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Abstract: The purpose of the work was to emphasize the main differences and similarities in the
degradation mechanisms in the case of polymeric coatings compared with the bulk ones. Combined
with the current background, this work reviews the properties of commonly utilized degradable
polymers in drug delivery, the factors affecting degradation mechanism, testing methods while offer-
ing a retrospective on the evolution of the controlled release of biodegradable polymeric coatings. A
literature survey on stability and degradation of different polymeric coatings, which were thoroughly
evaluated by different techniques, e.g., polymer mass loss measurements, surface, structural and
chemical analysis, was completed. Moreover, we analyzed some shortcomings of the degradation
behavior of biopolymers in form of coatings and briefly proposed some solving directions to the
main existing problems (e.g., improving measuring techniques resolution, elucidation of complete
mathematical analysis of the different degradation mechanisms). Deep studies are still necessary on
the dynamic changes which occur to biodegradable polymeric coatings which can help to envisage
the future performance of synthesized films designed to be used as medical devices with application
in drug delivery.
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1. Introduction

Undoubtedly, biodegradable polymers have a major role in the functionalization of
biomaterials and medical devices (MD), due to their capability to be degraded and elimi-
nated in time under physiological conditions [1]. It is well known that biomaterials interact
with biological systems through their surfaces [2,3] and so that it is of great importance to
control or tune the surface properties of MD, helping them to safely and easily integrate
into the host tissues [4]. In this context, for the drug delivery specific applications, several
advantages are obtained by surface functionalization of MD with polymeric coatings (P.C.).
Based on their degradable features, they can incorporate drugs which are delivered by
predetermined release profiles at a desired site of action while being easily eliminated by
the body or even replaced in time by tissues [1]. The potential of surface functionalization
with P.C. (Figure 1) could solve the critical problems of used polymer amount supply
associated with processing time. Moreover, thin film deposition techniques are designed to
ensure the MD functionalization by improving the surface features with a newly formed
polymeric platform. Concretely, polymeric thin films present an amazing versatility in the
chemical groups which can help control biomaterial-tissue interactions and also possess the
required mechanical properties due to substrate [5]. Plenty of deposition techniques, such
as Langmuir-Blodgett deposition [6], spin coating [7], sputtering [8], chemical vapor deposi-
tion [9,10], electrochemical deposition [11], spray coating [12], or advanced laser techniques
(e.g., matrix assisted pulsed laser evaporation [13]), chemical grafting [14], self-assembled
monolayers [15], surface-tethered polymers (polymer brushes) [16], dip-coating [17,18],
electrophoretic deposition method [19], or multilayer [20,21], were extensively employed
to fabricate P.C.
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Each deposition technique may show particular advantages in a given situation and 
so that the choice of the proper coating fabrication route should be therefore determined 
based on the desired medical application, the workability of polymer, and its physico-
chemical properties [22]. 

An excellent option for the improvement of the metallic implants is the tailor-made 
coating (for accelerated tissue regeneration, with antibacterial properties and/or con-
trolled release), making them more affordable and reducing or even eliminating the need 
for further surgical revisions [23]. 

Thin films also present advantages over bulk polymers due to their large surface-to-
volume ratios, being suitable for applications requiring enhanced surface interactions. 
Another benefit of coatings over raw materials is the achievement of application-specific 
properties that are unattainable in the case of uncoated material or in the raw starting 
material used to be applied for surface functionalization. 

A successfully integrated P.C. functionalized MD supposes a careful corroboration 
and analysis of polymeric thin films surface properties (such as morphology, micro-
and/or nano-scale topography, chemical structure, and composition), with the dynamic 
phenomena that occur at interfaces (e.g., adsorption, modification, or wetting) [24]. 

Most of these properties need to be optimized for the achievement of a specific ap-
plication. The control of the film properties requires well established deposition parame-
ters for each polymeric system and a thorough understanding of the underlying mecha-
nisms of deposition (e.g., nature of deposited polymers, the interactions among process 
and material parameters) [25]. At the same time, the next step toward more effectively 
designed devices based on biodegradable P.C. implies a better understanding of their be-
havior in this form. 

For some applications, the development of functionalized P.C. is in close connection 
with the degradation process. Although in its infancy, the in vitro study of the dynamic 
changes which occurs in a biodegradable polymeric thin film can be effective in predicting 
the body’s physiological regulation mechanisms and future performance of designed im-
plantable M.D. 

