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The outbreak of COVID-19 stimulated a new round of discussion on how to deal

with respiratory infectious diseases. Influenza viruses have led to several pandemics

worldwide. The spatiotemporal characteristics of influenza transmission in modern cities,

especially megacities, are not well-known, which increases the difficulty of influenza

prevention and control for populous urban areas. For a long time, influenza prevention

and control measures have focused on vaccination of the elderly and children, and

school closure. Since the outbreak of COVID-19, the public’s awareness of measures

such as vaccinations, mask-wearing, and home-quarantine has generally increased

in some regions of the world. To control the influenza epidemic and reduce the

proportion of infected people with high mortality, the combination of these three

measures needs quantitative evaluation based on the spatiotemporal transmission

characteristics of influenza in megacities. Given that the agent-based model with

both demographic attributes and fine-grained mobility is a key planning tool in

deploying intervention strategies, this study proposes a spatially explicit agent-based

influenza model for assessing and recommending the combinations of influenza control

measures. This study considers Shenzhen city, China as the research area. First, a

spatially explicit agent-based influenza transmission model was developed by integrating

large-scale individual trajectory data and human response behavior. Then, the model

was evaluated across multiple intra-urban spatial scales based on confirmed influenza

cases. Finally, the model was used to evaluate the combined effects of the three

interventions (V: vaccinations, M: mask-wearing, and Q: home-quarantining) under

different compliance rates, and their optimal combinations for given control objectives

were recommended. This study reveals that adults were a high-risk population with a low

reporting rate, and children formed the lowest infected proportion and had the highest
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reporting rate in Shenzhen. In addition, this study systematically recommended

different combinations of vaccinations, mask-wearing, and home-quarantine with

different compliance rates for different control objectives to deal with the influenza

epidemic. For example, the “V45%-M60%-Q20%” strategy can maintain the infection

percentage below 5%, while the “V20%-M60%-Q20%” strategy can maintain the

infection percentage below 15%. The model and policy recommendations from this

study provide a tool and intervention reference for influenza epidemic management in

the post-COVID-19 era.

Keywords: influenza, agent-based model, intervention measures, vaccinations, mask-wearing, home-quarantine,

post-COVID-19 era

INTRODUCTION

The response to severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) triggered new thinking on how to deal with
respiratory infectious diseases (1), such as seasonal influenza,
which has led to widespread morbidity and mortality worldwide
(2–4). Intense interactions between individuals in megacities,
such as those between adults working long hours in confined
office buildings, often fostered and amplified the spread of
influenza (5), threatening the health of people, particularly the
elderly and children. Owing to the superimposed infection of
influenza and other ongoing epidemics such as COVID-19
(6), it has become more important to control the influenza
epidemics in megacities and maintain its spread at a low
level. The course of influenza is self-limiting, and patients
without complications often can recover in a few days. As a
result, many cases have been undocumented (7–9). Due to low
reporting rates on influenza and less detailed epidemiological
investigations (9), it has been difficult to completely understand
some critical and spatiotemporal characteristics under a micro
scope of influenza transmission in megacities, such as total
number of infections, the age distribution of the whole influenza-
infected population, the reporting rates of different age groups,
when and where individuals are infected, and whether there
are other strong influenza transmission places in addition to
homes and schools. These questions are of great significance
in understanding the spread of influenza and formulating
influenza intervention strategies for city government. Moreover,
the human movements and interactions play critical roles in the
transmission of influenza in urban environment (5). However,
few studies investigated the influenza transmission characteristics
based on human mobility of megacities in both the population
and space-time dimensions at a fine scale (10). First, population-
based compartment models cannot reflect the heterogeneity of
individual attributes and are not flexible to model spatiotemporal
characteristics at an fine scale within cities. Second, although
some individual-level transmission models such as agent-based
models integrate trajectory data to simulate the human mobility,
the model’s accuracy is rarely verified (11–13). Even if several
individual-level transmission models for urban areas constructed
by fusing trajectory data verified the model accuracy, either the
specific accuracy indicators were not given (14), or they verified
it at a coarse spatial scale (15, 16). Therefore, to answer these
questions and uncover the black box of the influenza epidemic

in a megacity, we need a finer-scale influenza transmission model
such as a spatially explicit agent-based model that can reflect the
heterogeneity of individual attributes, different types and places
of contact activity, and the reality of intra-urban mobility.

