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A B S T R A C T

The development of accurate prognoses in multiple sclerosis is difficult, as the disease is characterized by het-
erogeneous patterns of brain abnormalities that relate in an unclear way to future impairments. Here, we use a
statistical modeling approach to determine if the baseline pattern of connectome disruption due to T2-FLAIR
lesions could predict a patient's future processing speed, as measured using the Symbol Digits Modality Test
scores. Imaging data, demographics and Symbol Digits Modality Test scores were collected from 61 early re-
lapsing remitting multiple sclerosis patients. The Network Modification Tool was used to estimate damage to the
connectome by quantifying white matter abnormalities' effects on 1) global network properties, 2) regional
connectivity and 3) connectivity between pairs of regions. MS subjects showed significant improvement of
processing speed between baseline and follow-up (t=−2.6, p=0.0096); however, both baseline (t=−4.01,
p=0.00012) and follow-up (t=−2.10, p=0.038) processing speed were significantly lower than age-matched
healthy controls. Partial Least Squares Regression was used to create models that predict future processing speed
from between baseline imaging metrics and demographics. The model based on region-pair disconnection and
gray matter atrophy had the lowest AIC and highest prediction accuracy (R2=0.79) compared to models based
on global (R2=0.41) or regional (R2=0.66) disconnection and gray matter atrophy, overlap with an ROI-based
atlas and gray matter atrophy (R2= 0.73) or gray matter atrophy alone (R2=0.71). We found that baseline
measures of connectivity disruption in various parietal, temporal, occipital and subcortical regions and atrophy
in the putamen were important predictors of future processing speed. We conclude that information about
disruptions to pairwise brain connections is more informative of future processing speed than regional or global
metrics or gray matter atrophy alone. The combination of quantitative disconnectome metrics, gray matter
atrophy and statistical modeling approaches could enable clinicians in developing more accurate, individualized
prognoses of future cognitive status in multiple sclerosis patients.

1. Introduction

The increased availability of neuroimaging data sets from clinical
populations provides many opportunities for gaining a deeper under-
standing of brain anatomy and physiology. One important, clinically-
relevant goal is to better understand how pathological brain abnorm-
alities map to impairments and how the brain compensates for these
abnormalities in recovery. The former information would help in de-
veloping more accurate prognoses and the latter would help in devel-
oping effective treatments. One disease that could provide a unique
opportunity for understanding such brain-behavior relationships is
multiple sclerosis (MS). MS is a disease associated with focal lesions
mostly in the white matter (WM) and some in gray matter (GM) and

cortical/subcortical atrophy that result in impairments of sensory-
motor function, vision and cognition. The spatial and temporal pattern
of MS lesions is heterogeneous across both patients and over time, and
the impact of said lesions on current and future impairment is not well-
known. Quantifying brain-behavior relationships and how they evolve
over time is crucial in developing accurate prognoses and provides in-
sight as to how the brain recovers from disease-related damage.

WM pathology and structural networks have been studied ex-
tensively in MS (Rocca et al., 2012; Shu et al., 2011), with many studies
using tractography methods (Hu et al., 2011; Mesaros et al., 2012).
However, tractography is not always clinically feasible as it is onerous,
requires a high level of expertise and can be particularly challenging in
pathology (Jones and Cercignani, 2010) due to decreased signal-to-
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noise ratio in the diffusion MRI (Kuceyeski et al., 2011; Pagani et al.,
2007; Pierpaoli et al., 2001; Wheeler-Kingshott and Cercignani, 2009).
In place of using tractography in the patient, we propose using The
Network Modification (NeMo) Tool (Kuceyeski et al., 2013). The NeMo
Tool can be used to estimate global, regional and network-level struc-
tural connectivity losses from a WM abnormality mask only; it does not
require performing tractography or even diffusion MRI in patient po-
pulations. We previously applied the NeMo Tool to a similar dataset of
MS patients and found that a moderate amount of baseline processing
speed impairment (R2= 0.42) could be explained by baseline regional
GM atrophy and regional disconnection scores (Kuceyeski et al.,
2015a).

