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1 | INTRODUCTION

Cells need adequate energy and nutrients to survive and prolifer-
ate. Immune cells often undergo metabolic reprogramming to adapt
to pathologic microenvironments associated with cancer, inflamma-
tion, and autoimmune diseases and elicit an immune response. Can-
cer cells depend on glycolysis rather than oxidative phosphorylation
(OXPHOS) for energy production, a phenomenon known as the “War-
burg effect.”1"3 The accumulation of lactate in the tumor microen-
vironment (TME) as a result of excessive glycolysis creates an acidic
milieu, which in turn induces metabolic adaptations in the other cells.
For instance, T cells are known to be the most characteristic exam-
ples of metabolic reprogramming. Tumor-infiltrating T cells switch
to glycolysis and glutaminolysis and show a corresponding decrease
in OXPHOS and fatty acid §-oxidation (FAO).*° In graft-versus-host
disease (GVHD), a typical representative of inflammatory microen-
vironment, allogeneic effector T cells exhibit elevated glycolysis
mediating tissue injury and oxidative stress,® whereas the immunosup-
pressive regulatory T cells (Tregs) show a marked increase in FAO and
OXPHOS.”#

Recent studies show that myeloid immune cells exhibit metabolic
plasticity in different microenvironments. The M1 macrophages pri-
marily rely on glycolysis rather than OXPHOS to achieve phago-
cytic activity and produce proinflammatory cytokines.? 12 In con-
trast, the anti-inflammatory M2 macrophages display high rates of
mitochondrial biogenesis and FAO in response to type 2 cytokines
(IL-4).33 Likewise, dendritic cells (DCs) depend on OXPHOS in the
resting state and on glycolysis when acting as APCs. Neutrophil
progenitors also undergo a metabolic shift toward OXPHOS during
differentiation.* However, the fully differentiated circulating neu-
trophils harbor very few mitochondria and mainly depend on glycolysis
for ATP synthesis.'>16 The tumor-associated neutrophils are classified
into antitumor (N1) and protumor effects (N2) with the metabolic pref-
erence of glycolytic and oxidative types, respectively.?’

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous
population of immature myeloid cells that rapidly differentiate and
expand in response to pathogenic infections, cancer, inflammation,
trauma, autoimmune disease, and so on.'8721 Murine MDSCs are
characterized by the coexpression of CD11b and Gr1, and are classi-
fied into the CD11b*Ly6G*Ly6C!° granulocytic/polymorphonuclear
(PMN-MDSCs) and CD11b*Ly6GLy6CM monocytic (M-MDSCs)
subtypes.?2 Human PMN-MDSCs and M-MDSCs are charac-
terized as CD33t*CD14"HLA-DR" plus CD15% or CD66b* and
CD33*CD14* HLA-DR'°CD15~, respectively.1?22 The pathologic
microenvironment is complex mixture of cytokines contribut-
ing to MDSC expansion, differentiation, and recruitment such as
G-CSF, GM-CSF, vascular endothelial growth factor (VEGF), proin-
flammatory proteins (S100A8 and S100A9), and inflammatory
mediators (IL-18 and I1L-6).1%2% MDSCs mediate immune responses
by expressing enzymes (arginase [Arg], IDO, and NOS), releas-
ing reactive oxygen species (ROS), regulating immunosuppressive
cells such as Tregs and secreting cytokines (e.g., IL-6, IL-10, TGF-8,

etc.).2°~24‘26

M-MDSCs and PMN-MDSCs share the same morphologic and phe-
notypic features with monocyte and neutrophils separately but have
different biologic signatures.?’~30 Studies on global proteome dynam-
ics and post-translational modifications have shown that MDSCs dif-
ferentially expressed a core of kinases, which controlled lineage-
specific (PIBK-AKT and SRC kinases) and cancer-induced (ERK and
PKC kinases) protein,®! which constitute a distinct myeloid popula-
tion characterized by a unique “kinase signature.”3? Therefore, MDSCs
established a remarkable diversity of metabolic pathways attributed to
various microenvironments. In this review, we have summarized the
reprogramming of glycolysis, lipid and fatty acid metabolism, amino
acid metabolism and other metabolic pathways in MDSCs adapting to

different microenvironments (Fig. 1 and Table 1).