Before the outbreak of COVID-19, vaccinations of the elderly
and children (17–19), and school interventions (20–22) were
the key measures to mitigate the spread of seasonal influenza.
When the supply of influenza vaccines was limited, vaccine
distribution strategies were generally designed based on a series
of social and political factors and individuals with high mortality
rates were usually prioritized. Although considering themortality
of different age groups is important, other important factors
affecting the influenza transmission such as the age distribution
of the urban population and the contact intensities between
different ages should also be considered under influenza vaccine
distribution (23). Moreover, since the onset of COVID-19,
public awareness on vaccination, mask-wearing, and self-health
management (such as self-isolation at home after contracting a
fever) has generally increased for many countries and regions.
To control the influenza epidemic and reduce the proportion
of infected people with high mortality without considering
intensive intervention measures (such as school closure), the
combination of the three measures listed above should be
carefully considered and quantitatively evaluated based on
the fine-scale spatiotemporal transmission characteristics of
influenza in megacities.

Therefore, with the aid of large-scale trajectory data andmulti-
source spatiotemporal urban data, this study proposes a spatially
explicit agent-basedmodel to simulate the influenza transmission
between millions of individuals in a typical megacity, Shenzhen
in China. Then, this model is used to systematically recommend
the combination of vaccinations, mask-wearing and home
quarantine toward to different influenza control objectives.
Considering Shenzhen as a research area, the proposed model
integrating large-scale anonymous mobile phone location data
could finely describe individuals’ travels and the interactions
between individuals under different activity types including
staying at home, working at workplace, studying at school and
other activities. In addition, the model simulation accuracy
was evaluated on a multiple intra-urban spatial scale based on
confirmed influenza case data. Systematic recommendations for
influenza intervention strategies have been made based on the
age structure and spatial transmission characteristics of influenza
transmission in cities. The results of this study provide a reference
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FIGURE 1 | Confirmed cases of influenza in Shenzhen during the summer season of 2017. (A) Spatial distribution of confirmed influenza cases at a community scale.

(B–E) Daily reported confirmed influenza cases in different age groups.

for influenza epidemic prevention and control in post-COVID-
19 societies.

MATERIALS AND METHODS

Study Area and Data
This study considers Shenzhen, a megacity in China, as the
research area and explores a new plan for influenza intervention

after COVID-19 based on a spatially explicit agent-based
influenza model. Shenzhen (10 districts, 74 sub-districts, and
673 communities) is a major coastal megacity with more than
10 million people in southern China, adjacent to Hong Kong,
in the Guangdong Province, covering an area of 1,997.47 km2

(Figure 1A).
In this study, to build the whole population agent model of

Shenzhen, we first synthesized all the individuals according to
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the urban population size and age structure based on census
data, and then assigned each individual to the corresponding
family based on the family information in the travel survey data.
Then, the individuals’ home and work addresses were obtained
by mining mobile phone location data and travel survey data,
and the individuals’ travel chains were reconstructed according
to these two pieces of trajectory data. Finally, details such as the
individuals’ family addresses, workplaces, and locations in the
activity chains were matched with the corresponding buildings
according to their functions and locations in the building census
data. The description of the above data can be found in the
Supplementary Material.

Individual Trajectory Data

Mobile phone location data include 16 million anonymized
mobile phone users of China Unicom on a typical working
day in Shenzhen in 2012, which is composed of three parts,
namely, the unique identifier for an anonymous mobile phone
user, the longitude and latitude of the connected cell tower, and
the timestamp when the location is recorded. After data cleaning,
5.8 million users with complete 24-h records during the day were
selected. The service radius of the Shenzhen cell tower is between
200m and 2 km. The major movement flows of mobile phone
users in Shenzhen are shown in Supplementary Figure 1.

The travel survey data of Shenzhen in 2010 included 190,000
people, 220 thousand person-times of trips, and 11 types of
activities. The spatial scale of the location was the traffic
analysis zone. The dataset includes home address, household

structure, income, work address, and travel information (e.g.,
travel purpose, trip origin and destination, and travel mode) for
98 thousand households.

Influenza Data

Shenzhen usually experiences two seasonal influenza outbreaks
in summer and winter, and has enhanced its comprehensive
influenza surveillance since 2017. In our study, we selected data
on the summer influenza from Shenzhen in 2017 as the research
data because it has a complete epidemic outbreak cycle. The
influenza data with a total of 14,473 confirmed cases (from
May 1 to September 30) collected by the Shenzhen Center
for Disease Control and Prevention contained information on
the outpatient cases of hospitals and community health service
centers (Figure 1). Influenza A (H3) was the dominant strain in
this seasonal influenza epidemic. This case data included each
patient’s unique identification number, age, onset time, diagnosis
time, name of the hospital or community health service center,
and the patient’s home location. The overall peak of this influenza
season was July 17. After grouping the reported confirmed cases
by age, namely 0–11, 12–18, 19–60, and ≥61, the peak times of
influenza for the four age groups were July 17, 19, 18, and 14
(Figure 1), respectively.