Here, in the spirit of clinical relevancy, our goal is to predict future
processing speed from baseline imaging of GM atrophy as well as
global, regional and region-pair disconnection measures derived from
the NeMo Tool. We hypothesize that considering an MS patient's spe-
cific pattern of pathology and quantifying how that pattern disrupts
structural connections can be used to predict future neurological out-
comes and disease progression. We use Partial Least Squares Regression
(PLSR) to relate baseline imaging biomarkers of disconnection and GM
atrophy to future processing speed. Our goals are to 1) identify which of
our five models (based on GM atrophy, global, regional and region-pair
disconnectivity and atlas overlap) has the best accuracy in predicting
follow-up processing speed and to 2) identify which of the global/re-
gional/pairwise disconnectivity, atrophy and atlas overlap metrics in
these models are significant predictors of future processing speed. To
the author's knowledge, this is the first study that uses baseline struc-
tural disconnectivity metrics and GM atrophy biomarkers to predict
future cognitive changes in early MS.

2. Materials and methods

2.1. Subjects

Data was collected from 61 early relapsing-remitting MS patients
(Table 1). Study procedures were explained to and consent was ob-
tained from subjects in this IRB-approved study. All but three patients
were on disease modifying therapies for MS at the time of MRI, with
average treatment duration of 0.5 ± 0.9 years. All patients' baseline
MRIs were acquired within 5 years of their first neurologic symptom.
Three sets of images were acquired on a 3 T GE scanner (HDxt 16.0)
using 8-channel phased-array coil: T1-weighted sagittal 3D-BRAVO
(1.2×1.2×1.2mm), T2 (0.5×0.5× 3mm) and T2-FLAIR
(1.2×0.6×0.6mm). The written version of the Symbol Digits Mod-
ality Test (SDMT), which measures processing speed, was performed on
this cohort at baseline and on average 28.6 ± 10.3 months follow-up.
Processing speed is one of the earliest cognitive domains affected in MS
and the SDMT is particularly sensitive to this type of impairment
(Bergendal et al., 2007).

2.2. T2-FLAIR hyperintensity lesion masks

Lesion masks were created as in our previous work (Kuceyeski et al.,
2015a). As in that work, FreeSurfer (Dale et al., 1999; Fischl et al.,
1999) was used on the T1 images to create tissue segmentations and
subcortical and cortical parcellations, which were manually edited for
misclassification due to hyperintensities in WM and temporal region
errors. The T2 FLAIR images were linearly coregistered to the T1,
masked with the WM and subcortical masks and thresholded to create a
preliminary WM abnormality mask. The preliminary WM abnormality
mask was then manually edited using the T2 and T2 FLAIR overlay and
final approval given by a trained neurologist. T1 images were also ac-
quired on 14 age-matched healthy volunteers and processed with the
same pipeline to produce cortical thicknesses for calculating GM
atrophy (see Table 1).

2.3. The NeMo tool

The NeMo Tool can be used to estimate changes to the structural
connectivity network that result from a particular pattern of WM
pathologies by referencing a database of 73 normal control tractograms
in a common space (Montreal Neurological Institute). MS subjects' WM
abnormality masks were normalized to MNI space using first a linear
coregistration followed by non-linear normalization in SPM8. The atlas
used within the NeMo Tool was derived from FreeSurfer, with 68 cor-
tical regions, 16 subcortical and 2 cerebellar structures. Pairwise dis-
connection measures are identified by removing those streamlines
passing through the WM abnormality mask and recalculating the
strength of connections between pairs of regions, resulting in the
“modified connectome”. Global metric changes are estimated by cal-
culating graph-theoretic metrics, i.e. efficiency, characteristic path
length, clustering coefficient and betweenness centrality, on this mod-
ified connectome. Regional disconnectivity changes are estimated via
the Change in Connectivity (ChaCo) score that is the percent of tracts
that pass through the WM abnormality mask for a given GM region. The
NeMo Tool calculates one “modified connectome”, associated global
connectome measures and set of ChaCo scores for each of the 73 con-
trols and reports the average over these values. We use the average
value as input to our predictive models. We also calculate the z-scores
of the pairwise connections in each subject's “modified connectome”
compared against the 73 control connectomes in the NeMo Tool to
identify which region-pairs had the most disconnection. The number of
lesions a tract passes through is not considered; tracts removal was a
binary process. To compare an imaging metric not related to con-
nectivity, we also calculated the overlap of the WM abnormality masks
with the JHU-MNI “Eve” atlas of 176 gray and white matter regions. For
each region in the atlas, the percent of voxels in the region within the
lesion mask was calculated. Finally, atrophy was measured by calcu-
lating standard z-scores of average thickness for 68 cortical regions,
volume for 16 subcortical regions and 2 cerebellar regions from the
FreeSurfer atlas, using a group of 14 age- and sex-matched normal
controls (see Table 1) that had the same scans and pre-processing. The
86-region atlas used in the NeMo Tool (global network metrics, ChaCo
scores and pairwise disconnection measures) and for GM atrophy
measures was identical.

