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Abstract

Immunecells suchasT cells,macrophages, dendritic cells, andother immunoregulatory

cells undergo metabolic reprogramming in cancer and inflammation-derived microen-

vironment to meet specific physiologic and functional demands. Myeloid-derived sup-

pressor cells (MDSCs) are a heterogeneous population of immature myeloid cells

that are characterized by immunosuppressive activity, which plays a key role in host

immune homeostasis. In this review, we have discussed the core metabolic pathways,

including glycolysis, lipid and fatty acid biosynthesis, and amino acidmetabolism in the

MDSCs under various pathologic situations. Metabolic reprogramming is a determi-

nant of the phenotype and functions of MDSCs, and is therefore a novel therapeutic

possibility in various diseases.

KEYWORDS

MDSCs, metabolic reprogramming, immune homeostasis, microenvironment

Abbreviations: 2-DG, 2-deoxy-dglucose; A2BR, A2B adenosine receptor; AMP, adenosine 5‘-monophosphate; AMPK, AMP-activated protein kinase; ApoE, apolipoprotein E; Arg, arginase; ATRA,

all-trans retinoic acid; Cat2, cationic amino acid transporter 2; CGD, chronic granulomatous disease; CHOP, CEBP-homologous protein; COX-2, cyclooxygenase-2; CPT, carnitine

palmitoyltransferase; DCs, dendritic cells; ECAR, extra-cellular acidification rates; ERK1/2, extracellular signal-regulated kinase 1/2; FAO, fatty acid β-oxidation; FATP, fatty acid transport
proteins; f-MDSCs, fibrocyticMDSCs; GLUTs, glucose transporters; GR, glucocorticoid receptor; GVHD, graft-versus-host disease; HADHA, 3-hydroxyacyl-coa dehydrogenase; HIFs, hyvpoxia

inducible factors; IMH, immune-mediated hepatic injury; LLC, Lewis lung carcinoma; L-NAME, N(G)-nitro-L-argininemethyl ester; L-NMMA, NG-monomethyl-L-arginine; LSC, leukemia stem cells;

LXR, liver-X receptor; MDSCs, myeloid-derived suppressor cells; MIF, migration inhibitory factor; M-MDSCs, monocyticMDSCs; mTOR, mammalian target of rapamycin; nNOS, neuronal NOS;

NOHA, N-hydroxy-L-arginine; NOX, NADPH oxidase; Nrf2, nuclear factor (erythroid-derived2)-like; OXPHOS, oxidative phosphorylation; PMN-MDSCs, polymorphonuclearMDSCs; PNT,

peroxynitrite; PPARs, peroxisome proliferator-activator receptors; PPP, pentose phosphate pathway; PUFAs, polyunsaturated fatty acids; ROS, reactive oxygen species; SIRT1, Sirtuin 1; SREBPs,

sterol-regulatory element binding proteins; TAM, tumor-associatedmacrophage; TCA, tricarboxylic acid; TDO, tryptophan-2, 3-dioxygenase 2; TGM, transglutaminase; TIPE2, TNF-α-induced
protein 8-like 2; T-MDSCs, tumor-infiltratingMDSCs; TME, tumormicroenvironment; Tregs, regulatory T cells; VEGF, vascular endothelial growth factor; α-KG, α-ketoglutarate

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and nomodifications or adaptations aremade.

©2021 The Authors. Journal of Leukocyte Biology published byWiley Periodicals LLC on behalf of Society for Leukocyte Biology

J Leukoc Biol. 2021;110:257–270. www.jleukbio.org 257

mailto:linyu517@zju.edu.cn
mailto:huanghe@zju.edu.cn
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.jleukbio.org


258 LI ET AL.

1 INTRODUCTION

Cells need adequate energy and nutrients to survive and prolifer-

ate. Immune cells often undergo metabolic reprogramming to adapt

to pathologic microenvironments associated with cancer, inflamma-

tion, and autoimmune diseases and elicit an immune response. Can-

cer cells depend on glycolysis rather than oxidative phosphorylation

(OXPHOS) for energy production, a phenomenon known as the “War-

burg effect.”1–3 The accumulation of lactate in the tumor microen-

vironment (TME) as a result of excessive glycolysis creates an acidic

milieu, which in turn induces metabolic adaptations in the other cells.