Research Framework
The framework of this study is illustrated in Figure 2. To
develop a spatially explicit agent-based influenza model, multi-
source urban data were integrated to build dynamic contact
networks between individuals in the city, and home-quarantining

FIGURE 2 | The overall research framework of this study.
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FIGURE 3 | The SEIR model integrating human response.

by individuals at different ages was considered to reflect
their response actions to the onset of influenza symptoms.
The model simulation accuracy was evaluated based on the
spatiotemporal distribution of the observed case data at four
spatial scales including city, district, sub-district and community.
After understanding the transmission characteristics of influenza
for different ages and activity types, interventions to slow the
spread of influenza and reduce the infection proportion of people
with highmortality were recommended. These three components
of the study are introduced in detail in the following sections.

The proposed agent-based model considers a single individual
as an agent to be the smallest modeling unit, and the intervention
measures are also simulated at the individual level; finally, the
model recommends intervention measures for targeted people of
high risks. In terms of time dimension, the agent-based model
we developed simulates individual activities for 24 h a day for
the 5-month influenza transmission process in the city. For
the spatial dimension, the activities of individuals in the model
were simulated with explicit building locations, which allows
identifying influenza transmission locations and making risk
maps at flexible intra-urban scales.

Spatially Explicit Agent-Based Influenza
Model
The proposed framework of the spatially explicit agent-based
influenza model consists of three parts. First, large-scale
individual trajectory data and statistical data were fused to
develop the individual mobility model; details on this can be
found in a previous study (15). The synthetic individuals had
both demographic attributes (e.g., age, gender, family structure,
and workplace) and activity chains (further details in the
Supplementary Material). The activity chain used the hour and
building as a unit to record the locations where individual
activities were performed. These activities were divided into four
types (e.g., home, work, school, and others). Second, a dynamic
contact network based on an individual activity chain was built;
details can be also found in a previous study (15). Individuals
performing the same activities at the same hour in the same
buildings were marked as individuals with spatiotemporal co-
occurrences. The individuals were divided into multiple fixed
contact groups based on their spatiotemporal co-occurrences
at home, work, and school. Interactions between individuals

in the same fixed contact groups were regular encounters, and
those in different fixed contact groups were random encounters;
fixed contacts represent acquaintances and random contacts
represent strangers. Third, considering that individuals infected
with influenza would have different degrees of symptoms and
display certain active response behaviors (such as dropping
out of school), the response action of home-quarantining
was integrated into the SEIR (susceptible-exposed-infectious-
removed) model (Figure 3) and the spread of influenza on the
contact network was simulated.

To quantify the heterogeneity of individuals’ responses to
influenza, the incubation, latent and infectious periods of
infected individuals and symptomatic individuals withdrawing
to home were set as probability events. The lengths of
incubation, latent, and infectious periods in the model are
shown in Table 1 (24–26). The proportions of home-quarantine
individuals of different age groups were expressed as P1, P2,
and P3. The parameters of home-quarantine after the onset
of influenza are shown in Table 2 (25). Based on the types of
activities and human contact patterns, the intensities of daily
contact Ic at different contact settings (15) were assigned to
individuals with spatiotemporal co-occurrences (further details
in the Supplementary Material). After the incubation period,
infectious individuals developed symptoms with a probability
Psym = 67% (25–27), and the relative infectivity r of the
symptomatic and asymptomatic cases was 1.0 and 0.5 (25,
26, 28), respectively. Finally, the probability of an individual
being infected was P = pTrans × Ic × r, where pTrans
was the transmission probability per contact. In addition, the
model set the proportion of people with immunity to 30%.
The sensitivity analysis of the immune proportion is shown in
the Supplementary Material. To reduce the influence of model
uncertainties on the simulation results, all the experiments in
this study were simulated 100 times. Because of the long-tail
distribution of simulation results, the median value of the results
was used for further analysis.

Model Performance Evaluation
Before exploring the spatiotemporal transmission characteristics
of influenza in a city, we evaluated the simulation accuracy of
the proposed model at multiple intra-urban spatial scales. Owing
to the large number of undocumented influenza cases, there was
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TABLE 1 | The duration and probability distribution of exposed and infection

period in the model.

Period Duration and probability

1 d 2 d 3 d 4 d 5 d 6 d

Incubation/Latent 30% 50% 20% 0 0 0

Infectious 0 0 30% 40% 20% 10%

TABLE 2 | The parameters of home-quarantining after onset of influenza.

