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Abstract: Background: Antinuclear antibody pattern recognition is vital for autoimmune disease
diagnosis but labor-intensive for manual interpretation. To develop an automated pattern recognition
system, we established machine learning models based on the International Consensus on Antinuclear
Antibody Patterns (ICAP) at a competent level, mixed patterns recognition, and evaluated their
consistency with human reading. Methods: 51,694 human epithelial cells (HEp-2) cell images with
patterns assigned by experienced medical technologists collected in a medical center were used to
train six machine learning algorithms and were compared by their performance. Next, we choose
the best performing model to test the consistency with five experienced readers and two beginners.
Results: The mean F1 score in each classification of the best performing model was 0.86 evaluated by
Testing Data 1. For the inter-observer agreement test on Testing Data 2, the average agreement was
0.849 (k) among five experienced readers, 0.844 between the best performing model and experienced
readers, 0.528 between experienced readers and beginners. The results indicate that the proposed
model outperformed beginners and achieved an excellent agreement with experienced readers.
Conclusions: This study demonstrated that the developed model could reach an excellent agreement
with experienced human readers using machine learning methods.

Keywords: Hep-2 cell; ICAP; artificial intelligence; antinuclear antibody; machine learning

1. Introduction

Screening of autoantibodies using the indirect immunofluorescence (IIF) assay on
human epithelial cells (HEp-2) is an essential diagnostic tool and is the standard golden
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method for systemic autoimmune rheumatic diseases (SARD). The HEp-2 IIF pattern
reveals clinically relevant information giving direction to follow-up testing for antigen-
specificity [1]. The consensus nomenclature and representative 29 patterns are established
and available online at the International Consensus on ANA Patterns (ICAP) website:
www.ANApatterns.org [2]. The patterns were divided into competent level versus expert
level, with the intention that ANA readers should be trained to recognize all competent
level patterns minimally. Clinicians should be aware of the clinical suspicion of individual
patients and therefore should order second-level test by chemiluminescence, enzyme-linked
immunosorbent assay (ELISA) or immunoblot according to Hep-2 IIF patterns. However,
the IIF method has some unfavorable features, such as labor-intensive, time-consuming for
visual evaluation, inter-observer variability [3], heavy dependence on the experience and
expertise of the technologist, physician, or immunologist conducting the test.

Currently, there are different commercial systems for automated ANA IIF testing
aimed at reducing hands-on labor time and good concordance with technologist ANA
IIF pattern recognition has been achieved [4]. Nevertheless, a number of weaknesses still
exist. First, the automated HEp-2 cell classification used in previous studies usually has
only six to eight classes that do not meet the ICAP’s competent-level standard. The ICAP
competent-level reporting consists of 11 different patterns, namely, nuclear homogeneous
(AC-1), nuclear dense fine speckled (AC-2), centromere (AC-3), nuclear speckled (AC-4, 5),
discrete nuclear dots (AC-6, 7), nuclear nucleolar (AC-8, 9, 10), cytoplasmic fibrillar (AC-15,
16, 17), cytoplasmic speckled (AC-18, 19, 20), cytoplasmic reticular/mitochondrion-like
(AMA) (AC-21), cytoplasmic Golgi (AC-22), cytoplasmic rods and rings (AC-23). Second,
previous studies usually only analyzed the features of interphase cells. Nevertheless,
according to the ICAP standard, scientists must identify the features of both interphase
cells and mitotic metaphase cells to determine the final patterns comprehensively. Third,
most existing automated interpretation instruments have not been able to recognize mixed
patterns accurately. However, in clinical daily practice, mixed patterns are prevalent in
the ANA IIF test. For the above reasons, most laboratories still rely heavily on manual
interpretation under fluorescent microscopes [5].

1.1. Related Work

Since 2002 [6], several ongoing efforts have attempted to develop a computer-assisted
classification of HEp-2 IIF patterns. Different methods have been proposed, especially
during the HEp-2 cell classification competitions [7–9]. Recently, deep convolutional
neural networks (CNNs) have demonstrated outstanding performance for generic visual
recognition tasks. Donato et al. [10,11] suggested to use nine pre-trained CNN models for
feature extraction and classification for six different HEp-2 image patterns. The proposed
methods have been applied to classification on benchmark datasets for HEp-2 cells. In the
literature review, two main tasks were conducted: cell-level HEp-2 image classification
(CL-HEP2IC) and specimen-level HEp-2 image classification (SL-HEP2IC). The themes
of CL-HEP2IC and SL-HEP2IC were first introduced in the International Conference
on Pattern Recognition ICPR 2013 and ICPR 2014 IIF image classification competitions,
respectively, and then also used in ICPR 2016 competition. At that moment, the developed
works were based on the public dataset. The public dataset mentioned in these papers
mainly include the following four: ICPR 2012 dataset, SNPHEp-2 dataset, 13A dataset, and
AIDA dataset.

The ICPR 2012 dataset, also known as MIVIA HEp-2 images dataset [12], has 1455
individual cell images annotated by immunology experts at cell level from specimen
images. Each cell image is classified into one of the following six classes: homogeneous,
coarse speckled, fine speckled, nucleolar, centromere, and cytoplasmic.

The SNPHEp-2 dataset is another public dataset used in previous works, which has
1884 individual monochrome cell images [13]. Each cell image is classified into one of
the following five classes: homogeneous, coarse speckled, fine speckled, nucleolar, and

www.ANApatterns.org
www.ANApatterns.org


Diagnostics 2021, 11, 642 3 of 17

centromere. Compared with the ICPR 2012 dataset, the SNPHEp-2 dataset is less used in
the existing HEP2IC method.

