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Abstract
Process Analytical Technologies (PATs) are taking a key role in the run for
automatization in the biopharmaceutical industry. Spectroscopic methods such
as Raman spectroscopy or mid-infrared (MIR) spectroscopy are getting more
recognition in the recent years for inline monitoring of bioprocesses due to their
ability tomeasure variousmolecules simultaneously.However, their dependency
on laborious model calibration making them a challenge to implement. In this
study, a novel one-point calibration that requires a single reference point prior
to the inline monitoring of glucose and lactate in bioprocesses with MIR spec-
troscopy is assessed with 22 mammalian cell perfusion (PER) processes in two
different scales and four different products. Concentrations are predicted over
all PERs runs with a root mean square error (RMSE) of 0.29 g/L for glucose
and 0.24 g/L for lactate, respectively. For comparison conventional partial least
square regression (PLSR) models were used and trained with spectroscopic data
from six bioreactor runs in two different scales and three products. The general
accuracy of those models (RMSE of 0.41 g/L for glucose and 0.16 g/L for lac-
tate) are in the range of the accuracy of the one-point calibration. This shows the
potential of the one-point calibration as an approach making spectroscopy more
accessible for bioprocess development.
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1 INTRODUCTION

The global pharmaceutical market is a fast changing and
highly innovative industry. The demand for accelerat-
ing the development of products increased over the last
decade. In 2004 the US Food and Drug Administrative
(FDA) started the Process Analytical Technology (PAT)
Initiative [1] to guarantee for robust and high-quality
products. The market offers different specialized sensors
for continuous monitoring of critical process parame-
ters (CPPs) ensuring consistent control of product quality
attributes during biopharmaceutical manufacturing. The
focus on automation and digitalization of bioprocesses
demands for sufficient PAT solutions to realize automated
inline monitoring and control strategies [2].
Commonly established sensors for monitoring of CPPs

are, for example pH, temperature, and dissolved oxygen.
However, the measurement of further CPP like metabo-
lite or nutrient concentration is mostly conducted as daily
offline sample analysis [3]. Due to the limited amount of
bioprocess information associated with this approach the
execution of appropriate countermeasures and the gaining
of a deeper process understanding are highly restricted.
Spectroscopic methods such as Raman spectroscopy or
infrared spectroscopy are promising tools for a detailed
online or inline monitoring of CPPs and can therefore
contribute to a better understanding and control of biopro-
cesses. These non-invasive methods do not require sample
preparation and can be easily sterilized with the bioreactor
(BR) making them an ideal choice as inline sensors. Spec-
troscopic technologies can predict nutrients and metabo-
lites simultaneously. The inline monitoring of glucose and
lactate of Chinese hamster ovary (CHO) cell cultures has
been well demonstrated by near-infrared, mid-infrared
(MIR) and Raman spectroscopy [3–7]. Control strategies
based on these methods can optimize product titer, cell
growth, and glycosylation patterns [8–11].
Hurdles for a widespread of spectroscopic methods

are high costs, the lack of single-use components, and
the dependency on laborious calibration model build-
ing, which is time-consuming and requires expertise in
chemometrics for data evaluation. Calibration models
often rely on the operating conditions of the calibration
set-up (Tulsyan, 2019). The need for reliable calibration
models is one of the biggest challenges in the widely use of
spectroscopy methods in the biopharmaceutical field. To
build a robust model using standard multivariate methods
such as partial least square regression (PLSR), a vast data
set, knowledge of spectroscopy methodology and data
analysis are needed. This requires increased personal,
product, and time resources. Additionally, the prediction
and accuracy of most models are highly dependent on the
data set and the used modalities and are therefore often

Practical Application

Process analytical spectroscopy is an essential
topic in the biopharmaceutical industry to ensure
robust and high product quality. Critical process
parameters for upstreamprocessing asmetabolites
and nutrients are analyzed mainly through daily
offline sampling. Spectroscopic methods offer a
significant advantage realizing inline monitoring,
but the extensive calibration effort has constrained
the widespread use. This study aims to address
this limitation, by introducing a novel ready-to-
use method based on mid-infrared spectroscopy
for CHO perfusion processes. The generic model
requires merely an initial one-point calibration,
that allows automated monitoring and control
without the effort of calibration model building.
In summary, we demonstrated a method that sim-
plifies glucose and lactate monitoring without
prior knowledge of spectroscopy making the tool
suitable for its use in the biopharma industry.