2.4. Partial least squares regression

The modeling approach used here is similar to the work done in our
previous paper that predicted baseline SDMT from baseline imaging
metrics (Kuceyeski et al., 2015a). PLSR models were constructed to
predict follow-up SDMT based on a subject's age, sex, disease duration,
treatment duration, baseline SDMT, baseline EDSS, number of months
between time points, regional GM atrophy and one of four imaging
metrics: three levels of connectivity disruption metrics from the NeMo
Tool (global, regional and pairwise disconnection measures) and the

Table 1
Subject demographics.

MS subjects (N=60) Normal Controls
(N=14)

Age 36.8 ± 9.3 years 37.3 ± 13.3
Sex M/F 16/44 5/9
Disease Duration 1.5 ± 1.3 years N/A
Treatment Duration 0.5 ± 0.9 years N/A
Baseline EDSS 1.1 ± 1.1 N/A
Baseline SDMT 48.1 ± 11.5 N/A
Follow-up SDMT 53.3 ± 9.9 N/A
Time between baseline and

follow-up SDMT
28.6 ± 10.3months N/A
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JHU-MNI atlas-overlap metric. The global model included overall lesion
volume, mean GM atrophy, and the global connectome measures of
characteristic path length, efficiency, clustering coefficient and be-
tweenness centrality. The regional model included 86 ChaCo scores for
each GM region and the pairwise disconnection model included 610
pairwise connections out of (86× 85) / 2=3655 possible. There is
some variation in the presence of edges across individuals due to po-
pulation variability, noise present in imaging and post-processing, etc.
In order to focus on region-pairs that have the highest probability of
connection, we chose to include only those 610 edges that were non-
zero in all 73 normal controls. One of the goals of this work is to assess
the relative contributions of the various disconnection and atlas-overlap
metrics, which is why we have one model built for each of the mea-
sures. Two other models, one using only demographics (no imaging)
and one using demographics and regional GM atrophy, were also cal-
culated for assessment of how much more variance is explained by
adding each of the other imaging metrics to the prediction.

PLSR is useful when analyzing data with more explanatory variables
than observations (p≫ n), as the data are reduced to highly relevant
and mutually independent components. PLSR performs dimensionality
reduction by creating new variables (components) from the original
data that have maximal correlation with the outcome, followed by re-
gression on those new components. In addition, the components are
guaranteed to be mutually independent even if the input variables are
co-linear. K-fold cross-validation (k= 10) was performed to identify
the number of components that minimized the predicted residual sum
of squares (PRESS) on the hold-out set over 50 different partitions. The
cross-validation procedure was performed over 1000 bootstrapped sets
and the number of components that most frequently minimized PRESS
was identified. Once the number of components was set, bootstrapping
of 50,000 samples with replacement was performed (Krishnan et al.,
2011) and confidence intervals (CIs) derived for the regression coeffi-
cients of the model via the bias-corrected and accelerated percentile
method (Efron, 1987). CIs were corrected for multiple comparisons
over the number of input variables within each model using Bonferroni
correction (Bonferroni, 1936). If the adjusted CI for an input variable
did not include zero, it was considered a significant predictor. PLSR
coefficients for the brain regions and region-pairs were illustrated via
glassbrains created using Brainography (LoCastro et al., 2014).