Age groups Home–

Quarantine

proportion

Delay time and probability of

home–quarantining after onset

0 d 1d 2 d

0–11 P1 0.27 0.53 0.20

12–18 P2 0.30 0.58 0.12

19–100 P3 0.20 0.60 0.20

no ground truth of the entire infections. However, the observed
peak time of the epidemic curve usually represented the real peak
time (5, 29), and accurately simulating the epidemic curve knee
point is of great significance to the development of infectious
disease prevention and control. Therefore, the model accuracy
was evaluated by the time difference between the simulated and
observed peak time in each spatial unit at different spatial scales
based on the standardized daily cases and simulated cases, as
shown in Equation (1):















1peak,i = | Ts,i − Tr,i |, i = 1, 2, . . . , n,

1peak,m = median
(

1peak,i

)

, i = 1, 2, . . . , n,

Sum1 = 1city + 1district + 1sub−district + 1community,

Std1 = std
(

1city,1district ,1sub−district ,1community

)

,

(1)

where, n is the number of spatial units under a specified spatial
scale; Ts,i and Tr,i are the peak times of the simulated and
reported epidemic curves in the ith spatial unit, respectively;
1peak,i is the absolute value of the d-value between the simulated

and reported peak time in the ith spatial unit; 1peak,m is
the median value of 1peak,i under the specified spatial scale;
1city, 1district , 1sub−district , 1community are the 1peak,m values
under the four spatial scales of city, district, sub-district, and
community, respectively; and Sum1 and Std1 are the sum
and standard deviation of 1city, 1district , 1sub−district , and
1community.

Before evaluating the simulation accuracy of the model, four
unknown parameters in the model were calibrated: pTrans,
the transmission probability per contact; P1, P2, and P3, the
proportions of individuals 0–11, 12–18, and ≥19 years old
that quarantined at home after onset, respectively. The model
parameter calibration criteria developed in this study are as
follows. (1) At the city scale, the effective reproduction number
Reff ranges from 1.1 to 2.0 (28, 30–32). (2) At each spatial
scale (city, district, sub-district, and community), the 1peak,m

should be as small as possible, while the highest priority is
given to the city scale, followed by the other three scales.

(3) Usually, children are likely to be taken care of at home
when they do not feel well, while adults tend to not stay
at home unless they are really sick. This study attempted to
prove that the older the age group, the lower the proportion
of individuals who home quarantined (i.e., P1 ≥ P2 ≥ P3),
and a set of parameters with the minimum 1city value was
preferentially selected.

Following the calibration of the model parameters, the
simulation accuracy of the model was evaluated at multiple
spatial scales using the two steps listed below. First, the number
of reported cases, population size, and the 1peak,i values in each
spatial unit at each spatial scale were calculated. Second, the
proportion of spatial units, Ps, the proportion of the population,
Pp, and the proportion of reported cases, Pr , in those spatial units
whose 1peak,i ≤ T (T = 1, 2,. . . ,6 d) under each scale were
calculated. This study used T = 6 as the criterion because the
maximum length of the infection period was 6 d. The related
calculation method is shown in Equation (2):











Ps =
Ns

total number of spatial units
,

Pp =
Np

total population
,

Pr =
Nr

total number of cases
,

(2)

where Ns is the number of spatial units with 1peak,i ≤ T days, Np

is the population size of these spatial units, and Nr is the number
of reported cases in these spatial units. The more spatial units,
population sizes, and cases covered, the higher the simulation
accuracy of the model at that scale.

Analysis of Influenza Transmission
Characteristics in the Study Area
The development of targeted interventions was based on the
characteristics of influenza transmission within the study area.
The epidemiological characteristics of influenza were sensitive
to age, rather than sex, in terms of demographic characteristics.
We also needed to update our understanding on locations where
the exposure events happen (such as homes, workplaces, and
schools) due to the changing lifestyle in megacities caused by
the well developed urban transportation system, long working
hours, and the diverse daily activities. However, because of
the large number of undocumented cases and the difficulty in
investigating the exposure sites of reported cases, important
attributes such as the age and exposure locations of the actual
infected individuals were not clear. Given that the proposed
model could represent patients’ ages and exposure locations
under the spread of influenza, this study analyzed the influenza
transmission characteristics from these two important aspects.

Intervention Effectiveness Evaluation and
Combination Recommendation
This study focused on evaluating the effectiveness of different
combinations of vaccinations, mask-wearing after onset for out-
of-home activities with other people, and home quarantining
after onset, which are suggested as effective means to control
acute respiratory epidemics during the COVID-19. Vaccinations
were generally completed before the influenza season. Individuals
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TABLE 3 | Calibration of the unknown model parameters.