not transferable [12]. An upcoming topic to reduce the
effort of extensive calibration model building and data
generation is the usage of generic calibration models that
predict parameters for changing cell lines, media, and
operation settings. However, these algorithms require a
huge set of data from several batches and modalities for
model building [9, 13, 14].
In this study, direct inline monitoring of glucose in a

CHOperfusion (PER) process usingMIR spectroscopywas
developed. For two of the main components in biopro-
cesses, glucose and lactate, a novel one-point calibration
that requires just one initial reference point was created
and tested. To assess its robustness the method was evalu-
ated with one cell line expressing four different products,
two different scales and compared against regular PLSR
models. Glucose and lactate were chosen as parameter for
the one-point calibration due to its importance in cell cul-
ture processes. The goal of this study was to develop and
present a simple ready-to-use method based on MIR spec-
troscopy for CHO PER processes that can be used without
prior knowledge of spectroscopy.

2 MATERIAL ANDMETHODS

2.1 Perfusion cultures and cell lines

Four stableCHOcell lines expressing non-glycosylated bis-
pecific constructs (molecules A, B, C, D) were used, from
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both pool and clonal cell banks. Cells were thawed and
expanded to generate sufficient cell mass to ultimately
inoculate 2 and 10 L scale PER bioreactors (BR).
The PER process can be defined in three process steps.

First phase was a 3-day batch phase for cell accumula-
tion. In the second 9-day phase an alternating tangential
flow (ATF) filtration system (Repligen, Waltham, MA,
USA) connected to polysulfone filters (Cytiva, Westbor-
ough, MA, USA), and a proprietary chemically defined
medium (PER-Medium) to increase cell density and accu-
mulate product were used. The collected permeate stream
is cell and product free (waste). PER rate was increased
gradually to amaximum of one BR volume per day (RV/d).
In the third phase product was harvested using tangential
flow filtration during days 12−15 of the PER cell culture
process. On day 12, the ATF filter was switched from a
30 kDa retentivemembrane to a 750 kDamembranewhich
allows product to pass through the membrane while cells
are still retained in the BR. In addition to the PER-Medium
50% glucose solution was added on demand as bolus to the
BR to keep the glucose level above a critical concentration.
Temperature set point and agitation were controlled by

distributed control units, while the BR pH set-point was
controlled automatically by carbon dioxide or sodium car-
bonate addition. Culture temperature, pH, and dissolved
oxygen set points were equal for each individual cell line
used. A temperature-shift was performed as soon as a
defined cell density was reached. To reduce foam forma-
tion antifoam was added to the PER-Medium as required.

2.2 Analytical methods

2.2.1 Mid-infrared spectroscopy

All measurements were performed using a multi-channel
MIR Fourier-transform infrared (FTIR) spectrometer
Monipa (IRUBIS GmbH, Munich, Germany). Single
use flow-cells were attached to the spectrometer, each
including a silicon attenuated total reflection (ATR) crys-
tal (IRUBIS GmbH, Munich Germany). Mid-IR spectra
were continuously collected in the wavelength range of
2−12.5 µm (5000−800 cm−1) at a resolution of 2 cm−1. A
total of 150 spectra were recorded within 1 min, averaged,
and used for further data analysis. An internal ATR crystal
in the Monipa instrument was used for background
correction.
The permeate glucose and lactate concentrations were

monitored continuously inline. Integrating the flow cell
in the permeate stream has the advantage to avoid any
influence of air bubbles and stirrer speed [15]. Therefore,
each permeate line (waste and harvest cell culture fluid
[HCCF]) was equippedwith an IRUBIS single use flow cell

F IGURE 1 Schematic overview of the integration of Monipa
into the perfusion process. The device was integrated after the
alternating tangential flow (ATF) and peristaltic pump.
Additionally, an extra sample port was connected directly after the
Monipa.

connected to theMonipa and a sampling port downstream
(Figure 1). Spectral results were compared to offline mea-
sured permeate samples using the Cedex Bio HT (Roche,
Swiss).