The I3A dataset is one of the commonly used datasets in current literature. There
exist two versions of this dataset, namely, Task-1 and Task-2 datasets. Task-1 is pri-
marily designed for CL-HEP2IC and Task-2 for SL-HEP2IC. The Task-1 training set has
13,596 monochrome single-cell images extracted from 83 specimens using the bounding
box annotations by experts. The images are divided into one of the following six classes:
homogeneous, speckled, nucleolar, centromere, nuclear membrane, and Golgi. The Task-
2 dataset has a total of 1008 images, and they are taken from four different locations
of 252 specimen samples. Each specimen image belongs to one of the following seven
classes: homogeneous, speckled, nucleolar, centromere, Golgi, nuclear membrane, and
mitotic spindle.

The autoimmunity: diagnosis assisted by computer (AIDA) dataset [14] is a large-scale
HEp-2 image dataset proposed as part of the AIDA project. The number of images in this
dataset reached 14,393 with a variety of more-than-twenty staining patterns reported by
human experts, but it is only available to AIDA project partners. Unlike the datasets men-
tioned above, it also contains a variety of single and mixed pattern images. The distribution
of IIF patterns in the AIDA database were as followed: homogenous + nucleolar (4%),
speckled + nuclear membranous (2%), homogenous (19%), fine speckled (15%), coarse
speckled (11%), homogenous + speckled (8%), nucleolar (6%), speckled + nucleolar (5%),
centromere (4%), others (26%). The AIDA database’s public part consists of 2080 images,
including 1498 positive fluorescence intensity images and 582 negative images. Among the
images with positive fluorescence, those relating to patterns belonging to the six classifica-
tions are a total of 220 single pattern images (21 homogenous, 42 speckled, 26 centromere,
62 nucleolar, 46 nuclear dots, 23 nuclear membrane) and used as testing images.

For the CL-HEP2IC, in 2018, Lei et al. [15] proposed an effective training strategy by
cross-modal transfer learning to successfully train deep networks with small datasets and
achieves the best mean class accuracy (MCA) of 97.14% by ResNet-50-3DT on ICPR2012
dataset and 98.42% by ResNet-50-3DCT on 13A-Task1 dataset. In 2019, Rodrigues et al. [8]
compared five CNNs architectures, LeNet-5, AlexNet, Inception-V3, VGG-16, and ResNet-
50, to classify HEp-2 cells on 13A-Task 1 dataset. The best MCA result was 98.28% by
training the Inception-V3 model from scratch, without preprocessing and using data
augmentation. Another recent work proposed by Vununu et al. [9] uses a four-stream CNN
to learn local intensity and geometric information to deal with the heterogeneity problem
occurring in HEp-2 cells. The proposed CNN of their work in experiment 6 achieved
the MCA 98.89% on 13A-Task 1 dataset. However, according to the well-established
ICAP standards, patterns discrimination needs to be comprehensively interpreted by
interphase cells and metaphase cells in a specimen image but not simply based on a single
interphase cell.

For the SL-HEP2IC, in 2019, Cascio et al. [16] present an automatic HEp-2 specimen
system based on a CNN method consists of a module for features extraction based on
a pre-trained AlexNet network and a classification phase for the cell-pattern association
using six support vector machines and a k-nearest neighbor classifier. The classification
at the image-level was obtained by analyzing the pattern prevalence at cell-level. The
performance analysis showed a MCA equal to 93.75% on the 13A-Task 2 dataset. A more
recent work by Xie et al. [17] proposed a novel deeply supervised full convolutional
network (DSFCN), which integrates the dense deconvolution layer (DDL) and hierarchical
supervision structure (HS) for robust segmentation of different HEp-2 cell images and
pattern classification. The performance evaluated by MCA achieved 95.40% on the 13A-
Task 2 dataset, which outperforms other state-of-the-art methods.

1.2. Our Contributions

Some critical issues limited the above works applying to current clinical HEp-2 cell
pattern recognition problems. First, the above dataset training and testing images only
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contain single pattern images but not mixed pattern images that are very frequent in daily
work with autoimmune diseases, especially systemic lupus erythematosus. In other words,
clinically, we face a HEp-2 cell multi-label classification problem instead of the multiclass
classification problem seen in previous works of literature. Second, only 5–7 pattern
classifications were available in previous works, which was far unmet for the standards of
competent Level 11 pattern classifications.

To solve the above-mentioned clinical problems, in this work, we spent five years
establishing our dataset. These positive fluorescence specimen images contain at least
one pattern with various mixed pattern images (up to four patterns can overlap in an
image). Experienced and certified medical technologists had labeled every image by ICAP
standard with multi-label classification up to 11 patter classes: nuclear homogeneous
(AC-1), nuclear dense fine speckled (AC-2), centromere (AC-3), nuclear speckled (AC-4, 5),
discrete nuclear dots (AC-6,7), nuclear nucleolar (AC-8, 9, 10), cytoplasmic fibrillar (AC-15,
16, 17), cytoplasmic speckled (AC-18, 19, 20), cytoplasmic AMA (AC-21), cytoplasmic
Golgi (AC-22), cytoplasmic rods and rings (AC-23). We developed machine-assisted
interpretation systems using this large routine ANA dataset to develop different models
by machine learning methods. The best performing model was then evaluated by inter-
observer agreement (IOA) tests among experienced readers and beginners. In this paper,
a publicly available pre-trained CNN model applying to a large clinically useful HEp-2
dataset with fine-tuning can achieve exceptionally high agreement of experienced human
readers has been presented, even without a novel image-processing technique used. In
particular, unlike almost all works presented on this topic, it meets the standards of ICAP
competent level 11 classifications and mixed pattern recognition with high potential for
immunologic laboratory automated diagnostic support.