2 | GLUCOSE METABOLISM

The survival and immunosuppressive function of MDSCs depend on
the generation of ATP via 3 integrated metabolic pathways—glycolysis,
tricarboxylic acid (TCA) cycle, and OXPHQOS. Aerobic glycolysis pro-
duces 30-36% of the cellular ATP by converting pyruvate into acetyl-
CoA, which is then fed into the TCA cycle and generates electrons for
mitochondrial OXPHOS. Under hypoxic conditions, pyruvate is usually
converted into lactate and expelled from the cells, a process known
as anaerobic glycolysis that rapidly provides energy during stressful
conditions.33-3%

MDSCs constitute an integral part of the TME and support tumor
cell growth.3¢37 As TME is hypoxic and nutrient deficient especially
glucose, not only tumor cells and infiltrating T cells but also MDSCs
engage in glycolysis for their energy needs. The acidic TME resulting
from the high levels of lactate produced by tumor cells facilitates tumor
invasion and metastasis by increasing MDSCs infiltration and inhibit-
ing the NK cells.3® Studies revealed that the suppressive function of
MDSCs is positively correlated with glycolytic rate in solid tumor-
bearing mice models.3* The GLUT3M CD205+ PMN-MDSCs, which are
particularly sensitive to glucose deprivation, showed massive accumu-
lation in the spleen and liver of 4T1 tumor-bearing mice.?? Chornoguz
et al.*© hypothesized that MDSCs adopt a higher rate of glycolysis to
resist Fas- and Caspase-mediated apoptosis, which prolong MDSCs
survival in the TME.

The rapid proliferation of tumor cells and infiltration of inflam-
matory cells create a hypoxic TME. Hypoxia inducible factor (HIF)
is a key transcriptional factor that regulates the expression of gly-
colytic enzymes and thus shapes the fate of MDSCs.*1"3 Corzo
et al.*3 showed that HIF1a drive MDSCs differentiation into a tumor-
associated macrophage (TAM)-like phenotype that suppresses T cells.
Sirtuin 1 (SIRT1) plays an important role in metabolic and immune
pathways by deacetylating downstream targets like HIF1a.** SIRT1-
deficient MDSCs switch to the proinflammatory M1 lineage with
lower suppressive function and glycolytic activation.*>#¢ Furthermore,
Noman et al.*347 reported that HIF1a increases the expression of
membrane-bound PD-L1 on MDSCs and mediates apoptosis of T cells
expressing PD-1, which points to a link between immune checkpoint
activation and metabolic reprogramming of MDSCs. HIF 1« also mod-
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FIGURE 1

Metabolic reprogramming of MDSCs in various pathologic conditions. During pathologic stresses, immature myeloid cells

differentiate into immunosuppressive MDSCs accompanying with metabolic reprogramming. Left panel: hypoxic stress and acidic
microenvironment accompanies cancer, infection and abnormal placentation, which triggers the hypoxia-signaling cascade in MDSCs. The local
cytokine milieu during autoimmune disorders and graft rejection alters the suppressive function of MDSCs. Aberrant content of energy-supplying
substance such as glucose and fatty acid change the metabolic phenotype of MDSCs, which further bring about functional alteration. Central part:
MDSCs receive extracellular stimuli and transduce signals for metabolic reprogrammings such as changes in glycolysis, fatty acid oxidation, and
amino acid metabolism. These metabolic alterations manipulate the expansion, differentiation, and function of MDSCs. Right panel: regulating key
metabolic enzymes to induce nutrition deprivation or release immunosuppressive factors are the main ways of MDSCs to fulfill their function.
MDSCs can suppress T cells and NK cells and promote Treg cells. From what are discussed above, it is imperative that metabolic intervention can

be targeted to regulate immune responses

ulates MDSC metabolism in infectious diseases and immunologic dis-
orders. For instance, splenic myeloid cells switch to anaerobic glycoly-
sis in a HIF 1la-dependent manner and attain the MDSCs-like immuno-
suppressive phenotype when confronting extramedullary myelopoiesis
following Leishmania donovani infection.*®*? Furthermore, Lu et al.>°
found that the activation of glucocorticoid receptors (GRs) on MDSCs
down-regulate HIF 1a expression and HIF 1a-dependent glycolysis, and
promote their immunosuppressive activity in immune-mediated hep-
atic injury (IMH). MDSCs also accumulate in the hypoxic placenta, and
theirimmunomodulatory activity may be crucial for maternal-fetal tol-
erance. Mice with HIF-deficient myeloid cells have increased abortion
rate due to the impaired immunosuppressive activity and high apopto-
sis of MDSCs in the pregnant uterus.>!