For instance, T cells are known to be the most characteristic exam-

ples of metabolic reprogramming. Tumor-infiltrating T cells switch

to glycolysis and glutaminolysis and show a corresponding decrease

in OXPHOS and fatty acid β-oxidation (FAO).4,5 In graft-versus-host

disease (GVHD), a typical representative of inflammatory microen-

vironment, allogeneic effector T cells exhibit elevated glycolysis

mediating tissue injury and oxidative stress,6 whereas the immunosup-

pressive regulatory T cells (Tregs) show a marked increase in FAO and

OXPHOS.7,8

Recent studies show that myeloid immune cells exhibit metabolic

plasticity in different microenvironments. The M1 macrophages pri-

marily rely on glycolysis rather than OXPHOS to achieve phago-

cytic activity and produce proinflammatory cytokines.9–12 In con-

trast, the anti-inflammatory M2 macrophages display high rates of

mitochondrial biogenesis and FAO in response to type 2 cytokines

(IL-4).13 Likewise, dendritic cells (DCs) depend on OXPHOS in the

resting state and on glycolysis when acting as APCs. Neutrophil

progenitors also undergo a metabolic shift toward OXPHOS during

differentiation.14 However, the fully differentiated circulating neu-

trophils harbor very fewmitochondria andmainly depend on glycolysis

for ATP synthesis.15,16 The tumor-associated neutrophils are classified

into antitumor (N1) and protumor effects (N2)with themetabolic pref-

erence of glycolytic and oxidative types, respectively.17

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous

population of immature myeloid cells that rapidly differentiate and

expand in response to pathogenic infections, cancer, inflammation,

trauma, autoimmune disease, and so on.18–21 Murine MDSCs are

characterized by the coexpression of CD11b and Gr1, and are classi-

fied into the CD11b+Ly6G+Ly6Clo granulocytic/polymorphonuclear

(PMN-MDSCs) and CD11b+Ly6GloLy6Chi monocytic (M-MDSCs)

subtypes.22 Human PMN-MDSCs and M-MDSCs are charac-

terized as CD33+CD14−HLA−DRlo plus CD15+ or CD66b+ and

CD33+CD14+ HLA−DRloCD15−, respectively.19,22 The pathologic

microenvironment is complex mixture of cytokines contribut-

ing to MDSC expansion, differentiation, and recruitment such as

G-CSF, GM-CSF, vascular endothelial growth factor (VEGF), proin-

flammatory proteins (S100A8 and S100A9), and inflammatory

mediators (IL-1β and IL-6).19,23 MDSCs mediate immune responses

by expressing enzymes (arginase [Arg], IDO, and NOS), releas-

ing reactive oxygen species (ROS), regulating immunosuppressive

cells such as Tregs and secreting cytokines (e.g., IL-6, IL-10, TGF-β,
etc.).20,24–26

M-MDSCs and PMN-MDSCs share the same morphologic and phe-

notypic features with monocyte and neutrophils separately but have

different biologic signatures.27–30 Studies on global proteome dynam-

ics and post-translational modifications have shown that MDSCs dif-

ferentially expressed a core of kinases, which controlled lineage-

specific (PI3K-AKT and SRC kinases) and cancer-induced (ERK and

PKC kinases) protein,31 which constitute a distinct myeloid popula-

tion characterized by a unique “kinase signature.”32 Therefore,MDSCs

established a remarkable diversity ofmetabolic pathways attributed to

various microenvironments. In this review, we have summarized the

reprogramming of glycolysis, lipid and fatty acid metabolism, amino

acid metabolism and other metabolic pathways in MDSCs adapting to

different microenvironments (Fig. 1 and Table 1).