2. Materials and Methods
2.1. The ANA Test

We used the ANA IIF image dataset collected from December 2014 to March 2020 at
the allergy, immunology and rheumatology division of the clinical medicine laboratory
and pathological diagnosis center of Taichung Veterans General Hospital (TCVGH) in
Taiwan. Clinicians requested these ANA tests in daily routine work using the automated
IIF NOVA View instrument and NOVA Lite HEp-2 ANA kit (Inova Diagnostics, Inc., San
Diego, CA, USA). Some patients had more than one ANA test at different time points.
The NOVA View instrument consists of an automated and fully motorized IIF microscope
and dual-band 40,6-diamidino-2-phenylin-dole (DAPI)/fluorescein isothiocyanate (FITC)
filters, a LED light source, and a Kappa DX4 digital camera. The LED UV light source is a
CoolLed PreciseExcite (CoolLED, Hampshire, UK) with excitation wavelengths of 400 nm
(DAPI) and 490 nm (FITC). The NOVA View software uses DAPI fluorescence for localizing
the HEp-2 cells and focusing. The image analysis is then performed based on the FITC
signal. For each well in a slide, at least three images are acquired. Each cell image must
contain at least 25 interphase and two mitotic (metaphase) cells in total. To meet the ICAP
classification standard in our laboratory, our medical technologists manually read every
sample under a fluorescent microscope.

2.2. Reporting of ANA Test Results

The NOVA View system has reached a high agreement with manual microscopic
reading at IIF 1: 80 screening dilution [18], so we used a dilution of 1:80 to determine
the ANA patterns. In our laboratory, five experienced and certified medical technologists
(considered experienced readers in this study) who had 3–12 years (mean: 8 years) of
experience in ANA IIF reading were responsible for ANA pattern reporting. To ensure that
high quality standards are maintained, our laboratory is evaluated using the College of
American Pathologists (CAP) competence test and has been certified every year. To reach
an international consensus, we adopted the classification standards expert-level reporting
and interpretation principles officially published by the ICAP [2]. In mixed patterns, all
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nuclear patterns are reported first, followed by cytoplasmic and then mitotic patterns [19].
At least two medical technologists must have a thorough discussion for uncertain samples
before issuing a final report. Clinicians would perform a second-level test by ELISA or
immunoblot guided by the patient’s symptoms/physical examinations and the IIF HEp-2
pattern reports accordingly to confirm the autoantibodies. In this study, in order to allow
our model to learn competent-level reporting, we attributed the minor pattern subgroups of
the expert level in our raw pattern reports to the eleven main groups of the competent level.
Representative images of ICAP competent-level can be viewed in the official publication [2]
or on the official ICAP website. Available online: https://www.ANApatterns.org (accessed
on 25 February 2021). Figure 1 shows representative classes of competent-level images and
Figure 2 shows examples of mixed patterns images from our dataset.

Figure 1. Representative images (INOVA, San Diego, USA) of human epithelial (HEp-2) cell patterns according to Inter-
national Consensus on Antinuclear Antibody Patterns (ICAP) classification. (A) negative; (B) nuclear homogenous; (C)
nuclear dense fine speckled; (D) nuclear centromere; (E1) nuclear fine speckled; (E2) nuclear large/coarse speckled; (F1)
multiple nuclear dots; (F2) few nuclear dots; (G1) homogenous nucleolar; (G2) clumpy nucleolar; (G3) punctate nucleolar;
(H1) fibrillar linear; (H2) fibrillar filamentous; (H3) fibrillar segmental; (I1) cytoplasmic discrete dots; (I2) cytoplasmic dense
fine speckled; (I3) cytoplasmic fine speckled; (J) cytoplasmic reticular/mitochondrion-like (AMA); (K) cytoplasmic Golgi;
(L) cytoplasmic rods and rings.

https://www.ANApatterns.org
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Figure 2. Examples of immunofluorescence mixed patterns on HEp-2 ANA images (INOVA, San Diego, CA, USA). (A)
mixed centromere (arrowhead)and nuclear fine speckled patterns (arrow); (B) mixed centromere (arrowhead), nuclear
fine speckled (arrow) and cytoplasmic AMA patterns (asterisk); (C) mixed nuclear homogenous (arrowhead) and nuclear
large/coarse speckled patterns (arrow); (D) mixed centromere (arrowhead)and cytoplasmic speckled patterns (arrow);
(E) mixed nuclear fine speckled (arrow) and cytoplasmic speckled patterns (arrowhead); (F) mixed nuclear fine speckled
(arrow), centromere (arrowhead)and cytoplasmic rods and rings (black arrow) patterns.

2.3. Dataset Description and Imbalanced Data Correction

From 1 December 2014 to 31 December 2019, 90,109 samples with ANA IIF images
were stored in our NOVA View machine. The following images were excluded: 1. Lack of
formal report; 2. periodical pre-run testing samples; 3. severe abnormally exposed images;
4. performed before 1 June 2018 (our laboratory did not formally classify nuclear dense fine
speckled pattern before 22 June 2017). Of the remaining 34,756 samples, 18,380 samples
were categorized as negative (AC-0), which was defined as negative fluorescent staining
of nuclear, cytoplasm, and mitotic cells. A total of 16.376 samples (from 11,373 patients)
were categorized as positive IIF pattern(s) samples. Each sample generated 3–8 images
by NOVA View instrument and these sample images were used for machine learning.
Defective images were deleted from the dataset.

For data imbalance, we collected certain patients’ serum with positive cytoplasmic
fibrillar, cytoplasmic AMA, or cytoplasmic Golgi patterns for more ANA tests. Finally,
we obtained 121 images with positive cytoplasmic fibrillar pattern, 74 with cytoplasmic
AMA, and 406 with Golgi pattern. Due to insufficient images and no available serum,
recognizing “cytoplasmic rods and rings” pattern faces the data engineering difficulties
of data imbalance. In our experiments, no acceptable trained model could be conducted
based on fewer data. Finally, a brightness data augmentation technique is used to generate
624 images from 54 samples (156 images) [20,21]. All pixels are augmented by 0.70, 0.85,
1.15, 1.30. After convolution filtering, the key features are extracted to train a feasible
model which significantly improves the performance of cytoplasmic rods and rings pattern
classification. All of the above images were used as training data to correct the problem of
data imbalance.
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2.4. Follow-up Testing for Antigen-Specificity of Different Patterns

To verify our dataset’s clinical relevance, we analyzed the number of different pat-
terns of relevant follow-up tests and the positive rate. The follow-up testing for antigen-
specificity of different patterns were illustrated in Table 1 [1,2,22,23]. The decision to
conduct follow-up testing depended on the clinicians’ judgment. We did not analyze rele-
vant follow-up antibody tests for cytoplasmic fibrillar, cytoplasmic Golgi, and cytoplasmic
rods and rings patterns as commercial kits were not available in our laboratory.