The degradation process of a P.C. employed in drug delivery applications involves 
the degradation of the whole structure which may contain, besides copolymers, blends of 
polymers or composites, the active substance, namely the drug. Another aspect to keep in 
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Each deposition technique may show particular advantages in a given situation and so
that the choice of the proper coating fabrication route should be therefore determined based
on the desired medical application, the workability of polymer, and its physico-chemical
properties [22].

An excellent option for the improvement of the metallic implants is the tailor-made
coating (for accelerated tissue regeneration, with antibacterial properties and/or controlled
release), making them more affordable and reducing or even eliminating the need for
further surgical revisions [23].

Thin films also present advantages over bulk polymers due to their large surface-
to-volume ratios, being suitable for applications requiring enhanced surface interactions.
Another benefit of coatings over raw materials is the achievement of application-specific
properties that are unattainable in the case of uncoated material or in the raw starting
material used to be applied for surface functionalization.

A successfully integrated P.C. functionalized MD supposes a careful corroboration
and analysis of polymeric thin films surface properties (such as morphology, micro-and/or
nano-scale topography, chemical structure, and composition), with the dynamic phenom-
ena that occur at interfaces (e.g., adsorption, modification, or wetting) [24].

Most of these properties need to be optimized for the achievement of a specific appli-
cation. The control of the film properties requires well established deposition parameters
for each polymeric system and a thorough understanding of the underlying mechanisms of
deposition (e.g., nature of deposited polymers, the interactions among process and material
parameters) [25]. At the same time, the next step toward more effectively designed devices
based on biodegradable P.C. implies a better understanding of their behavior in this form.

For some applications, the development of functionalized P.C. is in close connection
with the degradation process. Although in its infancy, the in vitro study of the dynamic
changes which occurs in a biodegradable polymeric thin film can be effective in predicting
the body’s physiological regulation mechanisms and future performance of designed
implantable M.D.

The degradation process of a P.C. employed in drug delivery applications involves
the degradation of the whole structure which may contain, besides copolymers, blends of
polymers or composites, the active substance, namely the drug. Another aspect to keep in
mind is that the individual components that form the coating matrix may have different
degradation routes (e.g., one of the compounds may solubilize while the other degrades).
Thus, the degradation rate and the drug release can be accordingly tuned.
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This review is dedicated to the degradation mechanisms which occur in polymeric
thin films with particular highlights on the correlation between raw polymer and the
deposition techniques that allow the controlling and tuning of polymer properties and thus
the MD functionality.

This review is dedicated to the degradation mechanisms which occur generally in P.C.,
with particular highlights on the correlation between the properties of the raw polymer
and the deposition techniques that allow the controlling and tuning of polymer properties
and thus the M.D. functionality.

A digital survey based on the criteria described in Figure 2 was performed for the
period 2000–2021, using Web of Science (http://apps.webofknowledge.com accessed on
31 January 2021). There is still poor and fragmented understanding of the polymeric thin
films degradation behavior as according to Web of Science Core Collection (the research pa-
pers were limited to only 99 results). Comparatively, in the same period, 10,031 manuscripts
on the polymeric thin films subject emphasize the advantages of applying polymer-based
thin layers for MD functionalization. Search terms were put in double-quotes to restrict the
search result to the specific phrases. The search field was specified to seek only abstracts,
title, and keywords, and was restricted to only ISI journal articles. This statistic fully
justifies that the need to investigate (to which are attributed over 17,385 manuscripts) was
not sufficiently evaluated.
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Figure 2. Current state of relevant publications available in the reviewed research field for studies
related to the degradation of polymers in form of coatings.

The difficulty with respect to the degradation behavior of polymers in form of coatings
can be also related to the amount of the active substance (e.g., drugs, natural antimicro-
bial agents, etc.) that can be incorporated into the polymeric matrix correlated with the
statistical process of synthesizing reproducible thin films. Other issues encountered in
the degradation studies on P.C. are related to the large variety of their physico-chemical
features that depends on the deposition methods and the chosen parameters. Moreover,
the interdependence between the nature of substrates, the adherence features, and the
range of thicknesses leads to a variety of possible combinations to be considered. In order
to predict the functionalization and performance of M.D. based on P.C. there is still a place
for studying the proposed subject. Research efforts should be further directed toward
improving and controlling polymers physico-chemical properties to obtain sustainable
coatings for drug delivery applications. As a perspective, personalized composite coating
can be tuned according to the patient’s needs, offering the opportunity for operability in
the polymer composition and properties.