2 GLUCOSE METABOLISM

The survival and immunosuppressive function of MDSCs depend on

the generation of ATP via 3 integratedmetabolic pathways—glycolysis,

tricarboxylic acid (TCA) cycle, and OXPHOS. Aerobic glycolysis pro-

duces 30–36% of the cellular ATP by converting pyruvate into acetyl-

CoA, which is then fed into the TCA cycle and generates electrons for

mitochondrial OXPHOS. Under hypoxic conditions, pyruvate is usually

converted into lactate and expelled from the cells, a process known

as anaerobic glycolysis that rapidly provides energy during stressful

conditions.33–35

MDSCs constitute an integral part of the TME and support tumor

cell growth.36,37 As TME is hypoxic and nutrient deficient especially

glucose, not only tumor cells and infiltrating T cells but also MDSCs

engage in glycolysis for their energy needs. The acidic TME resulting

from thehigh levels of lactate producedby tumor cells facilitates tumor

invasion and metastasis by increasing MDSCs infiltration and inhibit-

ing the NK cells.38 Studies revealed that the suppressive function of

MDSCs is positively correlated with glycolytic rate in solid tumor-

bearingmicemodels.34 TheGLUT3hi CD205+ PMN-MDSCs,which are

particularly sensitive to glucose deprivation, showed massive accumu-

lation in the spleen and liver of 4T1 tumor-bearing mice.39 Chornoguz

et al.40 hypothesized that MDSCs adopt a higher rate of glycolysis to

resist Fas- and Caspase-mediated apoptosis, which prolong MDSCs

survival in the TME.

The rapid proliferation of tumor cells and infiltration of inflam-

matory cells create a hypoxic TME. Hypoxia inducible factor (HIF)

is a key transcriptional factor that regulates the expression of gly-

colytic enzymes and thus shapes the fate of MDSCs.41–43 Corzo

et al.43 showed that HIF1α drive MDSCs differentiation into a tumor-

associated macrophage (TAM)-like phenotype that suppresses T cells.

Sirtuin 1 (SIRT1) plays an important role in metabolic and immune

pathways by deacetylating downstream targets like HIF1α.44 SIRT1-

deficient MDSCs switch to the proinflammatory M1 lineage with

lower suppressive function and glycolytic activation.45,46 Furthermore,

Noman et al.43,47 reported that HIF1α increases the expression of

membrane-bound PD-L1 on MDSCs and mediates apoptosis of T cells

expressing PD-1, which points to a link between immune checkpoint

activation and metabolic reprogramming of MDSCs. HIF1α also mod-
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substance such as glucose and fatty acid change themetabolic phenotype ofMDSCs, which further bring about functional alteration. Central part:
MDSCs receive extracellular stimuli and transduce signals for metabolic reprogrammings such as changes in glycolysis, fatty acid oxidation, and
amino acidmetabolism. Thesemetabolic alterations manipulate the expansion, differentiation, and function ofMDSCs. Right panel: regulating key
metabolic enzymes to induce nutrition deprivation or release immunosuppressive factors are themain ways ofMDSCs to fulfill their function.
MDSCs can suppress T cells and NK cells and promote Treg cells. Fromwhat are discussed above, it is imperative that metabolic intervention can
be targeted to regulate immune responses

ulates MDSC metabolism in infectious diseases and immunologic dis-

orders. For instance, splenic myeloid cells switch to anaerobic glycoly-

sis in a HIF1α-dependent manner and attain the MDSCs-like immuno-

suppressivephenotypewhenconfrontingextramedullarymyelopoiesis

following Leishmania donovani infection.48,49 Furthermore, Lu et al.50

found that the activation of glucocorticoid receptors (GRs) on MDSCs

down-regulateHIF1α expression andHIF1α-dependent glycolysis, and
promote their immunosuppressive activity in immune-mediated hep-

atic injury (IMH). MDSCs also accumulate in the hypoxic placenta, and

their immunomodulatory activitymaybe crucial formaternal–fetal tol-

erance. Mice with HIF-deficient myeloid cells have increased abortion

rate due to the impaired immunosuppressive activity and high apopto-

sis ofMDSCs in the pregnant uterus.51

Besides HIF, there are other signaling pathways mediating glucose

metabolism as well as glycolysis-dependent immunosuppressive func-

tions inMDSCs. The glycolysis activator AMP-activated protein kinase

(AMPK) is closely associated with HIF1α and bridges CEBPβ signal-

ing and the JAK-STAT pathway. Loss of c-Rel, a myeloid and lymphoid-

specific transcription factor of theNF-B family,52 inMDSCs selectively

turns on the antitumoral gene signature, decreases mitochondrial res-

piration, and enhances glycolysis compared to the wild-type cells.53

Furthermore, inhibition of themammalian target of rapamycin (mTOR)