Besides HIF, there are other signaling pathways mediating glucose
metabolism as well as glycolysis-dependent immunosuppressive func-
tions in MDSCs. The glycolysis activator AMP-activated protein kinase
(AMPK) is closely associated with HIF1a and bridges CEBPS signal-
ing and the JAK-STAT pathway. Loss of c-Rel, a myeloid and lymphoid-

specific transcription factor of the NF-B family,?2 in MDSCs selectively
turns on the antitumoral gene signature, decreases mitochondrial res-
piration, and enhances glycolysis compared to the wild-type cells.>3
Furthermore, inhibition of the mammalian target of rapamycin (nTOR)
in 3LL tumor-bearing mice by rapamycin significantly reduced the gly-
colysis rate contributing to enhancing suppressive function of tumor-
infiltrating MDSCs (T-MDSCs).2¢ Moreover, Chen et al.>* showed that
inhibiting mTOR with rapamycin and mTOR-deficient MDSCs became
a powerful immune modulators with lower glycolytic activity by target-
ing the HIF 1a-dependent glycolytic pathway in IMH.

Pentose phosphate pathway (PPP) is a branch of glycolysis that
provides energy and intermediates for biosynthetic pathways.’> PPP
consists of both oxidative and nonoxidative phases. During the oxida-
tive phase, PPP generates cytosolic NADPH through NADPH oxidase
(NOX) family, which is a main source of ROS.!> The nonoxidative phase
contributes to the pool of glycolytic precursors, and thus acts as a
bridge for the central metabolic pathways in MDSCs. Myeloid cells,

especially neutrophils and neutrophilic granulocytes, primarily rely on
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PPP to generate ROS due to their low mitochondrial load.”® ROS is one
of the metabolites of PPP and essential for the microbicidal activity
of myeloid cells.>”>® NOX subunits are frequently mutated and inac-
tive in hereditary chronic granulomatous disease (CGD) patients with
low-level ROS production and release, which increases the risk of lethal
infections.>?

The PMN-MDSCs display higher NOX activity in response to envi-
ronmental stress compared with the M-MDSCs, and thus release a
far greater amount of ROS to suppress T cells. A substantial increase
in ROS levels was observed in the MDSCs of head and neck can-
cer patients and 7 tumor models and associated with increased
activity of NOX2 subunits, especially the STAT3-controlled p47Phox
and gp91Phox 60 | addition, tumor-derived inflammatory cytokines
up-regulate TNF-a-induced protein 8-like 2 (TIPE2) in MDSCs and
promote ROS production through p47Pho* 61 Furthermore, the PPP
enzymes are overexpressed in nuclear factor erythroid-derived2
(Nrf2)-activated MDSCs, which protects cells from chemical or oxida-
tive stress and inflammation.%2

Taken together, glycolysis is a major driver of the immunosuppres-
sive activity in MDSCs, and glycolytic metabolites can be potentially
targeted to control the fate and activities of MDSCs.

3 | LIPID METABOLISM

Lipid metabolism comprises of cytosolic fatty-acid synthesis and FAO
in the mitochondria. Fatty-acid synthesis is ATP-dependent and is
initiated with the carboxylation of acetyl-CoA to malonyl CoA by
acetyl-CoA carboxylase 1.3 Lipids are transported from the cytosol
to the mitochondria by carnitine palmitoyltransferase (CPT), and sub-
sequently oxidized to acetyl-CoA that is then fed into the TCA cycle
and OXPHOS chain.®® FAQ is a crucial factor in regulation of MDSCs
function. Polyunsaturated fatty acids (PUFAs) promote expansion of
MDSCs from hematopoietic progenitors in vitro.®* Tumor-bearing
mice fed with PUFA-enriched diets show greater tumor load due to the
expansion of MDSCs with elevated ROS production, which is driven
by the STAT3/p47P"X axis.%> PUFAs can abrogate LPS-induced mat-
uration of DCs and maintain the myeloid progenitors in a MDSC-like
state, thereby suppressing adaptive immunity.®¢¢® In addition, intra-
venous injection of pegylated liposomes encapsulated with specific
lipids increased the number of MDSC-like cells with enhanced B7-H3
and iNOS expression in the spleen.®?