In this review a brief introduction and classification of degradable polymers used as
coatings is given, together with the degradation mechanisms and the factors affecting the
process, as well as the fabrication techniques and corresponding testing methods (for both

http://apps.webofknowledge.com


Polymers 2021, 13, 1272 4 of 36

bulk and coatings) and their applications in drug delivery. Furthermore, current research
approaches and future perspectives in the application of controlled degradation processes
as alternative and viable routes toward enhanced polymer-based coatings’ degradation
and functionalization are presented.

2. Controlled Drug Delivery Application

The fabrication of MD with functionalized polymeric surfaces which exhibit a control-
lable rate of degradability in time could be influenced by several factors:

− Both simple polymers or polymeric blends can be used for tuning the degradability
rate of the polymeric matrix (the drug can be released immediately or gradually over
time depending on the desired application).

− The degradation process can be also controlled by blending or copolymerization.
− Depending on the drugs to be released; polymeric systems can be found in a wide

range of medical applications, e.g., orthopedics or drug release (cardiovascular stents,
wound healing, skin grafts, absorbable surgical implants, and bone plates).

Compared to the classic release of drugs, the polymeric systems coatings offer the
advantage that by optimizing these parameters one can obtain a controlled drug release
both as location and as time.

The purpose of any drug delivery polymeric system (either bulk or coating) is to
provide and maintain a proper therapeutic concentrations of drug at the target biological
site during time (Figure 3) [26].
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The drug safety and efficacy could be improved by designed personalized drug poly-
meric system, dose titration, and therapeutic drug monitoring [27]. The release of a drug
(controlled rate, slow delivery, targeted delivery) from a surface which is in direct contact
with the organism needs to be investigated from a toxicological point of view [27]. Poly-
meric coatings, known for their unique surface properties as compared to bulk materials,
are usually designed to improve the solubility and to assure a chemical stability of drugs,
to increase pharmacological activity, and to reduce their side effects [27].

The basic steps in the release of drugs from degradable polymeric systems are:

1. An initial burst due to the dissolution/erosion or diffusion of the drug (the drug
release occursby transferring the dissolved medication ingredients through water-
filled pores); this kind of release can be of two types: encapsulation or a matrix system.

2. A lag phase.
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3. The controlled release of the drug governed by polymer degradation [27].

In the case of the encapsulated dissolution, the release rate is dependent on the
thickness and the solubility of the polymeric coating in which was embedded the drug.
The mixture of drugs with early or delayed release can be incorporated in the same coating,
tablet, or capsule [26].

In the case of a continuous drug release from a polymeric matrix, the diffusion-
and degradation-controlled phases must overlap. Therefore, so much more polymer
degradation profiles proved important for a controlled release formulation, the kinetic
of the drug release being able to be tailored precisely with the help of biodegradable
polymers [27].

3. Biodegradable Polymers Used as Coatings
3.1. Terminologies Background

Taking into account that biodegradation process and degradable polymers are defined
in a variety of ways in the literature, it is fully justified the need of a short section regarding
the used terminology. In this review, we have adopted the definitions as listed in the IUPAC
Compendium of Chemical Terminology [28].

The biodegradable term refers to a biologically assisted degradation process. Con-
cretely, according to IUPAC Compendium of Chemical Terminology, a biodegradable
polymer is a polymer susceptible to degradation by biological activity, accompanied by a
lowering of its molar mass [28].

The drug release from a polymeric system can be controlled by many mechanisms
(e.g., erosion, partitioning, dissolution, swelling, osmosis, targeting, and diffusion) [28].
These mechanisms may act simultaneously or independent at different stages of a delivery
process [28–30]. It is common for a system or MD to present more than one of them,
but the degradation behavior of P.C. is governed by the properties of the main polymer
constituents [28,29].

The biodegradation term is explained as a breakdown of a substance catalyzed by
enzymes in vitro or in vivo [28,29].