Parameters (P1_P2_P3) 1peak,m (d) Reff

1city 1district 1sub–district 1community Sum1 Std1

0.0_0.2_0.6 0 4 11 14 29 5.54 1.30

0.6_0.2_0.4 0 5 7 12 24 4.30 1.70

0.0_0.6_0.4 0 6 9 13 28 4.74 1.79

0.8_0.0_0.4 0 7 7 12 26 4.27 1.88

0.6_0.8_0.2 1 4 7 12 24 4.06 1.71

1.0_0.6_0.2 1 4 7 12 24 4.06 1.59

0.4_0.4_0.4 1 4 8 13 26 4.50 1.62

0.8_0.8_0.2 1 5 7 12 25 3.96 1.49

0.8_0.2_0.4 1 5 9 12 27 4.15 1.94

0.4_1.0_0.2 1 6 7 12 26 3.91 1.82

0.8_0.6_0.2 1 6 7 12 26 3.91 1.65

Note: Only part of all parameter groups (6 × 6 × 6 = 216 groups in total) are listed here

to illustrate the parameter calibration process. The bold value of parameters (P1_P2_P3)

is the selected one for model calibration, while the bold values of Sum1 are the minimum

ones.

who had been vaccinated and had sufficient antibodies would
not likely be infected during the epidemic. To maintain the
Reff below 1, the coverage of vaccination was calculated based
on the relationship between herd immunity and the effective
reproduction number of influenza (i.e., 1.1∼2.0) (33). As a result,
in our simulation, the coverage of vaccination was set as 10–
50% of the target population, gradually increasing in steps of
5%, for a total of nine groups of parameters, and the influenza
vaccine effectiveness for susceptibility was set as 50% according
to previous studies (34–36). The effectiveness of wearing masks
in inhibiting the spread of influenza virus was set at 70% (37–
39). The mask-wearing proportion was 0–100%, which increased
gradually in steps of 20% for a total of six groups of parameters
in our simulation. The parameter settings of home-quarantine
after onset are shown in Table 2 for the baseline scenario;
individuals that quarantined at home only interacted with family
members. In the scenarios of intervention recommendation, we
only simulated a higher home-quarantine proportions than those
of the baseline scenario.

RESULTS

Calibration of Unknown Model Parameters
Based on the distribution of influenza case data at different spatial
scales, we first calibrated four unknown parameters (pTrans, P1,
P2, and P3) in the model (Table 3). The value of pTrans was
limited by the effective reproduction number from 1.1 to 2.0.
When selecting the values of P1, P2, and P3, this study ranked
the parameter groups based on the 1peak,m value from city to
community scale. “1.0_0.6_0.2” was finally determined as the
proportion of infected individuals from each age group that
quarantined at home, because the Sum1 and Std1 values were
the smallest and the relationship among P1, P2, and P3 satisfied
P1 ≥ P2 ≥ P3, which is called the baseline scenario. Here, pTrans
= 2.5, Reff = 1.59, and the infection percentage in population
was 35.62%.

TABLE 4 | The accuracy of the proposed influenza model at three different

intra-urban scales.

Spatial scale Accuracy

indictor

1peak,i (d)

≤1 % ≤2 % ≤3 % ≤4 % ≤5% ≤6 %

District Ps 30 30 40 50 50 60

Pr 44.3 44.3 61.7 72.3 72.3 86.0

Pp 23.3 23.3 36.2 59.3 59.3 79.3

Sub-district Ps 9.5 13.5 24.3 35.1 43.2 47.3

Pr 15.5 22.7 41.3 57.4 65.8 67.7

Pp 11.4 16.6 26.6 42.4 49.6 53.8

Community Ps 12.5 19.5 26.0 36.2 39.0 45.6

Pr 9.8 14.3 18.4 24.8 28.2 32.4

Pp 8.0 12.9 18.0 24.3 28.0 32.1

Ps is the proportion of the spatial units, Pr is the proportion of the reported cases, and Pp

is the proportion of the population size.