The immunosuppressive ability of MDSCs in the TME of tumor-
bearing mice correlates with the in situ accumulation of lipids.”%7%
G-CSF or GM-CSF increase MDSCs function through STAT3 and
STAT5 signaling following enhanced lipid uptake in the TME.7273
Peroxisome proliferator-activator receptors (PPARs) are activated
upon sensing fatty acids and relay the signals to downstream tran-
scription factors regulating lipid metabolism.”# PPARy activation and
the metabolism of neutral lipids affect the development, suppres-
sive function and trans-endothelial migration of MDSCs.”> Exogenous
fatty acid uptake is mediated by fatty acid transport proteins (FATP)

and SLC27A. FATP2 overexpression enhanced the function of PMN-

MDSCs in both cancer patients and mouse models by promoting cel-
lular arachidonic acid uptake and subsequent PGE2 synthesis.”* Liver-
X receptors (LXR) are members of the nuclear hormone receptor
family that transcriptionally activate apolipoprotein E (ApoE). Treat-
ing high-metabolic-demand MDSCs with LXR agonists could promote
apoptosis and induce dysfunction in MDSCs by potentially mediat-
ing lipoprotein metabolism.”®’” The PMN-MDSCs infiltrating in solid
tumors show increased number of mitochondria, oxygen consump-
tion rate and expression levels of FAO cycle enzymes such as CPT1
and 3-hydroxyacyl-coa dehydrogenase (HADHA) compared with the
peripheral cells.”378 Mitochondria is another major source of ROS in
MDSCs.”? PGE2/cyclooxygenase-2 (COX2) signaling is the common
link between FAO and ROS generation, which correlates with the
recruitment and differentiation of MDSCs in the TME.80:81

Though the exact relationship between FAO and the immunosup-
pressive ability of MDSCs remains to be clarified, there is considerable
evidence that the reprogramming of lipid metabolism in MDSCs deter-

mines their phenotype and function.

4 | AMINO ACIDS METABOLISM

Amino acids are indispensable for normal cellular function and survival.
The MDSCs with higher metabolic rates can compete with NK cells and
CTLs for essential amino acids such as arginine, tryptophan, and cys-

teine, which limit their survival and induce apoptosis.82

41 | Arginine
Arginine metabolism plays an important role in regulating innate and
adaptive immune responses, and determining the immunologic fate of
MDSCs. Breakdown of arginine into L-ornithine and urea by Arg1 leads
to arginine starvation, whereas NOS-mediated metabolism generates
citrulline and NO resulting in nitrosative stress.8283 Arginine depriva-
tion leads to T-cell dysfunction via CD3¢down-regulation and cell cycle
blockade at the GO-G1 phase.?* Also, lacking Arg results in a decreased
initiation of global protein synthesis.8>8¢ In addition, MDSCs can steer
DCs toward an IDO1-dependent immunosuppressive phenotype via
the Arg1 pathway.8” Cancer cells trigger Argl expression in MDSCs,
which endows these cells with the ability to induce anergy of NK cells
and expansion of natural Treg cells.®8

Massive consumption of arginine through Argl was one of the ini-
tially reported immunosuppressive pathways in MDSCs. The hypoxic
conditions in the TME markedly increase the expression of Argl in
T-MDSCs.8787 The cationic amino acid transporter 2 (Cat2) is up-
regulated in MDSCs that are recruited to inflamed and tumor sites,
which increases L-arginine uptake.”® Otvos et al.”! found that glioblas-
toma stem cells secrete macrophage migration inhibitory factor (MIF)
that stimulates Argl production in MDSCs in a CXCR2-dependent
manner. The AMPK/mTOR/HIF1a pathway drives the immunosup-
pressive function of MDSCs in hypoxic conditions by enhancing the

activity of Arg1.42°05492 The inflammasome triggered by danger sig-
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nals including IL-13, LPS, and ATP during allogeneic hemopoietic stem
cell transplantation can inactivate Argl and thus impair the suppres-
sive phenotype of MDSCs.”3