The term bioreactor is associated to an apparatus used to carry out any kind of
bioprocess (examples include fermenter or enzyme reactor). A broader definition of the
term should include the reactor, i.e., where degradation and solubilization are similar
reproduced in simulated environments, such as simulated body fluid (SBF) or phosphate
buffered saline (PBS), using the same blood flux rate, etc. [29,30].

In order to be used in medical applications, a biodegradable polymer must fulfill
certain criteria [30] such as:

− Non-toxic response after implantation in the body.
− Reasonable shelf life.
− Non-toxic degradation products able to get metabolized and easily eliminated from

the body.
− The degradation time should match the therapy process time (e.g., healing, regenera-

tion, or treatment).
− Appropriate mechanical properties for the desired application and the inherence

variation in mechanical properties that occurs with the degradation, compatible with
the healing or regeneration process.

− Appropriate processability in order to tailor the mechanical properties of MD in
correlation with the intended application.

The polymer based coatings designed for controlled release have the advantage of
being able to maximize the therapeutic benefit as they do not require replacement or further
manipulation and can degrade into non-toxic and soluble components [30].

One should mentioned that the coating term is a general one, referring to a variety of
applications from functional ones to healing, meanwhile thin films are used for covering,
being obtained especially by deposition techniques [31–33].
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Moreover, the term thin films refer to layers of material ranging from nanometers to
several micrometers in thickness. There is another difference to be highlighted between a
thick and a thin film. Concretely, a thick film will typically have a thickness in the range
10–25 µm, surface layers thicker than 1 micron being classified as coating [31–33]. However,
the real difference between thin and thick films, more than their relative thickness, is the
way in which they are synthetized [33]. Thin films are often deposited using vacuum
techniques such as sputtering and molecular beam epitaxy, meanwhile thick films are
deposited from a solution or paste, which must be dried and then often sintered to produce
the final coating [32].

These clarifications are necessary because the thickness may critically influence the
interaction of coatings with physiological and body fluids and further targeted effect.
Polymers present different degradation rates within the organism and therefore their
selection can be tailored to achieve the desired release rates or bioresorption behavior.

Whatever the application or the desired degradation kinetics, it is essential to under-
stand the degradation mechanisms in order to be able to define or guarantee either the
stability and/or the controlled degradation rate.

3.2. Classification of Biodegradable Polymers

Degradable polymers can be generally classified according to their origin as natural
or synthetic polymers. Most of the natural-based polymers are completely biodegrad-
able while the synthetic ones and their blends do not degrade completely [5]. Both are
subdivided into different classes based on the main linkages present in their structure.

Depending on their chemical composition, polymers degradation can take place
passively by hydrolysis or actively by enzymatic reaction.

In this context, the polymers can be classified taking into account the degradation
mode in completely or partially degradable polymers. One could mention here the class of
polymers with limited biodegradation capacity. From this category, the ones commonly used
as polymer coatings are cellulose and cellulose derivatives (e.g., microcrystalline cellulose).
Figure 4 summarizes the general classification of degradable polymers as presented above.
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In this subsection, a selection of biodegradable polymers (natural and synthetic ones,
including polymers with low biodegradation capability) which can be used as matrices for
drug delivery are discussed.
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In Table 1 some of the most used polymers in the form of bulk and coatings are
described, mentioning for each case the degradation time.

Table 1. Widely used degradable polymers for drug delivery applications in form of bulk (B.P.) and P.C.

D.P. D.T. Model Drug Reference B.P. Reference P.C.

NATURAL Polypeptides
e.g., Poly (3-hydroxybutyric

acid-co-3-hydroxyvaleric acid (PHVB)
years

Levofloxacin (LEV)

[34–37] [38–42]Gemcitabine (Gem)

Curcumin (CUR)

NATURAL Proteins
e.g., Collagen

Few days-weeks
completely degrade Doxorubicin (DOX) [43] [44–48]

NATURAL Polysaccharides
e.g., Chitosan up to 8 weeks

Indomethacin (IDC)
[49,50] [49,51–53]

Paracetamol (PaC)

SYNTHETIC Polyester
e.g., Poly (glycolic acid) (PGA);

Polylactic acid (PLA) and their copolymers
4–8 months

DOX
[54–56] [57–62]

5-fluorouracil (5-FU)