in 3LL tumor-bearing mice by rapamycin significantly reduced the gly-

colysis rate contributing to enhancing suppressive function of tumor-

infiltratingMDSCs (T-MDSCs).26 Moreover, Chen et al.54 showed that

inhibiting mTOR with rapamycin and mTOR-deficient MDSCs became

a powerful immunemodulatorswith lower glycolytic activity by target-

ing the HIF1a-dependent glycolytic pathway in IMH.

Pentose phosphate pathway (PPP) is a branch of glycolysis that

provides energy and intermediates for biosynthetic pathways.55 PPP

consists of both oxidative and nonoxidative phases. During the oxida-

tive phase, PPP generates cytosolic NADPH through NADPH oxidase

(NOX) family, which is amain source of ROS.15 The nonoxidative phase

contributes to the pool of glycolytic precursors, and thus acts as a

bridge for the central metabolic pathways in MDSCs. Myeloid cells,

especially neutrophils and neutrophilic granulocytes, primarily rely on
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PPP to generate ROS due to their lowmitochondrial load.56 ROS is one

of the metabolites of PPP and essential for the microbicidal activity

of myeloid cells.57,58 NOX subunits are frequently mutated and inac-

tive in hereditary chronic granulomatous disease (CGD) patients with

low-level ROSproduction and release,which increases the risk of lethal

infections.59

The PMN-MDSCs display higher NOX activity in response to envi-

ronmental stress compared with the M-MDSCs, and thus release a

far greater amount of ROS to suppress T cells. A substantial increase

in ROS levels was observed in the MDSCs of head and neck can-

cer patients and 7 tumor models and associated with increased

activity of NOX2 subunits, especially the STAT3-controlled p47phox

and gp91phox.60 In addition, tumor-derived inflammatory cytokines

up-regulate TNF-α-induced protein 8-like 2 (TIPE2) in MDSCs and

promote ROS production through p47phox.61 Furthermore, the PPP

enzymes are overexpressed in nuclear factor erythroid-derived2

(Nrf2)-activated MDSCs, which protects cells from chemical or oxida-

tive stress and inflammation.62

Taken together, glycolysis is a major driver of the immunosuppres-

sive activity in MDSCs, and glycolytic metabolites can be potentially

targeted to control the fate and activities ofMDSCs.

3 LIPID METABOLISM

Lipid metabolism comprises of cytosolic fatty-acid synthesis and FAO

in the mitochondria. Fatty-acid synthesis is ATP-dependent and is

initiated with the carboxylation of acetyl-CoA to malonyl CoA by

acetyl-CoA carboxylase 1.63 Lipids are transported from the cytosol

to the mitochondria by carnitine palmitoyltransferase (CPT), and sub-

sequently oxidized to acetyl-CoA that is then fed into the TCA cycle

and OXPHOS chain.63 FAO is a crucial factor in regulation of MDSCs

function. Polyunsaturated fatty acids (PUFAs) promote expansion of

MDSCs from hematopoietic progenitors in vitro.64 Tumor-bearing

mice fedwith PUFA-enriched diets show greater tumor load due to the

expansion of MDSCs with elevated ROS production, which is driven

by the STAT3/p47phox axis.65 PUFAs can abrogate LPS-induced mat-

uration of DCs and maintain the myeloid progenitors in a MDSC-like

state, thereby suppressing adaptive immunity.66–68 In addition, intra-

venous injection of pegylated liposomes encapsulated with specific

lipids increased the number of MDSC-like cells with enhanced B7-H3

and iNOS expression in the spleen.69

The immunosuppressive ability of MDSCs in the TME of tumor-

bearing mice correlates with the in situ accumulation of lipids.70,71

G-CSF or GM-CSF increase MDSCs function through STAT3 and

STAT5 signaling following enhanced lipid uptake in the TME.72,73

Peroxisome proliferator-activator receptors (PPARs) are activated

upon sensing fatty acids and relay the signals to downstream tran-

scription factors regulating lipid metabolism.74 PPARγ activation and

the metabolism of neutral lipids affect the development, suppres-

sive function and trans-endothelial migration of MDSCs.75 Exogenous

fatty acid uptake is mediated by fatty acid transport proteins (FATP)