Neuronal NOS (nNOS), eNOS, and iNOS metabolize arginine
into NO, which has direct apoptotic effects. M-MDSCs-derived NO
increases apoptosis of T cells by impairing IL-2R signaling through
Jak-3, STATS5, ERK, and AKT.”#?> High intracellular levels of NO
inhibit protein synthesis, DNA damage response, and cell prolifera-
tion, and enhance mitochondrial ROS production, such as superoxide
and hydrogen peroxide, in MDSCs via NOX subunits (p22Phox p47phox
and gp91Phox) 2697 Fyrthermore, NO can react with superoxide anion
to produce peroxynitrite (PNT) in a NADPH oxidase (gp91Phox)-
dependent manner.” PNT inhibits CD8* T cell activation and pro-
liferation by promoting impairment of tyrosine phosphorylation and
inducing apoptosis in cancer.”?1%° Furthermore, PNT induces nitra-
tion of chemokines such as CCL2, which inhibits the recruitment of
tumor-infiltrating lymphocytes into the inner core of solid tumors.?”
MDSCs also induce graft tolerance by producing iNOS that impairs
the function of CD4* T cells.2*25 In fact, coexpression of Argl and
NOS effectively inhibits T cells, and iINOS can only produce PNT
in MDSCs in the presence of Argl.1%1 Simultaneous coinhibition of
Argl and NOS significantly reduced graft survival in vivo compared
with that of either alone.82192103 However, Zhang et al.1%* showed
that the up-regulation of Argl inhibited NOS activity, which aggra-
vated asthma and vascular dysfunction. Enhancing the function of
MDSCs by a GR agonist increased iNOS levels but suppressed Arg1.%°
Furthermore, Argl can reciprocally induce NOS uncoupling by sub-
strate depletion, which subsequently leads to less NO but more

superoxide.10°106

4.2 | Glutamine

Glutamine is the most abundant nonessential amino acid in the blood,
and the precursor of nucleotide synthesis. During glucose exhaustion
in pathophysiologic conditions, glutamine is converted into glutamate
and thereafter to a-ketoglutarate (a-KG), which becomes a source of
carbon for TCA cycle in the MDSCs. This progress is called anaplerosis,
which enables cells to regenerate TCA cycle intermediates for biosyn-
thesis pathways.’%7 The differentiation of immature myeloid cells to
MDSCs is closely associated with glutamine synthesis.’°8 Glutaminol-
ysis provides the intermediates and energy for the development of
MDSCs. Apart from competing with antitumor cells for glutamine,
MDSCs partially oxidize L-glutamine in an AMPK-dependent manner,
which increases immunosuppression and creates favorable conditions
for tumor progression.19? MDSCs were shown to increase glutamine
biosynthesis and transglutaminase (TGM) activity in a murine model of
metastatic mammary tumors.*1° Consistent with this, c et al.1** found
that TGM expression in MDSCs was correlated to the metastasis and

multi-drug resistance of breast cancer.

BIOLOGY

4.3 | Cysteine

Cysteine is essential for metabolic homeostasis and normal cellular
function. T cells cannot take up cysteine nor convert the intracellular
methionine into cysteine.’? In that event, APCs such as macrophages
or DCs can convert extracellular cystine into cysteine and taken up by
the T cells.}13.114 |n contrast to APCs, MDSCs can only import cystine
but not export cysteine due to the absence of transporter. As a result,
MDSCs lead to sequester cystine from macrophages and DC and create
cysteine starvation in the microenvironment.!1> Therefore, T cells do
not obtain the cysteine they need for activation and proliferation,¢
and the exhaustion of cysteine reduces glutathione levels in T cells

increasing their susceptibility to ROS-mediated oxidative injury.'”