Synthetic Polyester
e.g., Poly (ε-caprolactone) (PCL)

>24 months up to
2–3 years

DOX
[63,64] [18,65–68]

Vancomycin (VaC)

Synthetic Polyanhydrides
e.g., Poly (sebacic acid) (PSA)

few days to several
years

Deguelin (Deg)

[69,70] [71–75]
Cisplatin (Cis)

MUC4β-nanovaccine
(MUC4-vac)

Synthetic Polyamides
e.g., Poly (amino acid) (PAA) 2–60 days Glycolic acid (GA) [76,77] [78–81]

Synthetic Polyphosphoester
e.g., Polyethylene glycol (PEG);

Polyethylene oxide (PEO)
3–250 days

Nobiletin (Nob)

[82–85] [18,86–88]

Artemisinin (AMS)

Docetaxel(DocT)

DOX

Indocyanine green
(ICG)

Abbreviations of the table legends: Degradable polymer = D.P.; Degradation time (months) = D.T.

As in the case of P.C. obtaining methods, the degradation capability of bulk poly-
mers can be also influenced by the polymer processing methods (e.g., mechanical mixing,
blending, dissolution in co-solvent, use of monomers for polymerization, fine powder
mixing) [89]. Polymer physics and chemistry, together with the engineering methods (e.g.,
mixing, rheology, solid mechanics, reticulation), are important factors in predicting the
complex relationships between process method, micro- or macrostructure developed, and
the implicit effects of these factors on the final properties of the synthesized polymer [90].
Generally, bulk polymer processing can lead to enhancing the raw materials properties,
such as: brittleness, dimensional stability, modulus, chemical resistivity, biodegradability,
thermal stability, etc. [90]. For example, the melt fracture of polymers can be reduced by
processing (mechanical mixing/blending) which can, in the same time, help to reinforce
the particulate [89]. Additionally, in the case of P.C., both composition (including molecular
size, chemical branching, cross-linking) and deposition technique (influenced by substrate
nature, adherence issues, statistical reproducibility of the process) are critical to the esti-
mated properties of the final functionalized film [90]. The degradation rate of P.C. can be
modulated by tailoring the molecular weight, composition, end groups, pore, geometry,
and coating thickness, so that the degradation behavior not to vary from one patient to
another [90].
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In the following, we will briefly approach the specifics of P.C. compared to raw poly-
mers by mentioning some representative literature survey on the characteristic degradation
mechanism of the illustrative selected polymer from each category (natural and synthetic,
including polymers with low biodegradation capability).

3.2.1. Natural Polymers

Degradation mechanism of one representative polypeptide, PHVB, involves several
parameters related to intrinsic physical and chemical properties as emphasized by en-
zymatic degradation studies [91]. PHBV degradation mechanism is involving the ester
group hydrolysis series of reactions initiated by free radicals, cross-linking reactions, and
Norrish I and II mechanisms. Copolymerization is one of the methods for improving
biodegradability and fine-tuning functional properties. It was shown that increasing hy-
droxyvalerate content in PHBV can decrease its elastic modulus, melting temperature
and tensile strength with higher elongation [92]. In the same way, the copolymerization
of polybutylene succinate with butylene adipate monomers up to 60% increases chain
mobility and biodegradability of the copolymer by lowering both crystallinity and melting
temperature [93]. Chen et al. demonstrates that the loading efficiency of daidzein in both
the microspheres and in the deposited coatings can be adjusted by varying the processing
parameters during microsphere fabrication and electrophoretic deposition process [94].
The authors studied degradation of the deposited multilayers in PBS for up to 14 days. The
results revealed that more work is required to further optimize the material structure (both
microspheres and coatings) and to comprehensively understand the interaction between
drug molecules and polymers used. For example, the degradation rate of the coating
should be adjusted in order to avoid severe weight loss during the initial incubation stage
meanwhile in the case of bulk material the surface uniformity of free microspheres, should
be further optimized to produce smoother microspheres in order to tune the initial burst
release effect [94]. Hu J. et al. reported the successful fabrication of nanofibrous scaffolds
by emulsion electrospinning of metformin hydrochloride or metoprolol tartrate with PCL
or PHBV [95]. Then, the authors evaluated the influence of preparation processes and
emulsion compositions (polymer/drug/surfactant) towards the drug release behavior
of the scaffolds, together with their morphology, surface, and thermal properties [95].
When compared to blended electrospun nanofibers, in vitro release studies revealed that
the emulsion electrospun nanofibers substantially reduced burst release and created a
sustained release of drugs. [95].