and SLC27A. FATP2 overexpression enhanced the function of PMN-

MDSCs in both cancer patients and mouse models by promoting cel-

lular arachidonic acid uptake and subsequent PGE2 synthesis.71 Liver-

X receptors (LXR) are members of the nuclear hormone receptor

family that transcriptionally activate apolipoprotein E (ApoE). Treat-

ing high-metabolic-demand MDSCs with LXR agonists could promote

apoptosis and induce dysfunction in MDSCs by potentially mediat-

ing lipoprotein metabolism.76,77 The PMN-MDSCs infiltrating in solid

tumors show increased number of mitochondria, oxygen consump-

tion rate and expression levels of FAO cycle enzymes such as CPT1

and 3-hydroxyacyl-coa dehydrogenase (HADHA) compared with the

peripheral cells.73,78 Mitochondria is another major source of ROS in

MDSCs.79 PGE2/cyclooxygenase-2 (COX2) signaling is the common

link between FAO and ROS generation, which correlates with the

recruitment and differentiation ofMDSCs in the TME.80,81

Though the exact relationship between FAO and the immunosup-

pressive ability ofMDSCs remains to be clarified, there is considerable

evidence that the reprogramming of lipid metabolism inMDSCs deter-

mines their phenotype and function.

4 AMINO ACIDS METABOLISM

Aminoacids are indispensable for normal cellular function and survival.

TheMDSCswith highermetabolic rates can competewithNK cells and

CTLs for essential amino acids such as arginine, tryptophan, and cys-

teine, which limit their survival and induce apoptosis.82

4.1 Arginine

Arginine metabolism plays an important role in regulating innate and

adaptive immune responses, and determining the immunologic fate of

MDSCs. Breakdown of arginine into L-ornithine and urea byArg1 leads

to arginine starvation, whereas NOS-mediated metabolism generates

citrulline and NO resulting in nitrosative stress.82,83 Arginine depriva-

tion leads to T-cell dysfunction viaCD3ζdown-regulation and cell cycle
blockadeat theG0–G1phase.84 Also, lackingArg results in adecreased

initiation of global protein synthesis.85,86 In addition,MDSCs can steer

DCs toward an IDO1-dependent immunosuppressive phenotype via

the Arg1 pathway.87 Cancer cells trigger Arg1 expression in MDSCs,

which endows these cells with the ability to induce anergy of NK cells

and expansion of natural Treg cells.88

Massive consumption of arginine through Arg1 was one of the ini-

tially reported immunosuppressive pathways in MDSCs. The hypoxic

conditions in the TME markedly increase the expression of Arg1 in

T-MDSCs.87,89 The cationic amino acid transporter 2 (Cat2) is up-

regulated in MDSCs that are recruited to inflamed and tumor sites,

which increases L-arginine uptake.90 Otvos et al.91 found that glioblas-

toma stem cells secrete macrophage migration inhibitory factor (MIF)

that stimulates Arg1 production in MDSCs in a CXCR2-dependent

manner. The AMPK/mTOR/HIF1α pathway drives the immunosup-

pressive function of MDSCs in hypoxic conditions by enhancing the

activity of Arg1.42,50,54,92 The inflammasome triggered by danger sig-
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nals including IL-13, LPS, and ATP during allogeneic hemopoietic stem