Evaluation of Influenza Model Simulation
Accuracy
In this study, the proportion of spatial units, Ps, reported cases,
Pr , and population size, Pp covered by 1peak,i ≤ T (T=1, 2, 3. . . 6
days) at the district, sub-district, and community scales were used
to evaluate the model’s simulation accuracy at different spatial
scales (Table 4). Taking the maximum infection period of 6 d
as the tolerance standard for 1peak,i, the results showed that the
simulation accuracy of the model decreased as the spatial scale
becomes finer. At the district scale, the simulation accuracy of
the model was relatively high, with the median of the 1peak,i

being 4 d, and the 1peak,i ≤ 6 d covered 60% of the spatial
units (Figure 4A), 79.3% of the population, and 86.0% of the
reported cases. At the sub-district scale, the simulation accuracy
of the model was acceptable. The median of the 1peak,i was 7 d
and the 1peak,i ≤ 6 d covered 67.7% of the reported cases and
53.8% of the population in 47.3% of the spatial units (Figure 4B).
The simulation accuracy of the model was slightly lower at the
community scale, with the median of the 1peak,i being 12 d. Only
45.6% of the communities (Figure 4C) had a 1peak,i ≤ 6 d, and
only∼32% of the case data and urban population were included.
The small size of reported cases in some communities was the
main reason for the low simulation accuracy at the community
scale (Figure 4F). Taking Figure 4 as an example, for the two
spatial units with identifiers of 281, 283, which belong to spatial
unit 25 at the sub-district level, it was difficult to verify the
simulation accuracy because of the sparseness of the reported
case data.

Influenza Transmission Characteristics
In the simulation results of the baseline scenario (i.e., the
summer influenza season in 2017), the influenza transmission
in Shenzhen was mainly within the family, followed by the
workplace, other places, and finally the school (Figure 5A). This
showed that the workplace, where urban individuals worked for
a long time and had many contacts, was also an important place
for the spread of influenza, which not only confirms common
sense, but also emphasizes the importance of intervention for

Frontiers in Public Health | www.frontiersin.org 7 May 2022 | Volume 10 | Article 883624

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Zhang et al. Flu Intervention in Post-COVID-19 Era

FIGURE 4 | The model accuracy at different spatial scales. (A,C,E) are the spatial distributions of the 1peak values at the district, sub-district, and community scales.

(B,D,F) are the comparisons between the simulation cases and reported cases of selected typical spatial units at the district, sub-district, and community scales.

working people. The age distribution of the influenza-infected
individuals in the simulation did not agree with the reported data
(Figure 5B). Our results suggested that many children aged 0–
11 would seek medical help after onset and had a relatively high
reporting rate of 3.82%, while adults with influenza were not
likely to seek medical help, leading to a lower reporting rate of
0.13%. In other words, due to physical endurance and parental
care, many infected children will choose hospitals for treatment
after onset, while the proportion of infected adults seeking
medical care is relatively small, resulting in a high proportion
of children in the influenza surveillance system. However, as
our model suggested, there could be many undocumented

infected adults who played an important role in the influenza
transmission. This finding implied that in addition to paying
attention to the elderly and children, who have been targets
of concern for a long time, we should also consider adult
intervention measures to more effectively control the impact of
influenza on key populations.

Recommended Combination of
Intervention Measures
According to simulations based on our model, in addition
to paying attention to the elderly, children, families, and
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FIGURE 5 | The simulated transmission places and age distribution of influenza-infected individuals during the summer seasonal influenza epidemic of 2017 in

Shenzhen. (A) The distribution of simulated transmission places. (B) The age distribution of simulated infected individuals.

FIGURE 6 | The impact of vaccinating the same population size in different age groups of Shenzhen. (A) Cumulative infections. (B) Daily new infections. (C) Age

distribution of infected individuals.

schools that have been groups of concern for a long time,
attention should also be paid to the prevention and control
of influenza in megacities among adults and in workplaces,
which play an important role in the spread of influenza during

the epidemic season. Therefore, this study first compared the

impact of administering the same quantity of the vaccine

to different age groups on controlling influenza outbreaks.
Compared with the baseline scenario, both vaccination schemes
reduced the infection size (Figure 6A) and delayed the peak time
(Figure 6B). As Figure 6A shows, when the vaccine efficacy for
susceptibility for influenza was 50% and ∼1.6 million people
aged 0–18 and ≥ 61 years old were vaccinated, the infection
percentage of the urban population was 30.81%, and that of
children and the elderly decreased significantly (Figure 6C).
When the same amount of the vaccine was administered
to adults aged 19–60 (i.e., 16.88% of them), 30.59% of the
simulated individuals would eventually be infected with the
infection percentage of the children and elderly decreasing
slightly (Figure 6C). Compared with the baseline scenario, the
two vaccine distribution schemes could only reduce the infection
percentage by∼5%. In other words, when the number of vaccines
was insufficient (there were only vaccines equivalent to the

number of children and the elderly), regardless of how they
were distributed, it was not enough to control the influenza
epidemic. In addition, even if all the children and elderly were

vaccinated, 14.1% of children and 13.5% of the elderly would still

be infected (Figure 6C). Therefore, new intervention programs
were required to further reduce the outbreak degree of influenza
in Shenzhen.