4.4 | Tryptophan

Tryptophan is required for protein synthesis and other cellular activi-
ties. It is metabolized by IDO and TRP-2, 3-dioxygenase 2 (TDO) into
kynurenine. Tryptophan is particularly essential for the active cycling
of T cells, and its depletion leads to cell cycle arrest at mid-G1 phase
and apoptosis. Inhibition of T cells through IDO-mediated trypto-
phan deprivation is a key mechanism employed by immunosuppressive

87,118

myeloid cells. IDO-expressing MDSCs are increased in tumors

and during acute GVHD, and suppress T cell proliferation through
the rapid and selective degradation of tryptophan.11%120 yy et al.12!
detected IDOM8N MDSCs in the primary tumors and peripheral blood of
cancer patients, and found that these cells promoted Tregs recruitment
and metastasis in a STAT3-dependent manner. IDO also protects the
allogeneic fetus from rejection, indicating a significant immunomodula-
tory role.?2 Joo et al.11? showed that MDSCs treated with G-CSF sup-
pressed acute GVHD in an IDO-dependent manner in murine models.
Furthermore, Zoso et al.123 have identified and characterized a novel
population of fibrocytic MDSCs (f-MDSCs) in human umbilical cord
blood, which likely originates from the precursor cells in the presence
of multiple cytokines. The f-MDSCs can only exert a strong protolero-
genic function by releasing IDO when in direct contact with activated T

cells.123

5 | EXTRACELLULAR ADENOSINE

The A,g adenosine receptor (A,gR) is a regulator of nucleotide
metabolism and intercellular network.'2* It is activated by high lev-
els of extracellular adenosine induced by pathologic conditions such
as inflammation, traumatic stress, transplantation, and so on.124-126 |n
addition, the adenosine released by tumor cells enhance the immuno-
suppressive ability of intra-tumoral MDSCs via A,gR.127 A recent study
showed that stimulation of adenosine receptors can disrupt DCs dif-
ferentiation and turn into a distinct cell population with immuno-

suppressive and proangiogenic phenotypes as the MDSCs in TME.128
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Furthermore, tumor growth was far slower in the A,gR knockout mice,
which significantly prolonged their survival mainly due to inactivated
MDSCs.127129 Lj et al.>® showed that TGFB-mTOR-HIF 1« signaling
induced the expression of surface ectonucleotidases (CD39 and CD73)
that hydrolyze extracellular ADP/ATP into adenosine in the MDSCs
of patients with non-small cell lung cancer, thereby inducing the
immunosuppressive and chemo-protective effects of MDSCs. More-
over, MDSCs can secrete adenosine in tumor lesions and exacerbate
immune suppression in an autocrine manner via a CD73-dependent
pathway.'3! These mechanisms were also verified in Lewis lung carci-

noma (LLC)*24132 and melanoma®2? models.

6 | THERAPEUTIC APPLICATIONS TARGET ON
MDSCS METABOLISM

Therapeutic approaches targeting MDSCs have mainly focused on
regulating their accumulation, mobilization, differentiation, and func-
tion. MDSCs can be eliminated from the TME by chemotherapeutic
drugs like 5-fluorouracil, 133 as well inhibitors of GM-CSF, G-CSF, VEGF,
IL18, and so on.134135 |n addition, blocking the chemokine receptor
such as CXCR2 inhibited MDSCs recruitment to the tumor site.13¢
More recently, the aberrant metabolic phenotype of MDSCs has gained
attention as a promising therapeutic target (Table 2).

Reducing glucose uptake by 2-deoxy-dglucose (2-DG) or down-
regulating GLUT expression induce apoptosis in the MDSCs and inhibit
tumor progression.3? The ketogenic diet can lower lactate production
in glycolytic tumors, resulting in fewer MDSCs and stronger antitumor
immune response.® In addition, the proglycolytic transcription factor
c-Rel is an established therapeutic target in cancer.”® Pharmacologic
modulation of GR regulates HIF 1a and HIF 1a-dependent glycolysis in
MDSCs and promotes immunosuppression in autoimmune hepatitis.®
In addition, activation of HIF 1a-dependent pathways in MDSCs is cru-
cial for maintaining pregnancy.”’ PD-L1 blockade along with inhibi-
tion of HIF1a can abrogate the suppressive activity of MDSCs.*347
SIRT1- and HIF 1a-associated signals are significantly correlated with
the activity of mTOR. However, as mTOR plays distinct roles in dif-
ferent MDSC subsets and diseases, the therapeutic application of
rapamycin is ambiguous.26:548%.137 Nrf2 activators can decrease PPP-
driven ROS production in MDSCs, thereby enhancing T cell function
and inhibiting tumor growth.38