2.2.2 Offline analytic

BR and permeate line were sampled daily. The permeate
sample was taken at a defined time point after the BR sam-
ple. The sampling time was determined by the residence
time, which depends on the flow rate, line diameter, and
length. For offline glucose and lactate determination the
cell containing BR sample was centrifuged for 10 min at
680 × g. The glucose and lactate concentration of both
samples was determined by using the Cedex Bio HT.
The measurement accuracy of the Cedex Bio HT was

determined using PER-medium with predefined glucose
concentrations of 2, 4, and 8 g/L. A single batch of glu-
cose free PER-medium was used to prepare two separate
batches (A and B) of each glucose concentration level. A
five-fold determination of both batches from each level
was performed. The device internal 1:10 dilution was
conducted for the 8 g/L glucose solution.

2.3 Data analysis

2.3.1 Calculation of absorption spectra

The absorption spectra are calculated by the following for-
mula, where 𝑆0 represents the initial sample and 𝑅0 is the
initial internal reference measurement. 𝑅𝑡 represents the
reference and 𝑆𝑡 is the samplemeasurement at timepoint 𝑡.

𝐴 (𝑡) = log10

(
𝑆0
𝑅0

⋅
𝑅𝑡
𝑆𝑡

)
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The internal reference spectra were taken at a fixed
interval. The sampling interval depends on the number of
active channels and the acquisition time. An example of a
calculated absorption spectra for a glucose concentration
study with the reference being water is shown in Figure S1.

2.3.2 Pure component modeling

Pure component modeling (PCM) is based on the assump-
tion that the shape of a specific component stays the same
regardless of other components and that spectral changes
can be explained almost entirely by known components.
This applies, for example, to moderate concentration
changes in PER processes. As reference spectra a glucose
solution with a concentration of 8 g/L and of a lactate
solution with a concentration of 6 g/L were measured
with 2 cm−1 resolution for 10 min. Raw absorption spectra
were pre-processed with Savitzky–Golay smoothing with
a window size of 31. All predictions are based on these
references.
First order derivative spectra and multilinear regression

were applied to fit the measured spectra and to predict the
concentrations of glucose and lactate.

2.3.3 One-point calibration method

PCM can predict absolute concentrations if the main com-
ponents of a solution are well known and available as pure
spectra. Cell culture media are made up of several compo-
nents, which are not always known precisely. However, the
concentrations of the components of interest are known at
the beginning of the process or can be measured by offline
measurement tools.
The pure cell culture mediumwas used as initial sample

𝑆0. The static components cancel out and only the dynamic
components of interest will be visible in the absorbance
spectra. The absolute concentrations of glucose and lac-
tate are calculated by adding the initial and the predicted
concentrations.

2.3.4 Data analysis with PLS model

For comparison of the one-point calibration with well-
known chemometric methods, calibration models were
built for glucose and lactate using PLSR. Therefore, sam-
ples collected and stored at −80◦C from previous BR runs
were thawed and measured with Monipa using special-
ized ATR cells designed for offline sample measurement.
To obtain glucose and lactate reference concentrations the
samples were analyzed using a Cedex Bio HT analyzer.

