and so on (Ma et al., 2018). However, this needs to be
confirmed by further functional studies, which is beyond the
scope of this study.

Mendelian randomization analysis is an effective method to
explore causality from exposure to outcome while controlling
confounding factors. The MR analysis in this study has the
following advantages. First, it is a new attempt to speculate the
causal relationship from gut microbiota to IBD, which provides
a theoretical basis for the follow-up study of the regulation

TABLE 1 | MR analysis of gut microbiota on IBD in both discovery and replication samples.

Stage MR Tests Family Genus

Verrucomicrobiaceae Akkermansia Dorea

No. SNP bxy p-value No. SNP bxy p-value No. SNP bxy p-value

Discovery
IVW 2 0.04 0.05 2 0.04 0.05 – – –
Wald ratio test – – – – – – 1 −0.07 0.04

Replication
IVW 2 0.02 0.02 2 0.02 0.02 – – –
Wald ratio test – – – – – – 1 −0.08 0.01

No. SNP is the number of SNPs being used as IVs. bxy is the estimated effect coefficient. Significant p-values were marked in bold. IVW, inverse-variance weighted.
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mechanism of single strain on IBD. Second, it is based on publicly
available large-scale GWAS summary statistics, so it provides an
effective choice for mining reliable genetic information without
additional experimental cost.

Obviously, our study has certain limitations. First, due to
limited sample size, the genetic loci identified in gut microbiota
GWAS are still limited, which limits the statistical power of MR
analysis. Second, MR analysis based on one single IV is less
robust, which may bias the interpretation of our findings.

In conclusion, we evaluated the causal relationship from
gut microbiota to IBD and identified specific bacterial taxa
that may affect the pathogenesis of IBD by a two-sample MR
analysis using publicly available GWAS summary statistics. Our
results provide a basis for revealing the causal relationship from
gut microbiota to IBD, and thus offer new insights into its
development and treatment.
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