cell transplantation can inactivate Arg1 and thus impair the suppres-

sive phenotype ofMDSCs.93

Neuronal NOS (nNOS), eNOS, and iNOS metabolize arginine

into NO, which has direct apoptotic effects. M-MDSCs-derived NO

increases apoptosis of T cells by impairing IL-2R signaling through

Jak-3, STAT5, ERK, and AKT.94,95 High intracellular levels of NO

inhibit protein synthesis, DNA damage response, and cell prolifera-

tion, and enhance mitochondrial ROS production, such as superoxide

and hydrogen peroxide, in MDSCs via NOX subunits (p22phox, p47phox

and gp91phox).96,97 Furthermore, NO can react with superoxide anion

to produce peroxynitrite (PNT) in a NADPH oxidase (gp91phox)-

dependent manner.98 PNT inhibits CD8+ T cell activation and pro-

liferation by promoting impairment of tyrosine phosphorylation and

inducing apoptosis in cancer.99,100 Furthermore, PNT induces nitra-

tion of chemokines such as CCL2, which inhibits the recruitment of

tumor-infiltrating lymphocytes into the inner core of solid tumors.97

MDSCs also induce graft tolerance by producing iNOS that impairs

the function of CD4+ T cells.24,25 In fact, coexpression of Arg1 and

NOS effectively inhibits T cells, and iNOS can only produce PNT

in MDSCs in the presence of Arg1.101 Simultaneous coinhibition of

Arg1 and NOS significantly reduced graft survival in vivo compared

with that of either alone.82,102,103 However, Zhang et al.104 showed

that the up-regulation of Arg1 inhibited NOS activity, which aggra-

vated asthma and vascular dysfunction. Enhancing the function of

MDSCs by a GR agonist increased iNOS levels but suppressed Arg1.50

Furthermore, Arg1 can reciprocally induce NOS uncoupling by sub-

strate depletion, which subsequently leads to less NO but more

superoxide.105,106

4.2 Glutamine

Glutamine is the most abundant nonessential amino acid in the blood,

and the precursor of nucleotide synthesis. During glucose exhaustion

in pathophysiologic conditions, glutamine is converted into glutamate

and thereafter to α-ketoglutarate (α-KG), which becomes a source of

carbon for TCA cycle in theMDSCs. This progress is called anaplerosis,

which enables cells to regenerate TCA cycle intermediates for biosyn-

thesis pathways.107 The differentiation of immature myeloid cells to

MDSCs is closely associated with glutamine synthesis.108 Glutaminol-

ysis provides the intermediates and energy for the development of

MDSCs. Apart from competing with antitumor cells for glutamine,

MDSCs partially oxidize L-glutamine in an AMPK-dependent manner,

which increases immunosuppression and creates favorable conditions

for tumor progression.109 MDSCs were shown to increase glutamine

biosynthesis and transglutaminase (TGM) activity in amurinemodel of

metastatic mammary tumors.110 Consistent with this, c et al.111 found

that TGM expression in MDSCs was correlated to the metastasis and

multi-drug resistance of breast cancer.

4.3 Cysteine

Cysteine is essential for metabolic homeostasis and normal cellular

function. T cells cannot take up cysteine nor convert the intracellular

methionine into cysteine.112 In that event, APCs such as macrophages

or DCs can convert extracellular cystine into cysteine and taken up by

the T cells.113,114 In contrast to APCs, MDSCs can only import cystine

but not export cysteine due to the absence of transporter. As a result,

MDSCs lead to sequester cystine frommacrophagesandDCandcreate

cysteine starvation in the microenvironment.115 Therefore, T cells do

not obtain the cysteine they need for activation and proliferation,116

and the exhaustion of cysteine reduces glutathione levels in T cells

increasing their susceptibility to ROS-mediated oxidative injury.117

4.4 Tryptophan

Tryptophan is required for protein synthesis and other cellular activi-

ties. It is metabolized by IDO and TRP-2, 3-dioxygenase 2 (TDO) into

kynurenine. Tryptophan is particularly essential for the active cycling

of T cells, and its depletion leads to cell cycle arrest at mid-G1 phase

and apoptosis. Inhibition of T cells through IDO-mediated trypto-

phan deprivation is a keymechanism employed by immunosuppressive

myeloid cells.87,118 IDO-expressing MDSCs are increased in tumors

and during acute GVHD, and suppress T cell proliferation through

the rapid and selective degradation of tryptophan.119,120 Yu et al.121

detected IDOhigh MDSCs in theprimary tumors andperipheral bloodof

cancer patients, and found that these cells promotedTregs recruitment

and metastasis in a STAT3-dependent manner. IDO also protects the

allogeneic fetus fromrejection, indicating a significant immunomodula-

tory role.122 Joo et al.119 showed thatMDSCs treatedwith G-CSF sup-

pressed acute GVHD in an IDO-dependent manner in murine models.