In total 206 samples from six different BR runs, two dif-
ferent scales (10 and 2 L) and three different molecules
were used to create the PLSR calibration models together
with five samples of pure phosphate-buffered saline (PBS)
solution as reference. The concentrations covered a range
from 0 to 7.95 g/L for glucose and from 0 to 2.15 g/L for
lactate. Leave-one-out cross validation plots of PLSR mod-
els for glucose (A) and lactate (B) are shown in Figure S2.
All spectrawere referenced to previouslymeasured spectra
of PBS solutions. As pre-processing step, a wavenum-
ber trimming was applied (950−1300 cm−1 for glucose,
950−1350 cm−1 for lactate). The calculation of the calibra-
tion models was carried out via a Python program using
the “PLSRegression” function of the Scikit-learn library
(Version 0.24.2).
The accuracy of the PLSR models was evaluated by

leave-one-out cross validation. For the glucose PLSRmodel
a rank of 9 was used, which could explain 98.4% of the vari-
ance (R2) and lead to a root mean square error of cross
validation (RMSECV) of 0.19 g/L. For the lactate PLSR
model a rank of 12 was used, giving an R2 value of 97.7%
and an RMSECV value of 0.12 g/L.

3 RESULTS AND DISCUSSION

The focus of this study is on characterization of the one-
point calibration and comparing its prediction accuracy to
commonly used PSLRmethod for evaluating spectroscopic
data. First, the set-up is discussed on its ability to pro-
duce reliable data for an evaluation of the novel one-point
calibration. Secondly, the performance of the one-point
calibration is analyzed followed by a discussion of poten-
tial drawbacks of this approach. Finally, the results from
one-point calibration are compared to those of the PLSR
model.

3.1 Characterization of the one-point
calibration

Characterizing a new analytical method relies strongly on
the availability of representative and reproducible data. To
ensure the collected data set is reliable, some preliminary
tests were carried out. First, it was tested whether the
metabolite concentration in the permeate streamwas com-
parable to themetabolite concentration in the BR. Samples
from the permeate line and the BR of two PER runs were
analyzed with the CEDEX Bio HT. A mean deviation of
0.22 g/L for glucose and 0.14 g/L for lactate, respectively,
was found between these samples. This deviation was
deemed acceptable and therefore an integration of the
MIR spectrometer system Monipa in the permeate line



MARIENBERG et al. 5 of 11

F IGURE 2 Comparison of the device internal error for both systems (Monipa and Cedex Bio HT) by using glucose solutions with three
different concentrations (2, 4, and 8 g/L).

F IGURE 3 Predictions in g/L for glucose and lactate concentration over a process using the one-point calibration model for a 2 L
bioreactor run (molecule C). One-point calibration predictions are represented by the red (glucose) and black line (lactate). For both lines the
prediction uncertainty of the one-point calibration was included, which was calculated as the root mean square error (RMSE) from all 22
runs. Reference values glucose concentration (red triangle and lactate (black dots) were measured with the Cedex Bio HT. Changes in
perfusion rate (blue dashed line), temperature shift (green dotted line), and bolus feed (green arrows) are displayed. The alternating
tangential flow (ATF) switch was performed on day 12, therefore the monitoring of the process was paused, occurring in a lack of data this
day. The monitoring was restarted with the morning sample on day 13.
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F IGURE 4 Prediction evaluation for
glucose and lactate concentration for different
alternating tangential flow (ATF) filter pore
sizes (A, B), scales (C, D), and molecules (E,
F). The dashed line illustrates an ideal
correlation between predicted and measured
concentration.
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TABLE 1 Summary of evaluated parameter and its corresponding data amount, RMSE, and R2 for glucose and lactate concentration.

Monitored molecule Parameter
Amount of datapoint,
n RMSE (g/L) R2

Glucose Product A 44 0.36 0.908
Product B 7 0.23 0.997
Product C 71 0.27 0.940
Product D 14 0.29 0.829
2 L-scale 104 0.30 0.947
10 L-scale 32 0.32 0.728
Pore size 30 kDa 110 0.31 0.945
Pore size 750 kDa 26 0.27 0.968
Deionized water 19 0.77 0.823
PBS 44 0.62 0.767
PER-media day 3 136 0.30 0.945
One-point calibration 80 0.24 0.955
PLSR 80 0.41 0.908
Total 136 0.29 0.908

Lactate Product A 44 0.36 0.853
Product B 7 0.24 0.848
Product C 71 0.18 0.962
Product D 14 0.18 0.992
2 L-scale 104 0.28 0.852
10 L-scale 32 0.18 0.985
Pore size 30 kDa 110 0.27 0.936
Pore size 750 kDa 26 0.21 0.540
Deionized water 19 1.27 0.764
PBS 44 1.67 0.961
PER-media day 3 136 0.26 0.928
One-point calibration 80 0.16 0.979
PLSR 80 0.23 0.96
Total 136 0.24 0.871