Table 1. ICAP classification distribution, image number for machine learning, analysis of relevant follow-up test in the
study dataset.

ICAP Competent
Level Classification

Patient Number
n = 25,798 a (%)

Sample
Number

n = 34,756(%)

Image Number for Machine Learning b Relevant Follow-Up
Test Available in Our

Laboratory

Patients Receiving
Follow-Up Test

c/Positive Number (%)Training Validation Testing d

Nuclear
homogeneous AC-1 6293 (24.3) 8663 (24.9) 21,596 5398 3106

anti-DsDNA e 2160/470 (21.8)
anti-Histone e 115/30 (26.1)

Nuclear dense fine
speckled AC-2 247 (1.0) 395 (1.1) 981 244 95 anti-DFS f,g 31/29 (93.5)

Centromere AC-3 545 (2.1) 903 (2.6) 2239 561 307 anti-CENP f 302/291 (96.4)

Nuclear speckled
AC-4, 5 10,632 (41.0) 14,992 (43.1) 37,577 9396 5813

AC4: anti-SSA/SSB f 5379/1542 (28.7)
AC4: anti-Mi2, TIF,
NXP2, SAE1, Ku g 1035/272 (26.3)

AC5: anti-Sm/RNP f 244/144 (59.0)
Discrete nuclear dots

AC-6, 7 446 (1.7) 752 (2.2) 1882 470 213 anti-NXP2 g 25/2 (8)

Nuclear nucleolar
AC-8, 9, 10 782 (3.0) 1016 (2.9) 2524 630 326 anti-PM-Scl 75/100 g or

Scl-70 f 187/49 (26.2)

Cytoplasmic fibrillar
AC-15, 16, 17 107 (0.4) 126 (0.4) 410 103 28 none none

Cytoplasmic speckled
AC-18, 19, 20 2005 (7.7) 2515 (7.2) 6380 1595 1122

anti-PL-7, PL-12, Jo-1,
SRP, EJ, OJ, MDA5 g 152/ 74 (48.7)

anti-Jo-1 f 90/13 (14.4)
anti-Ribosomal P e 26/10 (38.5)

Cytoplasmic AMA
AC-21

264 (1.0) 375 (1.1) 980 245 105
anti-Mitochondria h 88/52 (59.1)

anti-Mitochondria-M2 e 10/9 (90)
Cytoplasmic Golgi

AC-22 37 (0.1) 55 (0.2) 463 116 15 none none

Cytoplasmic rods and
rings AC-23 44 (0.2) 54 (0.2) 635 159 18 none none

Positive IIF pattern(s) 11,373 (44.1) 16,376 (47.1)
AC-0 15,299 (59.3) 18,380 (52.9)

ICAP, International Consensus on Antinuclear Antibody Patterns; IIF, indirect immunofluorescence. a A few patients have more than one
antinuclear antibody (ANA) test at different timings with variable pattern reports. b Each sample generated 3–8 images by NOVA View
instrument. c Determined by clinical decision. d From Testing Data 1. e Provided by enzyme-linked immunosorbent assay. f Provided by
fluorescence enzyme immunoassay. g Provided by immunoblot. h Provided by IIF.

2.5. Data Pre-Processing

For HEp-2 IIF image information only existing in the green channel, we excluded the
red and blue channels to avoid noise. Furthermore, to better extract the features and obtain
a robust performance, an appropriate intensity contrast enhancement approach for image
pre-processing was conducted [24]:

Ienhance =
I − Imin

Imax − Imin
(1)

where I is the input image, and Imin and Imax are the minima and maximum intensity
values, respectively, of the input image. Using the image pixel-adjusted approach, the
intensity value would normalize to equalize the scale between 0 and 1.

2.6. Deep Convolutional Neural Network

In this study, we selected six state-of-the-art CNN architectures for our classification
issue, including VGG19, ResNet50V2, DenseNet121, MobileNetV2, Xception, and Incep-
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tionResNetV2 [25–29]. In addition, we transferred the weights of convolutional layers from
those pre-trained models on the ImageNet dataset via the transfer learning technique and
identified the one with the best performance as the proposed approach with the highest F1
score and kappa value.

We adopt six CNN architectures that are pre-trained for the large image classification
tasks (ImageNet) and then fine-tune its parameters towards our ANA patterns classification
problem. The initial weights of the pre-trained model were transferred for the new object
classes. During the training phase, we try to optimize the learning model by setting
necessary hyperparameters, including learning rate, epoch, batch_size. (With a learning
rate of {1 × 10−3, 1 × 10−4, 1 × 10−5, 1 × 10−6}, batch size of {16, 24, 30}, and dropout rate
of {0.4, 0.5, 0.55, 0.6}). All training processes will be stopped when meeting early stopping
rules in five continuous epochs [30].

2.7. Training Protocol

According to the rules of ICAP, interpretation ANA patterns must consider both the
interphase cell and the metaphase cell. Therefore, the input images in our study were based
on specimen-level HEp-2 images rather than cell-level HEp-2 images.