The four models were compared via R2 values, root mean squared
error and Akaike Information Criterion (AIC) (Burnham and Anderson,
2002), the latter of which measures goodness-of-fit while considering
model complexity. AIC is used to compare the models, as it allows
comparison of non-nested models while accounting for the number of
input variables. The difference in AIC for model i from the minimum
AIC across all models (Δi=AICi−min AIC) provides relative compar-
ison of models that have a different of input variables. Generally,
Δi < 2 indicates substantial evidence for the model, 2 < Δi < 7 in-
dicates less support while Δi > 10 indicates that the model is unlikely.
Akaike weights, i.e. wi=exp (−Δi/2)/∑M exp (−Δi/2), were calculated
for theM=4 models and provided the probability that the model is the
best among all candidate models (Burnham and Anderson, 2002). All
models and statistical tests were performed in Matlab.

3. Results

3.1. Longitudinal SDMT

Fig. 1A shows box-and-whisker plots of the SDMT scores at baseline
and follow-up, where a single line represents each individual. Red lines
indicate a patient whose SDMT decreased (got worse) beyond minimal
clinically important difference (MCID), gray for stable patients and
green for those patients whose SDMT scores increased (got better) be-
yond MCID. Here, we consider MCID to be 4 points, as suggested by
Benedict et al. (2017). SDMT scores showed significant improvement
between baseline and follow-up (two-tailed paired t-test, t=−2.6,

p=0.0096), see Fig. 1A. SDMT scores were significantly lower than a
previously published age-matched normal control population (Bate
et al., 2001) at both baseline (two-tailed unpaired t-test: t=−4.01,
p=0.00012) and follow-up (two-tailed unpaired t-test: t=−2.10,
p=0.038). There was a moderate, significant partial Pearson's corre-
lation between baseline SDMT and change in SDMT after controlling for
time between baseline and follow-up and age (r=−0.61,
p=2.8× 10−7, see scatter plot in Fig. 1B). Note: one subject had an
extremely large amount of WM damage over the whole brain relative to
the rest of the population (i.e. the z-score of the average ChaCo score
was> 5) and was excluded from all of the analyses.

3.2. Disconnection scores, atlas overlap and atrophy patterns

Fig. 2 summarizes the NeMo Tool's three levels of disconnection
metrics: A) global network metrics, B) ChaCo (regional) disconnection
scores and C) pairwise disconnection scores. Overall, the global metrics
(Fig. 2A) did not change drastically, with betweenness centrality and
clustering coefficient showing marginal decreases and efficiency and
characteristic path length essentially unchanged. Fig. 2B shows the
regional disconnection (ChaCo) scores, with parietal and cingulate
areas showing the most disconnection (see Supplemental Table I). In
particular, the bilateral caudate nucleus, superior/inferior parietal gyri,
pericalcarine, caudal anterior cingulate, putamen, left posterior cingu-
late, left caudal middle frontal gyrus, right paracentral and left pre-
central showing the most disconnection. Fig. 2C shows the z-scores of
the pairwise disconnection measures for the entire connectome. Fig. 2B
and C are arranged/labeled by functional assignment based on the Yeo
atlas (Yeo et al., 2011). Each region in our 86-region FreeSurfer derived
atlas was assigned to one of the 8 functional areas in the Yeo atlas by
majority voxel vote, i.e. the region was assigned to the most frequently
occurring functional label within its voxels. Subcortical structures,
dorsal and ventral attention, somato-motor and default mode areas
were most affected (see Supplemental Table II for the top 100 most
disconnected region-pairs).

Fig. 3A illustrates the mean atrophy over the 86-region atlas, with
regions smaller than controls in red and regions larger than controls in
blue. Areas of highest atrophy included mainly subcortical areas (pu-
tamen and thalamus) and temporal regions, including the entorhinal
and hippocampal areas (see Supplemental Table III). The median of the
atlas overlap metric for the 176-region JHU-MNI “Eve” atlas is illu-
strated in Fig. 3B, with GM regions in gray and WM regions in black.
White matter regions were most affected, particularly the bilateral ta-
petum (part of the corpus callosum), thalamic radiation, posterior/su-
perior corona radiata, splenium and body of the corpus callosum (see
Supplemental Table IV).