Since our model simulations suggested that adults and
workplaces played important roles in influenza transmission
in Shenzhen, this study proposes an influenza intervention
target strategy for adults based on the combination of the
three interventions (vaccinations, mask-wearing, and home-
quarantine). Effectiveness of three interventions is shown in
the Supplementary Material. Considering that the mortality
rate of children and the elderly in the influenza epidemic was
significantly higher than that of adults, the influenza intervention
program for adults proposed in this study was implemented after
there was a complete vaccine coverage for children aged 0–11 and
the elderly ≥ 61 years old.

This study focused on the goals of controlling the infection
percentage in Shenzhen and the infection proportion of people
with high mortality for influenza epidemic prevention and
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FIGURE 7 | The influenza infection size of Shenzhen under systematical combinations of vaccination rate, mask wearing rate and home-quarantine rate for adults

based on the premise that the children and elderly have been fully vaccinated. The green and blue dashed curves are the thresholds of 5% and 15% infection

percentage, respectively.

FIGURE 8 | The simulated influenza transmission characteristics in Shenzhen under selected intervention combinations. (A) Distribution of simulated transmission

places. (B) Age distribution of simulated infected individuals.

control. The simulation results of vaccinations, mask-wearing,
and home-quarantine for adults with different compliance rates
are shown in Figure 7. For example, if the control objective is to
maintain the infection percentage below 5%, which is a relatively
high objective, 60% of infected adults after onset wearing masks
for all activities except living at home during the influenza
season, 20% of infected adults after onset staying home, and
45% of adults being vaccinated, can achieve this objective; this
combination was recorded as the “V45%-M60%-Q20%” strategy.
Under the same control objective, if the proportion of infected
adults that quarantined at home after onset can also increase to

30%, the vaccination rate of adults can be decreased to 35%; this
combination was denoted as the “V35%-M60%-Q30%” strategy.
Compared with the 35.62% infection percentage in the baseline
scenario, these two strategies reduced the infection percentage
by 86%. However, when the rate of mask-wearing was low, it
was necessary to increase the rates of vaccinations or home
quarantine to effectively control the influenza epidemic. These
intervention combinations effectively reduced the infection
percentages in children, the elderly, homes, and workplaces
while also reducing the whole urban infection percentage. The
transmission events at home, school, and workplace have been
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reduced by 84, 67, and 91% (Figure 8A), and the infection
percentages of children and the elderly have been both reduced
from around 30% to around 2% (Figure 8B). Except for the above
example with a 5% infection percentage as the control objective,
Figure 7 also shows the combinations of the intervention
measures corresponding to other control objectives for different
control scenarios. For instance, if the control objective is to
maintain the infection percentage below 15%, 60% of infected
adults after onset wearing masks for all activities except living
at home during the influenza season, 20% of infected adults
after onset staying home, and 20% of adults being vaccinated,
can achieve this objective; this combination was recorded as the
“V20%-M60%-Q20%” strategy.

DISCUSSION

The COVID-19 pandemic, which has lasted more than 2 years,
has changed the lifestyles of people worldwide. Measures such
as mask-wearing, vaccination, nucleic acid detection, and home-
quarantine implemented during the epidemic have become
common interventions in most countries. These measures are do
not extremely affect normal life and provide new intervention

combinations for influenza prevention and control. Before
the outbreak of COVID-19, most models suggested influenza
interventions for children (17), the elderly (19), homes (40, 41),
and schools (42–44), considering the decrease in susceptibility
with age and the high mortality rate of children and the
elderly (45). Our model found that vaccinations alone for
children and the elderly were insufficient for reducing the
urban infection percentage and the proportion of infected
children and the elderly due to the contact between different age
groups. This study systematically recommended combinations
of vaccinations, mask-wearing, and home-quarantine under
different compliance rates targeting for adults to deal with
the influenza epidemic after the influenza vaccine was fully
distributed for children and the elderly. Policymakers can choose
different intervention schemes according to the diversity of
abilities for urban epidemic prevention and control. The “V45-
M60-Q20” strategy recommended by our model can reduce the
urban infection size below 5% and that of children and the
elderly to 2%. The model also encourages adults to withdraw
to their homes after the onset of influenza to control its spread
among individuals from the source. When the vaccine supply is
insufficient, the mask-wearing rate or home-quarantine rate need
to be increased. When the vaccination rate and mask-wearing
rate are low, more infected adults need to be encouraged to work
from home. Overall, increasing the supply of influenza vaccines
and the vaccination rate, encouraging more adults to wear masks,
and encouraging working from home with influenza infection
risk are effective strategies to control the influenza epidemic in
the post-COVID-19 era.