Hestness et al. [31] have shared the traditional leave-one-specimen-out (LOSO) proce-
dures and suggested train-validation split ratio of 80:20. In our experiments, all images
were randomly chosen and partitioned into training and validation datasets by 80:20 ratio
and resized to 299 × 299 pixels. There are 16,772 samples consists of 51,694 images in
total, from year 2018 to 2019 for training and validation. We used 1895 samples consists of
6195 images as Testing Data 1 from January 2020 to March 2020 for models testing. The
overall flowchart is presented in Figure 3A. The networks were trained for 30 epochs and a
mini-batch size of 30 on a Graphic Processing Unit (GPU) (NVIDIA TITAN V, 12GB RAM).
To avoid overfitting, we stopped the training phase if the loss of validation dataset failed to
improve for five epochs. These models followed the settings of parameter: Adam optimizer
with an initial learning rate of 0.0001, a binary cross entropy loss function, ReLU activation
function, and sigmoid activation function for the output layer. Data augmentation schemes
comprising random horizontal/vertical flips were performed to increase the data size.
Brightness data augmentation was particularly applied to “cytoplasmic rods and rings”
pattern images for extreme insufficient original image numbers. The details of brightness
data augmentation could be seen in Section 2.3.
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2.8. From Image Prediction to Sample Prediction

Each ANA sample yielded at least three images to ensure that there were sufficient
metaphase cells identified by the NOVA view machine. As the ultimate aim was to apply
supervised machine learning in clinical practice, we adopted a modified voting approach to
comprehensively evaluate the predictive results of all images in each sample. For each HEp-
2 cell image, a probability distribution was generated by the pre-trained model across the
eleven possible classes, and classes of probability ≥0.5 were selected as image prediction.
Among each sample’s images, classes supported by at least two images were adopted as
the final sample prediction. Because the typical metaphase cell is the most crucial cell
for identifying nuclear homogenous patterns, it may only appear in one of the images in
each sample, thus, the final prediction of a nuclear homogenous pattern just needs one
supporting image. Furthermore, as nuclear dense fine speckled pattern cannot coexist with
either nuclear homogeneous or nuclear speckled patterns, we regarded nuclear dense fine
speckled pattern as a priority and ignored the other predicted patterns if they coexisted.

2.9. Evaluation Protocol

We developed six pre-trained models and evaluated their performance by Testing
Data 1, which consists of 1985 samples with a total of 6195 images (Figure 3A) collected
from January 2020 to March 2020. Then we randomly selected 175 samples with a total
of 544 images from January 2020 to March 2020 as Testing Data 2 for the inter-observer
agreement test among five experienced readers, two beginners, and the best performance
proposed model.

In this study, we were interested in discriminating within eleven classes following
the standards of ICAP competent-level reporting. It may contain several patterns in the
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meantime, so it is also called ’multi-label’ in the machine learning field [32,33] and in
the presence of class imbalance. Therefore, to measure and evaluate the classification
performance of imbalanced data, we propose adopting the metrics in terms of precision,
recall, and F1 score. For the results of the binary classifier of each ANA pattern, the
confusion matrix contains the numbers of true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN). The accuracy (a ratio of true positive + true
negative to the total testing samples), precision (the proportion of positive predictions
that are actually positive labels), recall (the proportion of positive labels that are correctly
classified, also known as sensitivity), and F1 score (the weighted average performance of
precision and recall) are defined as followed:

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1 =
2 × Precision × Recall

Precision + Recall
(5)

The inter-observer agreement, determined by Cohen’s kappa, can be expressed as
follows [34]

Kappa =
po − pc

1 − pc
(6)

where Po and Pc are the observed agreement and the expected agreement, respectively.
The performance of classification based on the kappa coefficient can be classified

as: poor agreement (<0), slight agreement (0–0.2), fair agreement (0.21–0.40), moderate
agreement (0.41–0.60), good agreement (0.61–0.80), and very good agreement (0.81–1) [35]

3. Results
3.1. Pattern Classification Distribution

A total of 16,376 samples (from 11,373 patients) with images stored in the NOVA
View instrument were categorized as positive IIF pattern(s) samples (Table 1). The sam-
ples of pattern classification distribution were as follows: 8663 (24.9%) homogenous,
395 (1.1%) nuclear dense fine speckled, 903 (2.6%) centromere, 14,992 (43.1%) nuclear speck-
led, 752 (2.2%) discrete nuclear dots, 1016 (2.9%) nuclear nucleolar, 126 (0.4%) cytoplasmic
fibrillar, 2515 (7.2%) cytoplasmic speckled, 375 (1.1%) cytoplasmic AMA, 55 (0.2%) cyto-
plasmic Golgi, 54 (0.2%) cytoplasmic rods and rings. Moreover, we obtained an additional
121 cytoplasmic fibrillar, 74 cytoplasmic AMA, 406 cytoplasmic Golgi, and 624 cytoplasmic
rods and rings images using the imbalanced data correction method described above.

3.2. Model Training and Comparison of Different Models on Testing Data 1

The average running time to analyze an ANA image is about 0.57 s on a GPU (NVIDIA
TITAN V, 12GB RAM). The training time for our six transfer learning CNN models, includ-
ing VGG19, ResNet50V2, DenseNet121, MobileNetV2, Xception, and InceptionResNetV2,
takes about 85 h, 59 h, 39 h, 85 h, 46 h, and 72 h, respectively.

Table 2 shows the comparison among six state-of-the-art pre-trained models on Testing
Data 1 which consists 1985 samples. The InceptionResNetV2 model achieved the highest
F1 score (0.86) and the highest kappa (0.82). Therefore, we adopted the InceptionResNetV2
architecture via transfer learning technique as the proposed model in our study. Figure 3B
shows the overall framework of ANA mixed patterns classification using the Inception-
ResNetV2 models. The details of the InceptionResNetV2 model performance for each
classification on Testing Data 1 are presented by the confusion matrix in Figure 4.
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Table 2. Comparison of performance on sample prediction among six pre-trained models on Testing
Data 1 a.