3.3. Regression results

The results from the regression techniques are summarized in Fig. 4
and Table 2. The top part of each panel shows the model predictions
versus the observed SDMT with the corresponding R2 value in the upper
left corner. The bottom part of each panel illustrates the regression
coefficients for each of the models, where the magnitude of the region/
connection's coefficient determines the radius of the sphere/pipe.
Bright and light blue indicate those regions/connections whose dis-
connection was related to worse follow-up SDMT, with the variables
that had CIs not including 0 in bright blue and the ones that did include
0 in light blue. Red and pink indicate those regions/connections whose
disconnection was related to better follow-up SDMT, with the variables
that had CIs not including 0 in red and the ones that did include 0 in
pink. A comprehensive list of the variables identified as significant by
PLSR and their regression estimates are given in Supplemental Table V.
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Fig. 1. Longitudinal SDMT. A) Boxplots of the baseline and follow-up SDMT (t=−2.6, p= 0.0096) and B) A scatter plot of the baseline SDMT versus change in
SDMT (partial Pearson's R=−0.61, p=2.8× 10−7, controlling for time between visits and age). Red lines/points indicate patients with longitudinal decreases in
SDMT beyond minimal clinically important difference (MCID), gray lines/points are longitudinally stable patients and green lines/points indicate patients with
longitudinal increases in SDMT beyond MCID. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 2. Connectome disruption in early MS quantified using the NeMo Tool. A) Normalized difference in global connectome metrics for the MS patients compared to
the metrics from the average normal connectome from the controls in the NeMo Tool. B) Average regional Change in Connectivity (ChaCo) scores for each of the 86
cortical and subcortical regions. C) The median of the z-score of the pairwise connectivity of the MS subjects compared to the normal controls in the NeMo Tool.

Fig. 3. Atrophy and lesion overlap in early MS. A) Mean z-scores of gray matter atrophy for the MS patients compared to the 14 age and sex matched healthy controls
(red= regions showing cortical thinning or volume decreases, blue= regions showing cortical thickening or volumetric increases) B) Median lesion overlap metric
using the 176 region Johns Hopkins University Atlas of white matter (in black) and gray matter (in gray) structures (larger radius=more overlap). (For inter-
pretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Regression results. Predicted SDMT versus observed follow-up SDMT (top part of each panel) and EN regression coefficients (bottom part of each panel) for
the models based on A) GM atrophy, B) ChaCo scores and GM atrophy, C) atlas overlap and GM atrophy and D) pairwise disconnection and GM atrophy. Blue
spheres/pipes represent those regions/connections whose disconnection was related to worse follow-up SDMT scores, with bright blue indicating those that were
included in the final stepwise regression model and light blue indicating those that were not. Red spheres/pipes indicate those regions/connections whose dis-
connection was related to better follow-up SDMT scores and were included in the final stepwise regression model. Regions (spheres) in Panel B are color coded by
functional atlas assignment, as in Fig. 3 (visual = blue, somatomotor=magenta, dorsal attention= green, ventral attention= cyan, limbic= orange, fronto-par-
ietal = yellow, default mode= light purple, cerebellar/subcortical = black). (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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4. Discussion

4.1. Longitudinal SDMT

SDMT scores in this population of early MS patients were sig-
nificantly lower than control populations at both baseline and follow-
up. There was a statistically significant increase in SDMT between the
two time points that on average was greater than the 4-point MCID
(mean 5.4 point increase). The observed increases in SDMT may be due
to the fact that our cohort has just started treatment, presumably due to
an acute worsening of symptoms, which then resolve over the interval
from baseline to follow-up. Previous longitudinal studies of disease-
modifying therapies in MS showed improvements in cognition (Mattioli
et al., 2015). In particular, one study of SDMT reported an average gain
of 15 points over 48 weeks (Morrow et al., 2010). We speculate that the
bigger improvements in patients with lower baseline measures could
either be regression to the mean, practice effects or it could be due to
increased disease burden causing increased triggering of plasticity to
initiate the brain's recovery mechanisms.