Furthermore, Zoso et al.123 have identified and characterized a novel

population of fibrocytic MDSCs (f-MDSCs) in human umbilical cord

blood, which likely originates from the precursor cells in the presence

of multiple cytokines. The f-MDSCs can only exert a strong protolero-

genic function by releasing IDOwhen in direct contactwith activated T

cells.123

5 EXTRACELLULAR ADENOSINE

The A2B adenosine receptor (A2BR) is a regulator of nucleotide

metabolism and intercellular network.124 It is activated by high lev-

els of extracellular adenosine induced by pathologic conditions such

as inflammation, traumatic stress, transplantation, and so on.124–126 In

addition, the adenosine released by tumor cells enhance the immuno-

suppressive ability of intra-tumoralMDSCsviaA2BR.
127 A recent study

showed that stimulation of adenosine receptors can disrupt DCs dif-

ferentiation and turn into a distinct cell population with immuno-

suppressive and proangiogenic phenotypes as the MDSCs in TME.128
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Furthermore, tumor growthwas far slower in the A2BR knockoutmice,

which significantly prolonged their survival mainly due to inactivated

MDSCs.127,129 Li et al.130 showed that TGFβ-mTOR-HIF1α signaling

induced the expression of surface ectonucleotidases (CD39 andCD73)

that hydrolyze extracellular ADP/ATP into adenosine in the MDSCs

of patients with non-small cell lung cancer, thereby inducing the

immunosuppressive and chemo-protective effects of MDSCs. More-

over, MDSCs can secrete adenosine in tumor lesions and exacerbate

immune suppression in an autocrine manner via a CD73-dependent

pathway.131 These mechanisms were also verified in Lewis lung carci-

noma (LLC)124,132 andmelanoma129 models.

6 THERAPEUTIC APPLICATIONS TARGET ON
MDSCS METABOLISM

Therapeutic approaches targeting MDSCs have mainly focused on

regulating their accumulation, mobilization, differentiation, and func-

tion. MDSCs can be eliminated from the TME by chemotherapeutic

drugs like 5-fluorouracil,133 aswell inhibitors ofGM-CSF,G-CSF, VEGF,

IL1β, and so on.134,135 In addition, blocking the chemokine receptor

such as CXCR2 inhibited MDSCs recruitment to the tumor site.136

More recently, the aberrantmetabolic phenotypeofMDSCshas gained

attention as a promising therapeutic target (Table 2).

Reducing glucose uptake by 2-deoxy-dglucose (2-DG) or down-

regulatingGLUT expression induce apoptosis in theMDSCs and inhibit

tumor progression.39 The ketogenic diet can lower lactate production

in glycolytic tumors, resulting in fewerMDSCs and stronger antitumor

immune response.38 In addition, the proglycolytic transcription factor

c-Rel is an established therapeutic target in cancer.53 Pharmacologic

modulation of GR regulates HIF1α and HIF1α-dependent glycolysis in
MDSCs and promotes immunosuppression in autoimmune hepatitis.50