Models F1 Score Kappa

InceptionResNetV2 0.86 0.82
MobileNetV2 0.81 0.76

Xception 0.78 0.74
VGG19 0.78 0.73

ResNet50V2 0.73 0.68
DenseNet121 0.68 0.63

a Consists of 1985 samples.

Figure 4. (A–K) Confusion matrices of the best performance proposed model (InceptionResNetV2) on sample prediction on
Testing Data 1 a. a Consists of 1985 samples with 6195 images b 0: negative, c 1: positive.

3.3. Performance of the Best Performance Proposed Model on Testing Data 1

Table 3 shows the performance obtained from the proposed model for the sample
prediction on Testing Data 1, which consists of 1985 samples. The accuracy ranged from 0.91
to 1.00 (mean: 0.98). However, accuracy is potentially unhelpful for this asymmetric real-
world clinical dataset in this work. We use F1 score to evaluate the models’ performance as
a figure of merit on the testing data. This metric offers a more conservative view of model
performance relative to accuracy when the class distribution is unequal. The precision,
recall, and F1 score ranged from 0.73 to 1.00 (mean: 0.93), 0.64 to 1.00 (mean: 0.81), and
0.72 to 1.00 (mean: 0.86), respectively, varying across all of the competent-level pattern
classifications. The top three patterns with highest F1 score were “cytoplasmic rods and
rings” (1.00), nuclear speckled (0.99) and centromere (0.93). A comparison of consistency
among experienced readers, the kappa value of each classification ranged from 0.67 to
1.00 (mean: 0.82), which means the proposed model achieved an almost perfect agreement
with the experienced readers overall. The top three patterns with highest kappa values
were “cytoplasmic rods and rings” (1.00), centromere (0.93), and cytoplasmic Golgi (0.89).
It is worth mentioning that the F1 score improved from 0.29 to 1.0 after brightness data
augmentation for the cytoplasmic rod and ring’s classification. However, the improvement
may contribute to the correction of imbalanced data.
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Table 3. Sample prediction performance of the best performance proposed model (InceptionRes-
NetV2) on Testing Data 1 a.

Accuracy Precision Recall F1
Score Kappa

Nuclear homogeneous (AC-1) 0.90 0.92 0.87 0.89 0.79
Nuclear dense fine speckled (AC-2) 1.00 0.88 0.79 0.83 0.83

Centromere (AC-3) 0.99 1.00 0.88 0.93 0.93
Nuclear speckled (AC-4, 5) 0.97 0.98 0.99 0.99 0.74

Discrete nuclear dots (AC-6, 7) 0.99 0.94 0.70 0.80 0.79
Nuclear nucleolar (AC-8, 9, 10) 0.98 1.00 0.64 0.78 0.77

Cytoplasmic fibrillar (AC-15, 16, 17) 1.00 0.73 0.89 0.80 0.80
Cytoplasmic speckled (AC-18, 19, 20) 0.91 0.82 0.65 0.72 0.67

Cytoplasmic AMA (AC-21) 0.99 0.92 0.73 0.81 0.81
Cytoplasmic Golgi (AC-22) 1.00 1.00 0.80 0.89 0.89

Cytoplasmic rods and rings (AC-23) 1.00 1.00 1.00 1.00 1.00
Mean 0.98 0.93 0.81 0.86 0.82

a Consists of 1985 samples.

3.4. Inter-Observer Agreement (IOA) by Testing Data 2

Table 4 presents the results of IOA from five experienced readers (A1–A5), two new
rheumatology fellows-in-training (F1, F2), and our proposed model (AI; InceptionRes-
NetV2), which was evaluated by Testing Data 2 consists of 175 randomly selected samples
with a total of 544 images. The average agreement among the five experienced readers for
the eleven pattern classifications was 0.849 (k), indicating almost perfect agreement. How-
ever, the average agreement between the five experienced readers and the two rheumatol-
ogy fellows-in-training was 0.528 (k), indicating moderate agreement. Overall, the average
agreement between our proposed model (InceptionResNetV2) and five experienced readers
reached 0.844 (k), indicating almost perfect agreement. The results described above indicate
that our proposed model outperformed beginners and might even be capable of replacing
experienced experts.

Table 4. Inter-observer agreement (Cohen’s kappa) on Testing Data 2 among five experienced medical technologists (A1–A5),
two rheumatologic fellows-in-training (F1–F2), and the InceptionResNetV2 AI model (AI).

Nuclear Ho-
mogeneous

Nuclear
Dense
Fine

Speckled
Centromere Nuclear

Speckled
Discrete
Nuclear

Dots
Nuclear

Nucleolar
Cytoplasmic
Fibrillar

Cytoplasmic
Speckled

Cytoplasmic
Reticu-

lar/AMA
Polar/Golgi-

like
Rods and

Rings Average

Pairwise comparison between five experienced medical technologists
A1 vs A2 0.872 0.656 1.000 0.720 0.913 0.949 0.739 0.524 0.723 0.903 1.000 0.818
A1 vs A3 0.856 0.719 1.000 0.796 0.870 0.788 1.000 0.679 0.766 0.953 1.000 0.857
A1 vs A4 0.859 0.656 0.982 0.738 0.841 0.953 0.791 0.698 0.791 0.911 1.000 0.838
A1 vs A5 0.850 0.794 1.000 0.813 1.000 0.800 0.920 0.776 0.738 1.000 1.000 0.881
A2 vs A3 0.856 0.791 1.000 0.823 0.849 0.833 0.739 0.759 0.953 0.949 1.000 0.868
A2 vs A4 0.910 0.869 0.982 0.789 0.823 0.903 0.833 0.712 0.788 0.903 1.000 0.865
A2 vs A5 0.825 0.851 1.000 0.677 0.913 0.752 0.815 0.556 0.646 0.903 1.000 0.813
A3 vs A4 0.921 0.930 0.982 0.793 0.766 0.848 0.791 0.761 0.722 0.860 1.000 0.852
A3 vs A5 0.835 0.920 1.000 0.751 0.870 0.700 0.920 0.682 0.682 0.953 1.000 0.847
A4 vs A5 0.837 0.851 0.982 0.670 0.841 0.845 0.869 0.788 0.815 0.911 1.000 0.855
Average 0.862 0.804 0.993 0.757 0.869 0.837 0.842 0.694 0.762 0.925 1.000 0.849