PBS, phosphate-buffered saline; PER, perfusion; PLSR, partial least square regression; RMSE, root mean square error.

became feasible. However, the deviation was in the limit of
quantification of the Monipa (∼0.2 g/L), which might
influence the accuracy of the prediction. Additionally,
long permeate lines resulted in a significant time lag of
around 15–60 min between changes in the BR and the
changes being visible in the permeate line. Therefore,
an additional sample port was integrated directly after
the Monipa system to retrieve a representative permeate
sample as reference.
The second pre-test was performed to evaluate the ref-

erence analytics and the reproducibility of the Monipa.
Therefore, the internalmeasurement error for both devices
(Cedex Bio HT and Monipa) was determined using stock
solutions as described in Section 2.2.2. Both devices show
a high accuracy with low standard deviation for glucose
(Cedex Bio HT: 0.02 g/L for 2 and 4 g/L glucose, Monipa
0.02−0.08 g/L over all concentrations). Noticeable is a

10-fold higher error of 0.2 g/L of the Cedex system for
8 g/L glucose concentration. This result, however, can be
explained by the device internal 1:10 dilution carried out
for concentrations greater than 7.5 g/L.
In addition, the analysis shows that the CEDEX Bio HT

underdetermined the target concentration by 0.2−0.3 g/L
whereas the concentrations predicted by Monipa where
closer to the expected concentration with ±0.15 g/L
(Figure 2). As the solutions were prepared manually, it
might be possible that the expected concentration does not
reflect the true concentration. However, it highlights the
challenge in applying reliable reference analytics for spec-
troscopic methods, which is a commonly known problem
for the implementation of such [16].
A feasibility study with 22 BR runs in two different

scales (2 and 10 L) and with four different molecules
was conducted, after verifying the reference analytics
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F IGURE 5 Evaluation of the predictions of the one-point calibration model for glucose (A) and lactate (B) with different reference
measurements. Ideal linearity between the one-point calibration predictions and the measured concentrations by the CEDEX Bio HT is
illustrated by a dashed line through the origin. Comparing the different reference measurements, the most accurate prediction has been
achieved for the lactate concentration by medium as reference measurement.

reliability. The BR runs were performed as described in
2.1. The recording for glucose and lactate of an entire PER
process with a cell line producing molecule C is shown in
Figure 3. During the 3-days batch phase no PER is carried
out, and thus no concentrations are measured. After PER
start on day 3 the concentrations are monitored reliably,
regardless of the permeate composition change occurring
on day 12. The glucose and lactate predictions are follow-
ing the results of the offline measured permeate samples
closely (Figure 3). A similar behavior was observed in
all 22 PER runs. Individual data can be found in the
Appendix.
An evaluation of all runs is shown in Figure 4 and

the corresponding root mean square error (RMSE) and
R2 values are summarized in Table 1. The results reflect
the model’s robustness for both glucose and lactate con-
centration with a prediction accuracy of 0.29 g/L for glu-
cose concentration and 0.24 g/L for lactate concentration
regardless of the produced molecule or scale. A differenti-
ation between non-protein containing samples (until day
11) and protein-containing samples (from day 12) shown in
Figure 4A,B for glucose concentration and lactate concen-
tration shows no significant deviation fromeach other. The
method is also able to track a wide concentration range
as shown by the datapoints with a lactate concentration
above the expected range of 0–2 g/L. The results are compa-
rable to Raman spectroscopy combined with PLSRmodels
for onlinemonitoring of glucose and lactate [17].MIR spec-
troscopy combined with the one-point calibration proofs

to be a valid method for continuous monitoring. Possible
effects of process changes in metabolic profiles, such as an
increase in the PER rate, temperature shift, or bolus feed,
are well demonstrated by the continuous monitoring.
The results highlight the model’s robustness to changes