4.2. Lesion location, disconnection, and atrophy characterization

Global metrics of disconnection from the NeMo Tool did not show
much difference from the normal population, and none of the global
disconnection metrics were significant predictors of future SDMT. The
lack of change in global metrics is likely due to the way they were
calculated in the NeMo Tool. Only the streamlines passing through the
lesions were removed from the connectome matrix, and this seemingly
did not have a large impact at the global level. ChaCo scores showed
that regions with the most disconnection were bilateral caudate, su-
perior parietal gyri, caudal anterior cingulate, pericalcarine and pu-
tamen as found previously in patients that overlap with this cohort
(Kuceyeski et al., 2015a). The most affected pairwise connections were
between subcortical (caudate, putamen and thalamus), cingulate (pos-
terior, caudal inferior and isthmus) and fronto-parietal regions (su-
perior parietal and supramarginal gyri). In the JHU-MNI Eve Atlas, the
regions with most overlap were all white matter structures, with the
splenium, medial part (tapetum) and body of the corpus callosum,
posterior thalamic radiation, posterior/superior corona radiata and
superior fronto-occipital fasciculi the most affected. The tapetum were
by far the most lesioned, which is not surprising as this white matter
bundle in the corpus callosum traces the posterior periventricular area
(Ge, 2006). The regional and region-pair disconnection are likely also
partly due to the periventricular nature of MS lesions and the pro-
pensity for them to be located on the corpus callosum and white matter
connecting to subcortical structures, including the thalamus.

4.3. Partial least squares regression results

The three disconnection models, atlas-overlap and GM atrophy
model had moderate to high R2. The demographics only model ex-
plained 35% of the variance in the data, with the best performing model

(based on pairwise disconnection and GM atrophy) explaining 79% of
the variance in the data. The Akaike weights strongly show that the
pairwise disconnection/atrophy model, as opposed to that of atrophy
and regional/global disconnection or atlas overlap, performed the best -
its probability was 99.83% when compared to the others. Surprisingly,
the GM atrophy model performed quite well, explaining 71% of the
variance, despite the relatively low level of atrophy in these early MS
patients. Previous works, although limited in number, have applied
quantitative approaches to predict cognitive or motor scores in MS
patients from demographics, MRI-based measures and other clinical
information. Two recent studies 1) used various global MRI-based
measures to predict cognitive efficiency (SDMT+PASAT) with an
overall explained variance of 26.3% (Pinter et al., 2015) and 2) various
regional measures of WM and GM pathology to predict SDMT with an
explained variance of 31.7% (Artemiadis et al., 2018). These studies
were cross-sectional, however, and cannot be directly compared to our
longitudinal results that include baseline measures of SDMT, in addition
to our various imaging metrics, in predicting follow-up SDMT. We can,
however, estimate the amount of predictive accuracy that the different
imaging metrics add to a model based on demographics only, which
included baseline SDMT. In that case, 36% more variance is explained
by including GM atrophy, 31% more for regional disconnection mea-
sures (ChaCo) and atrophy, 38% more for atlas overlap and atrophy and
44% more for pairwise disconnection measures and atrophy.

Our previous cross-sectional work relating baseline imaging metrics
to baseline processing speed indicated GM atrophy in the right putamen
were related to concurrent processing speed changes in early MS
(Kuceyeski et al., 2015a). Here, we again show the importance of the
right putamen's role in processing speed, as more atrophy in that
structure was significantly predictive of worse follow-up SDMT in all
four of the non-global models. Left putamen was also significantly
predictive of follow-up SDMT in all the non-global models, except the
pairwise disconnection model. Atrophy in the putamen has been de-
tected in patients with MS, and some studies have detected relation-
ships between putamen atrophy and motor and cognitive function. In
particular, one study analyzed the relationships between cognitive
scores and deep GM regions and found a significant relationship be-
tween atrophy in the putamen (and to a lesser extent, the thalamus) and
SDMT measures (Batista et al., 2012). A study of atrophy in the pu-
tamen of relapsing-remitting MS patients found that it is more severely
affected in the early stages of the disease (as the patient population
here) than in the later stages (Krämer et al., 2015). The pairwise dis-
connection and atlas-overlap models also highlighted the significant
contribution of atrophy in the cingulate, left fusiform gyrus and caudate
nucleus, a structure which was found to have more atrophy in cogni-
tively impaired versus cognitively preserved MS patients (Zhang et al.,
2016). Increased longitudinal atrophy in the caudate was also found to
significantly correlate with worsening SDMT scores (Loitfelder et al.,
2014). Age and baseline SDMT were significant demographic predictors
in all of the models, with, unsurprisingly, older age being associated
with worse follow-up SDMT and higher baseline SDMT being associated
with better follow-up SDMT.