Pairwise comparison between five experienced medical technologists and two rheumatologic fellows-in-training
A1 vs F1 0.764 0.330 0.982 0.166 0.676 0.692 0.718 0.465 0.652 0.953 0.821 0.656
A1 vs F2 0.723 0.532 0.945 0.096 0.445 0.000 0.235 0.526 0.033 0.246 0.949 0.430
A2 vs F1 0.738 0.344 0.982 0.114 0.771 0.739 0.515 0.642 0.788 0.949 0.821 0.673
A2 vs F2 0.698 0.513 0.945 0.122 0.450 0.000 0.165 0.448 -0.008 0.289 0.949 0.416
A3 vs F1 0.771 0.473 0.982 0.139 0.719 0.791 0.718 0.592 0.722 0.903 0.821 0.694
A3 vs F2 0.731 0.405 0.945 0.132 0.478 0.000 0.235 0.537 0.000 0.266 0.949 0.425
A4 vs F1 0.750 0.445 0.964 0.114 0.697 0.651 0.555 0.673 0.738 0.953 0.821 0.669
A4 vs F2 0.685 0.373 0.927 0.076 0.408 0.000 0.180 0.524 0.024 0.246 0.949 0.399
A5 vs F1 0.695 0.393 0.982 0.111 0.676 0.522 0.655 0.564 0.567 0.953 0.821 0.631
A5 vs F2 0.680 0.441 0.945 0.053 0.445 0.000 0.215 0.590 0.101 0.246 0.949 0.424
F1 vs F2 0.640 0.156 0.925 0.472 0.454 0.000 0.258 0.453 -0.065 0.266 0.768 0.393
Average 0.716 0.400 0.957 0.145 0.565 0.309 0.404 0.547 0.323 0.570 0.874 0.528

Pairwise comparison between five experienced-certified medical technologists and InceptionResNetV2 AI model
A1 vs AI 0.795 0.719 1.000 0.772 0.833 0.692 1.000 0.698 0.791 0.848 1.000 0.832
A2 vs AI 0.847 0.930 1.000 0.899 0.815 0.739 0.739 0.739 0.683 0.944 1.000 0.849
A3 vs AI 0.830 0.851 1.000 0.851 0.823 0.791 1.000 0.761 0.722 0.894 1.000 0.866
A4 vs AI 0.833 0.930 0.982 0.817 0.794 0.651 0.791 0.828 0.869 0.848 1.000 0.849
A5 vs AI 0.775 0.920 1.000 0.727 0.833 0.522 0.920 0.728 0.815 0.848 1.000 0.826
Average 0.816 0.870 0.996 0.813 0.820 0.679 0.890 0.751 0.776 0.876 1.000 0.844

Pairwise comparison between two rheumatologic fellows-in-training and InceptionResNetV2 AI model
F1 vs AI 0.738 0.367 0.982 0.118 0.685 1.000 0.718 0.623 0.607 0.894 0.821 0.687
F2 vs AI 0.698 0.405 0.945 0.092 0.384 0.000 0.235 0.496 0.024 0.316 0.949 0.413
Average 0.718 0.386 0.964 0.105 0.535 0.500 0.477 0.560 0.316 0.605 0.885 0.550
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4. Discussion

The results demonstrated that the consistency between five experienced readers could
reach a Cohen’s kappa coefficient of 0.849 (Table 4). This means that by using the ICAP
competent level classification standards, the consistency with human reading reached an
almost perfect agreement. Furthermore, the performance of the proposed model (Incep-
tionResNetV2) achieved almost perfect agreement (k = 0.844) with experienced medical
technologists. In contrast, the agreement between two new beginners and experienced
medical examiners was only 0.528. The results shed light on a deep learning method could
potentially save time training beginners in laboratories.

Although there have been many related studies conducted in this field, including some
that reached high accuracy [8,9,15,36,37], the classifications were not in accordance with
well-established ICAP standards [1,2]. Another issue is that the question to be answered
in previous studies was, “Which classification should this image belong to?” which was a
“single choice question.” Most of the image datasets used were specifically prescreened well-
defined IIF patterns with no mixed patterns. However, the ANA classification question
in the real world is “what pattern(s) appear in this image?” which is a more complex
“multiple choice question.” Every pattern must be identified, so that the follow-up test to
suspected autoantibody or clinically relevant information will not be missed. However,
it is worth noting there is no consensus on mixed patterns interpretation currently [2],
particularly for weak cytoplasmic speckled staining images, which are very subjective
when it comes to categorizing cytoplasmic staining as positive or negative. In these cases,
there will be inconsistencies between readings performed by human experts. Thus, we
used a consistency test instead of accuracy to evaluate the performance of machine learning
models. Our results are not suitable for comparison with previous research because
different questions and evaluation methods were used.

In previous studies, most methods performed better for pattern classification at
specimen-level HEp-2 image than cell-level [12,38]. This is because a correct pattern
of an image does not require a correct pattern of all cells present, but only a correct predom-
inant cell. For the above reasons, we used the image as a whole rather than segmented cells
for training our machine learning model. This also meets the interpretation rules of ICAP
that state final patterns should be determined by integrating the features of interphase and
mitotic metaphase cells.