in media composition, including larger molecules such as
proteins. The sensibility to media changes of PLSR is well
studied and to achieve a similar robustness like the one-
point calibration model, an evaluation of a large number
of samples would be required [18].
The accuracy of the one-point calibration model is

depending on the initial media composition (PER media,
deionized water, PBS) for the reference spectra. To bet-
ter understand the impact of the reference spectra on the
accuracy of its predictions, different reference matrices
(PER media, PBS, deionized water) were investigated. The
results of this evaluation are shown in Figure 5. The predic-
tions of ameasurement series using PBSor deionizedwater
show a higher deviation from the reference values than
runs using PER-media as the reference spectra (Table 1).
This deviation is especially visible in the lactate measure-
ment (Figure 5B). Glucose has its main absorption peaks
at 1038 and 1080 cm−1, while lactate has them at 1040,
1132, and 1550 cm−1. The media shows some major peaks
in areas above 1100 cm−1, which might explain the larger
interference of the reference point on the lactate predic-
tions. Each value of a continuous measurement series is
correlated to the reference measurement, leading to a high
impact on the glucose and lactate predictions.
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F IGURE 6 Predictions of partial least square
regression (PLSR) model versus the one-point
calibration for glucose concentration (A) and
lactate concentration (B). The dashed line
illustrates an ideal correlation between predicted
and measured concentration.
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3.2 Comparison with PLSRmodel

For positioning the one-point calibration as a robust tool
for MIR spectroscopy, a comparison with a commonly
usedmultivariate method PLSRwas performed. The PLSR
model for glucose concentration and lactate concentration
were built as described in Section 2.2.2. For the compar-
ison 6 BR runs were used for model building and 13 runs
for the performance comparison. Three of the 22 runswere
not conducted with PBS as initial reference and therefore
excluded. Figure 6 presents the results of both investi-
gated calibration types in comparison using the same data
set for both methods. The accuracy and robustness of
the one-point calibration for glucose prediction was better
compared to the PLSR model. For lactate concentration,
however, the predictions from the PLSR model are more
accurate. These results position the accuracy of the one-
point calibration in the range of the PLSRmodels, which is
also in agreement with results found in the literature [13].
In general, the accuracy of PLSR models can be enhanced
by increasing the data set [3, 18]. However, this implies the
impracticability in creating and fine tuning PLSR models
for process development needs, as these processes tend to
change more rapidly.

4 CONCLUSION

In this study, a novel one-point calibration method using
the MIR spectroscopy system Monipa was thoroughly
investigated, and its performance was compared to the
standard multivariate method PLSR. The concentration
of glucose and lactate was inline monitored in 22 runs,
varying in scale and products. The results showed a
comparable performance to the PLSR method regarding
its accuracy and robustness. Furthermore, no significant
influence of varying conditions on the accuracy of this
method was found, proving its capability to work as a
generic approach for real-time monitoring of CHO PER
processes. The proposed one-point calibration can help
to reduce the implementation hurdle for PAT technolo-
gies in bioprocesses. The algorithm takes advantage of the
properties of MIR spectroscopy to reduce the complexity
of this technology. This method in combination with a
robust MIR spectrometer has the potential to make spec-
troscopy more applicable for users with less chemometric
knowledge and thus might help the technology to become
more widespread in the industry. It can help cut material
and labor costs as it is not dependent on prior test runs
to gather data for model building. The MIR spectroscopy
system Monipa can be used directly in process develop-
ment, which might help to make it more useful even in

early-stage development. In manufacturing processes this
method can be a reliable basis for a robust glucose control.
Since changes in glucose concentration will be monitored
continuously in real time, this information can help to
optimize feeding strategies, for example, by coupling the
glucose feed to the lactate concentration in the BR [11].
However, in practice the one-point calibration depends

on reliable reference analytics or known initial concentra-
tions. Therefore, scientists should be aware of the standard
deviation of the reference analytics to know the upper and
lower limits for their process.
The one-point calibration promises to be a univer-

sal application for cell culture processes over all process
steps—from early development to production scale.
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