Table 2
Comparison of the PLSR models predicting SDMT from various MRI-based metrics and demographic variables. R2, AIC, ΔiAIC and wi are based on the single model
that is the mean of the PLSR coefficients over the bootstrapped samples.

Model # Comp. R2 AIC (Δi AIC) wi 95% CI for R2

Demographics Model: age, gender, disease duration, treatment duration, baseline SDMT, time between baseline
and follow-up, baseline EDSS

1 0.35 −25.42 (59.85) ~0% [0.13, 0.55]

Global Model: Demographics+ Lesion Volume+Global GM Atrophy+Global Network Metrics 2 0.41 −29.55 (55.72) ~0% [0.16, 0.58]
GM Atrophy Model: Demographics+Regional GM Atrophy 4 0.71 −67.95 (17.31) 0.017% [0.67, 0.82]
Atlas-overlap and GM Atrophy Model: Demographics+Regional GM Atrophy+Atlas Overlap 4 0.73 −72.29 (12.97) 0.15% [0.67, 0.88]
ChaCo and GM Atrophy Model: Demographics+Regional GM Atrophy+Regional Disconnection (ChaCo) 4 0.66 −59.01 (26.26) 0.00019% [0.57, 0.78]
Pairwise Disconnection and GM Atrophy Model: Demographics+Regional GM Atrophy+Pairwise

disconnection
6 0.79 −85.27 (0) 99.83% [0.80, 0.97]
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Our previous cross-sectional work also indicated that T2-FLAIR
abnormalities in WM connecting to parietal and occipital lobes, parti-
cularly areas related to visual processing, were related to worse SDMT
scores. Generally, the model coefficients here indicated more baseline
disconnection and lesion overlap with parietal, occipital, temporal and,
to a lesser extent subcortical regions were significant predictors of
worse future processing speed. In particular, the regional disconnection
model highlighted the importance of connections to and from the right
parahippocampal gyrus, a temporal region with key roles in visuospa-
tial processing and episodic memory (Aminoff et al., 2013). The pair-
wise-disconnection model emphasized connections from right cuneus to
right lateral occipital, right parstriangularis to right rostral middle
frontal, right superior parietal to right lateral occipital gyrus, left lin-
gual gyrus to left inferior temporal, right nucleus accumbens to right
medial orbitofrontal and right rostral anterior cingulate. Generally, the
pairwise disconnection model illustrated the importance of connections
involving right parietal/occipital regions, right nucleus accumbens and
left parietal and temporal regions, including the hippocampus whose
primary role is memory. The atlas overlap model indicated the im-
portance of lesions in the GM and WM of the occipital lobes, in parti-
cular the right precuneus - a central part of the default mode that has
been shown to play a large role in cognitive impairments in MS. Also
important in the atlas overlap model was the right cingulate and right
posterior corona radiata, both of which were found to have more WM
lesions in cognitively impaired versus cognitively preserved MS patients
(Zhang et al., 2016). Because the 176-region JHU atlas and the 86-
region atlas that the atrophy, global network metrics, ChaCo scores and
pairwise disconnection scores are based on have varying anatomical
delineations, it is somewhat difficult to compare the models directly.
However, the comparison does allow some insight as to the sensitivity
of the predictive models to different atlases.