The two most frequent pattern classifications in this study were nuclear homogenous
and nuclear speckled, which were compatible with the findings of Vermeersch et al. [39].
In our study, satisfactory agreements were found for the centromere, discrete nuclear
dots, cytoplasmic fibrillar, cytoplasmic Golgi, cytoplasmic rods and rings, which consist
of special and apparent features compared to other patterns. In contrast, we found lower
agreements for nuclear speckled, cytoplasmic speckled, and cytoplasmic AMA patterns
compared to other patterns. We propose several reasons to explain these findings, as
follows. When reading mixed pattern images, the following situations are particularly sub-
jectively interpreted and cause inter-observer variation. First, discriminate nuclear speckled
positive/negative when strong cytoplasmic staining (Figure 5A) or centromere patterns are
present (Figure 5B). Second, discriminate cytoplasmic patterns are positive/negative with
weak cytoplasmic fluorescence intensity (Figure 5C). In fact, by using digital image reading,
the brightness of the computer or smartphone screen may impact human interpretation.
Therefore, more consensus is needed for the above situation.

Currently, at least seven commercial systems for the automated reading of ANA IIF are
available (Table 5): Aklides, (Medipan, Dahlewitz, Germany), EUROPattern (Euroimmun
AG, Luebeck, Germany), Helios (Aesku Diagnostics, Wendelsheim, Germany), Image
Navigator (ImmunoConcepts, Sacramento, CA, USA), NOVA View (Inova Diagnostics,
San Diego, CA, USA), Zenit G-Sight (A. Menarini Diagnostics, Florence, Italy), Cytospot
(Autoimmun Diagnostika, Strassberg, Germany). All of these systems can classify samples
as positive or negative. IIF pattern numbers identified by the currently available automated
systems ranged from five to eight, which did not reach the standard of 11 classifications
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of ICA competent level report. Besides, as for our acknowledgment and available data, it
seems like only the EUROPattern claims to identify mixed patterns.

Figure 5. Examples of mixed pattern images that commonly leading to inconsistent reading. (A) High consistency of
cytoplasmic staining pattern, but is inconsistent if there is a “nuclear fine speckled” pattern. (B) High consistency of nuclear
centromere pattern, but is inconsistent if there is a “nuclear fine speckled” pattern. (C) High consistency of nuclear fine
speckled pattern, but is inconsistent if there is a “cytoplasmic speckled” pattern, especially in very weak cytoplasmic
staining images.

Table 5. Characteristics of automated readers for Hep-2 image patterns identified by ANA IIF testing a.

Automated System No. of Patterns Recognized b Mixed Pattern Recognition

Aklides 6 only very few predefined
EUROpattern 8 yes

Helios 7 no
Image Navigator positive/negative no

NOVA View 5 no
Zenit G-sight 5 no

Cytospot positive/negative no
Our proposed model 11 yes

a Adapted from [40], with modification. b Aklides: cytoplasmic, homogeneous, speckled, nucleolar, centromere,
and multiple nuclear dots patterns; EUROPattern: homogeneous, dense fine speckled, speckled, nucleolar,
centromere, nuclear dots, nuclear membrane, and cytoplasmic patterns; Helios: centromere, cytoplasmic, homoge-
neous, nuclear membrane, nuclear dots, nucleolar, and speckled (granular) patterns; NOVA View: homogeneous,
speckled, centromere, nucleolar, and nuclear dot patterns; Zenit G-Sight: homogeneous, nucleolar, speckled,
centromere, and mitochondrial patterns; our proposed model: homogeneous, nuclear dense fine speckled, cen-
tromere, nuclear speckled, discrete nuclear dots, nucleolar, cytoplasmic fibrillar, cytoplasmic speckled, cytoplasmic
reticular/anti-mitochondrion (AMA), polar/Golgi-like, rods and rings patterns.
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There were some limitations in this study and the proposed model. First, no external
validation was done. The model in this work was trained using images generated by the
same instrument in a single hospital and not validated by images produced by instruments
from the same manufacturer in other hospitals. Future initiatives should consider this
issue by adopting large-scale datasets, including images obtained by acquisition devices,
equipment, or instruments from different diagnostic centers. Second, for each sample, the
restricted images captured by our instrument may not wholly represent what humans see
by microscopic reading. If metaphase cells in the field of views captured by the instrument’s
camera are atypical, such as mitosis in prophase, anaphase or telophase, the pattern cannot
be correctly interpreted, particularly for the homogenous pattern, which needs typical
metaphase cells for interpretation. Third, considering the workflow, we did not routinely
perform an endpoint titer for every pattern in our laboratory and the proposed model
could not provide titer information. However, ANA by IIF is not a quantitative assay [41],
and the value of cytoplasmic titer for clinical application is still unknown which further
research is needed.

In summary, our research showed that with sufficient image data labeled appropriately
by experts, excellent consistency performance could be achieved by machine learning
methods. In future research, there are several areas worth pursuing. First, harmonize
the consistency of interpretation among different laboratories, and gather large and high-
quality image datasets from multiple medical centers to establish a perfect machine learning
model. Second, promote the consensus of mixed pattern interpretation, especially the
judgment of positive and negative cytoplasmic patterns. Third, work on automated HEp-
2 cell expert-level pattern recognition, which requires longer learning time and relies
more heavily on experienced experts. A successful automatic interpretation system and a
privacy-focused cloud platform might solve the problem of insufficient experts, and more
importantly, it would shorten the time of manual interpretation, thereby improving the
efficiency of laboratories.

5. Conclusions

This study demonstrated that a publicly available pre-trained CNN model applying
to a large clinically useful HEp-2 dataset with fine-tuning could achieve exceptionally
high agreement of experienced human reading for ANA patterns, even without a novel
image-processing technique used. In particular, it meets the standards of ICAP competent
Level 11 classifications and mixed pattern recognition with high potential for immunologic
laboratory automated diagnostic support.
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