In addition, activation of HIF1α-dependent pathways in MDSCs is cru-

cial for maintaining pregnancy.51 PD-L1 blockade along with inhibi-

tion of HIF1α can abrogate the suppressive activity of MDSCs.43,47

SIRT1- and HIF1α-associated signals are significantly correlated with

the activity of mTOR. However, as mTOR plays distinct roles in dif-

ferent MDSC subsets and diseases, the therapeutic application of

rapamycin is ambiguous.26,54,89,137 Nrf2 activators can decrease PPP-

driven ROS production in MDSCs, thereby enhancing T cell function

and inhibiting tumor growth.138

MDSCs treated with the PUFA linoleic acid exhibit a stronger

inhibitory effect than the saturated fatty acid palmitic acid.70 Phar-

maceutic blockade of FATP2 by lipofermata reduced arachidonic acid

uptake and PGE2 expression in MDSCs.139 Genetic ablation of the

fatty acid translocase CD36 alsomitigated oxidativemetabolism in the

T-MDSCs through STAT3 and STAT5 signaling.140 The FAO inhibitor

etomoxir markedly decreased the ability of MDSCs to block T cells

proliferation.73,141 LXR/ApoE activation and the ensuing lipoprotein

metabolism further reduces the abundance and immunosuppressive

function of MDSCs, resulting in tumor regression.76,77 Activation of

mTORC1 facilitates the production of sterol-regulatory element bind-

ing proteins (SREBPs), which stimulates the expression of sterol and

fatty acid synthase.92 mTORC2 regulates lipid metabolism in breast

tumors by restricting the activity of ATP citrate lyase, which can be

targeted to attenuate the immunosuppressive capacity of MDSCs.142

The production ofmitochondrial ROS inMDSCs is dependent onCOX2

activity, and blocking TIPE2 orCOX2 abrogated the inhibitory function

of MDSCs by reducing ROS generation.61,143,144 Moreover, silencing

the PGE2/COX2 pathway down-regulated chemokine CCL2 and inhib-

itedMDSCs accumulation in TME.81,145

MDSCs affects other immune cells mainly by competing for essen-

tial amino acids. Arginine catabolism plays a key regulatory role in

immune recognition. CAT2 blockade and the subsequent decrease in

arginine absorption can reverse the immunosuppressive activity of

MDSCs.90 The Arg1 inhibitor N-hydroxy-L-arginine (NOHA) reversed

T cell dysfunction both in vitro and in tumor-bearing mice, and

led to an anti-tumor response.146 Likewise, the NOS inhibitor NG-

monomethyl-L-arginine (L-NMMA) and N (G)-nitro-L-arginine methyl

ester (L-NAME) can increase the number of CD8+ T cells and NK

cells while decreasing Treg and MDSCs accumulation.95,147 Further-

more, down-regulating mTOR in CD11b+Gr-1+ MDSCs induced iNOS

expression and increasedNO production, whichmediated a protective

effect in IMH.54 Direct and indirect inhibition of CEBPβ or STAT3 also

reduces iNOS and Arg1 levels in T-MDSCs.148,149

Glutamine is essential for the continuedgrowthandsurvival of some

cancer cell lines, and limiting its levels through competitive utilization

is a promising anticancer therapeutic strategy.150 All-trans retinoic

acids (ATRAs) up-regulate glutathione synthase in the MDSCs though

ERK1/2 activation. MDSCs derived from cancer patients and tumor-

bearing mice rapidly differentiate into DCs/macrophages in the pres-

ence of ATRAs.151

Along with the above-mentioned major metabolic pathways, there

are othermetabolic routes affect the biochemical processes inMDSCs.

Vitamin and its analogs affect the differentiation and development

of MDSCs from primitive myeloid cells.152 Vitamin D3 may have a

prodifferentiation effect on myeloid cells, which is similar to that seen

with ATRA-treated cells,152–154 whereas vitamin E exerts its func-

tions by neutralizing MDSC-derived NO.155,156 All 8 isomers of vita-

min E exhibit strong antitumor, antioxidant, and proapoptotic effects,

especially a-tocopherol succinate.155,156 Kang et al.157 found that α-
tocopherol succinate could reduce immunosuppression by MDSCs

via a NO-dependent mechanism. MDSC-mediated immunosuppres-

sion was reversed in ovarian cancer patients by metformin treatment,

which inhibited adenosine enzymes by activating AMPKα and blocking
the HIF1α pathway.158

7 CONCLUDING REMARKS

MDSCs are a group of highly heterogenetic and immunosuppres-

sive cells that are the result of aberrant myelopoiesis during patho-

logic conditions. As metabolic reprogramming become a key driver

of the immunosuppressive function of MDSCs, we reviewed the dif-

ferent biologic characteristics of MDSCs under various pathophysio-

logic microenvironments (Table 1). Meanwhile, metabolic intervention
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in MDSCs become a novel therapeutic strategy for a wide range of dis-

eases (Table 2). As MDSCs exhibit remarkable phenotypic and func-

tional plasticity, their metabolic characteristics can be potentially clas-

sified into specific signatures.
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