4.4. Limitations

The NeMo Tool estimates the connectivity effects of WM abnorm-
alities from a pathology mask coregistered to a database of 73 healthy
control tractograms. WM connections vary in location and strength
across the normal population - therefore the NeMo Tool's database may
not precisely represent a given MS individual's connectivity patterns.
We do, however, calculate average disconnection scores over 73 normal
subjects to capture this variability. There may also be some errors in
normalization of the WM abnormality masks to MNI space, particularly
in MS patients whose anatomical scans may contain other pathologies
as well as atrophy in GM. Normalization was checked visually for ac-
curacy (see Supplemental Fig. 3 in Kuceyeski et al., 2015a for details);
any small normalization error effects are again minimized by averaging
disconnection values over 73 normal tractograms. Atrophy was also
quite mild in this cohort (the largest mean z-score over the 86 regions
was −0.78), as such, atrophy should have minimal impact on the
normalization process. In MS patients with more advanced disease,
more care would have to be taken to account for this atrophy when
performing the normalization to MNI space, using, for example, multi-
channel registration (Roura et al., 2015). Within MS, there can also be
diffuse damage in normal appearing white matter (Werring et al., 1999)
that does not appear as a hyperintensity on T2-FLAIR and would not be
identified with our methods. However, damage in normal appearing
white matter in these early MS patients is likely minimal. In fact, our
previous work with a largely overlapping set of MS patients showed
only minor changes in their diffusion MRI summary statistics (fractional
anisotropy and radial/mean diffusivity), which may be sensitive to
pathology in normal appearing white matter (Cassol et al., 2004). The
areas of diffusion MRI abnormality that we did identify largely over-
lapped with the areas in T2-FLAIR lesion masks (see Online Supple-
mentary Fig. 3 in Kuceyeski et al., [2015]). Therefore, the effect of
diffuse damage in normal appearing white matter on connectivity
should be minimal in this cohort. Again, if one were to apply this model

to MS subjects with more advanced disease, one may consider adding
terms to the model to capture damage in normal appearing white
matter. Finally, quantitative approaches that are data-driven improve
in accuracy and stability with increasing amounts of data – here we use
only a moderate sized-sample. Larger sample sizes would enable more
thorough training/testing.

The SDMT is a test whose scores may be influenced by deficits in
many different domains; it may depend on visual processing, memory
and other cognitive domains that contribute to processing speed. We do
not claim that our model is specific to any of these subdomains that
contribute to the SDMT scores; it is merely reflective of the overall
impairment captured by the SDMT. Future studies will attempt to col-
lect more comprehensive cognitive and motor scores that would allow
us to interrogate the specific regions that contribute to various elements
of cognition or motor impairment. We believe that the general PLSR
framework and input data presented here, with proper retraining of the
PLSR model coefficients for each different outcome measure, could be
used to create models (one per outcome measure) that would predict
impairment in different domains as done previously (Kuceyeski et al.,
2015b; Kuceyeski et al., 2016). This type of analysis allows comparison
of the set of regions' metrics that are important to each outcome mea-
sure, akin to brain-behavior mapping.

4.5. Conclusion

We apply a quantitative approach to novel MRI-based metrics of
lesion-induced disconnection in MS to predict future processing speed.
We found that MS patients significantly improved in processing speed
over time. Our model based on pairwise disconnection metrics and GM
atrophy was able to predict with high accuracy future processing speed
in MS patients. This model outperformed others based on regional/
global disconnection and GM atrophy, GM atrophy only or atlas overlap
metrics and GM atrophy. We also found that atrophy in the bilateral
putamen, and white matter connectivity between occipital/parietal/
temporal regions and subcortical structures was most influential in
determining future processing speed in early MS patients. The overall
goal of this work is to create a quantitative mapping tool for clinicians
to use in creating accurate prognoses of future cognitive function for MS
patients. Achieving this goal, however, will require collecting images,
neuropsychological/physical impairment scores and demographic in-
formation from an extremely large number of patients at varying stages
of the disease. The construction of such a large database will enable the
application of machine learning approaches, which have the potential
to shift the clinical management of complex neurological disorders like
MS by helping physicians understand, diagnose, prognose and treat this
heterogeneous and complicated disease. However, the success of these
approaches hinges on the availability of large, public neuroimaging
datasets that allow for through training and testing of prediction and
model transparency that allows some physiological/clinical inter-
pretation.
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