MDSCs treated with the PUFA linoleic acid exhibit a stronger
inhibitory effect than the saturated fatty acid palmitic acid.”® Phar-
maceutic blockade of FATP2 by lipofermata reduced arachidonic acid
uptake and PGE2 expression in MDSCs.23? Genetic ablation of the
fatty acid translocase CD36 also mitigated oxidative metabolism in the
T-MDSCs through STAT3 and STAT5 signaling.24? The FAO inhibitor
etomoxir markedly decreased the ability of MDSCs to block T cells

proliferation.”3141

LXR/ApoE activation and the ensuing lipoprotein
metabolism further reduces the abundance and immunosuppressive
function of MDSCs, resulting in tumor regression.”®’” Activation of
mTORC1 facilitates the production of sterol-regulatory element bind-

ing proteins (SREBPs), which stimulates the expression of sterol and

BIOLOGY

fatty acid synthase.”? mTORC2 regulates lipid metabolism in breast
tumors by restricting the activity of ATP citrate lyase, which can be
targeted to attenuate the immunosuppressive capacity of MDSCs.142
The production of mitochondrial ROS in MDSCs is dependent on COX2
activity, and blocking TIPE2 or COX2 abrogated the inhibitory function
of MDSCs by reducing ROS generation.6:143.144 Moreover, silencing
the PGE2/COX2 pathway down-regulated chemokine CCL2 and inhib-
ited MDSCs accumulation in TME.81.145

MDSCs affects other immune cells mainly by competing for essen-
tial amino acids. Arginine catabolism plays a key regulatory role in
immune recognition. CAT2 blockade and the subsequent decrease in
arginine absorption can reverse the immunosuppressive activity of
MDSCs.?© The Arg1 inhibitor N-hydroxy-L-arginine (NOHA) reversed
T cell dysfunction both in vitro and in tumor-bearing mice, and
led to an anti-tumor response.'#¢ Likewise, the NOS inhibitor NG-
monomethyl-L-arginine (L-NMMA) and N (G)-nitro-L-arginine methyl
ester (L-NAME) can increase the number of CD8* T cells and NK
cells while decreasing Treg and MDSCs accumulation.?>147 Further-
more, down-regulating mTOR in CD11b*Gr-1* MDSCs induced iNOS
expression and increased NO production, which mediated a protective
effect in IMH.>* Direct and indirect inhibition of CEBPS or STAT3 also
reduces iNOS and Arg1 levels in T-MDSCs. 148149

Glutamine is essential for the continued growth and survival of some
cancer cell lines, and limiting its levels through competitive utilization
is a promising anticancer therapeutic strategy.!* All-trans retinoic
acids (ATRAs) up-regulate glutathione synthase in the MDSCs though
ERK1/2 activation. MDSCs derived from cancer patients and tumor-
bearing mice rapidly differentiate into DCs/macrophages in the pres-
ence of ATRAs.151

Along with the above-mentioned major metabolic pathways, there
are other metabolic routes affect the biochemical processes in MDSCs.
Vitamin and its analogs affect the differentiation and development
of MDSCs from primitive myeloid cells.’>? Vitamin D3 may have a
prodifferentiation effect on myeloid cells, which is similar to that seen
with ATRA-treated cells,’>2-15% whereas vitamin E exerts its func-
tions by neutralizing MDSC-derived NO.1>>15¢ All 8 isomers of vita-
min E exhibit strong antitumor, antioxidant, and proapoptotic effects,
especially a-tocopherol succinate.?>>15¢ Kang et al.»>’ found that a-
tocopherol succinate could reduce immunosuppression by MDSCs
via a NO-dependent mechanism. MDSC-mediated immunosuppres-
sion was reversed in ovarian cancer patients by metformin treatment,
which inhibited adenosine enzymes by activating AMPKa and blocking
the HIF 1« pathway.>8

7 | CONCLUDING REMARKS

MDSCs are a group of highly heterogenetic and immunosuppres-
sive cells that are the result of aberrant myelopoiesis during patho-
logic conditions. As metabolic reprogramming become a key driver
of the immunosuppressive function of MDSCs, we reviewed the dif-
ferent biologic characteristics of MDSCs under various pathophysio-

logic microenvironments (Table 1). Meanwhile, metabolic intervention
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in MDSCs become a novel therapeutic strategy for a wide range of dis-
eases (Table 2). As MDSCs exhibit remarkable phenotypic and func-
tional plasticity, their metabolic characteristics can be potentially clas-
sified into specific signatures.
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