The COVID-19 pandemic has underscored the importance
of accurate estimates of the size and duration of epidemics,
which puts forward higher requirements for the accuracy of
the epidemic model. This study systematically evaluated the
simulation accuracy of the proposed spatially explicit agent-based

influenza model at multiple intra-urban spatial scales. Previous
studies mostly evaluated the simulation accuracy of the model
at the city scale and considered the d-value between the peak
times of the simulation results and case data as the evaluation
standard (5, 29). The evaluation results of this study showed that
the accuracy of the proposed agent-based spatially explicit model
was good at the district and sub-district scales. One of the reasons
for the low model accuracy at the community scale was that
many spatial units did not have sufficient case data to evaluate
the simulation accuracy.

Large-scale experiments based on our model have found that
the infection percentage during the summer influenza season of
Shenzhen in 2017 was 35.62%, indicating that there were many
undocumented cases. The simulation results showed that adults
were the most infected people in Shenzhen, but the reporting
rate of adults was very low at ∼0.13%, which is consistent with
the range of reporting rates of 2009 H1N1 influenza in eight
southern hemisphere countries (9). The infection percentage
of children and the elderly, who have been groups of concern
in the real-world, was lower than adults, while their reporting
rates were relatively high at 3.8 and 1.03%, respectively. The
simulated age structure of infected individuals was consistent
with the entire population of Shenzhen (Figure 5B) and was
also slightly related to the number of contact in each age group
(Supplementary Figure 2C), indicating that the age structure
and intensity of interaction were very important factors in
the formulation of an intervention plan (17, 23). According
to the analysis of the activity places where influenza was
transmitted, the main transmission was within the family, which
was consistent with previous studies (26, 41). Moreover, it
showed that the workplace, where urban individuals worked for
a long time and had a large number of contacts, was another
major contributor to the spread of influenza in Shenzhen, and
needed the attention of public health policy. These transmission
characteristics that cannot be given by the traditional influenza
surveillance system can be simulated by our high-precision,
spatially explicit, agent-based influenza model.

This study had several limitations. First, this study selected
only one megacity, Shenzhen, with a population of about 12
million (the age structure is dominated by adults) and emerging
technology industries mostly located in confined office buildings,
as the research area. The main influenza-infected population in
the city was adults, and the main transmitters of influenza were
families and workplaces. When extending the research results
to other megacities, it is necessary to compare the population
size, age structure, individual contact patterns at different ages,
and industrial characteristics. Second, China’s latest decennial
census data of 2020 have not been released yet. Therefore, we
used the 2010 census data. Similarly, a large-scale travel survey
in Shenzhen occurs once every 10 years; this study used the
travel survey data from 2010. To match the above data, this
study used mobile phone location data and building census data
from 2012. Although the above dataset was not the latest data
for the study year of 2017, it still reflected the actual population
distribution and travel patterns, so theoretically, it does not
have a substantive impact on the conclusions of this study.
Third, this study did not simulate the activities of individuals
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on weekends and holidays, which may have impacts on the
contact networks. However, the recommended combination of
different intervention measures can also be competent for the
prevention and control of influenza. Fourth, this study did not
exclude the spatial units with sporadic cases in the process of
model accuracy evaluation to prove a better model accuracy
because there is no clear criteria to discard the spatial units with
small size of influenza cases. In the future, retrospective forecasts
or out-of-sample predictions will be used to further validate
the model.

CONCLUSIONS

The contributions of this study can be summarized from
the following three perspectives. First, a high-spatial-resolution
influenza transmission model was built by integrating multi-
source urban big data, and the model simulation accuracy
was evaluated on the scales of the city, district, sub-district,
and community with confirmed influenza data, offering a
data-driven model with a relatively high accuracy at intra-
urban scales. Second, based on our simulation results of the
spatiotemporal characteristics of influenza transmission, this
study proposed paying attention to the interventions for adults
besides of children and the elderly. Third, according to the
enhanced public awareness on vaccinations, mask wearing,
and self-health management during the COVID-19 pandemic,
the effects of different combinations of vaccinations, mask
wearing, and home-quarantine rates on the influenza epidemic
were systematically simulated, and the combination of these
measures for different control objectives was recommended. The
recommended intervention combinations for Shenzhen can also
be scientific reference formany othermegacities worldwide in the
post-COVID-19 era.
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