Another representative example is Chitosan whose degradation process usually begins
with random splitting of β-1,4-glycosidic bonds (depolymerization) followed by N-acetyl
linkage (deacetylation) [49]. Simultaneously with chitosan chain scission, at the same time,
the cleavage and/or destruction of its functional groups (amino, carbonyl, amido, and
hydroxyl) can happen [50]. It is solubilized in solutions with acidic pH.

In vivo, chitosan is degraded by several enzymes, mainly by lysozyme producing
non-toxic oligosaccharides which can be then excreted or incorporated to glycosoamino-
glycans and glycoproteins [51]. In vitro degradation of chitosan via oxidation, chemical,
or enzymatic hydrolysis reactions are commonly used methods for the preparation of
low molecular chitosan under controlled conditions [52]. Youling Yuan et al. evaluated
bonding, degradation, and bone cell growth on titanium coated with chitosan of different
degree of deacetylation and from different manufacturers [96]. The results suggest that
several factors, such as degree of deacetylation, molecular weight, and origination, are
important for coating properties and may also be important to in vivo tissue response [96].

These findings were also confirmed by the study presented in Ref. [97] which agrees
that chitosan degradation rates can be easily tuned by the degree of deacetylation [97].

Several studies have reported the use of drug-loaded chitosan-based dressings/
bandages for wound healing and treatment of open-skin wound infections [98,99], burn
infections [100], and/or surgical-site infections [101]. The dressing could deliver the loaded
drug into the wound area, thus providing a sustained antimicrobial activity.
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3.2.2. Polymers with Limited Biodegradation Capacity

Cellulose and its derivatives (ether and ester) can render distinct drug delivery prop-
erty patterns, even immediate, delayed, or sustained release [102–105].

In the study of Yallapu et al., CUR-conjugated Cellulose nanocrystals (CNCs) (5.2 nm)
revealed a significant cellular uptake and anticancer activity on prostate cancer cells com-
pared with free CUR [106].

Solanki and Thakore used cellulose cross-linked with PCL and lactic acid (LA)/glycolic
acid (GA)/dimethylol-propionic acid to encapsulate felodipine for controlled delivery [107].

Furthermore, the capability of cellulose-based polymers as bio-filler and hydrogel
matrix are of great importance for developing sustainable additive manufacturing [103].
Thus, 4D printing of cellulose-based materials could be considered essential in biomedical
applications, especially for drug delivery and/or soft robotic applications [105].

3.2.3. Synthetic Polymers

PGA, a synthetic polymer, can degrade by its carbonyl groups cleavage under hydrolytic
or enzymatic conditions [55]. Its degradation product is L-lactic acid. Its aliphatic ester bonds
are responsible of its hydrolytic instability. PGA is fully biodegraded by the organism within
4 months, but its mechanical properties almost disappear after 6 weeks [55–58].

Shuqiang Liu et al. demonstrated that the degradation rate and cycle of drug release
from suture (Ciprofloxacin) can be tuned by adjusting the proportion of PGA and PCL [65].
One notes that in the degradation process the suture gradually degraded from the coating
materials to the inside fibers [65].

Another example shows the degradation mechanism of the polyanihidre, PSA. In
the study of Cui Zhixiang et al., poly (sebacic acid) diacetoxy terminated (PSADT) tablets
with a circular cross-section were formed using a compression molding device, and then
immersed into PBS for in vitro degradation experiments [69]. When the device thickness
is greater than the critical sample thickness and the rate of hydrolysis is more rapid than
the rate of water diffusion into the device, the degradation mechanism is mainly realized
by surface erosion and controlled by varying the amount of hydrophobic or hydrophilic
monomers [69,70].

Zhuoling Deng et al. proved that the degradation kinetics of polymeric thin films
differ significantly from bulk materials, as interfacial effects become dominant. Therefore,
it is crucial to investigate their kinetic separately. In their work, PSA is used as a model
system for a quantitative degradation study. Two degradation kinetic regimes are observed
when plotting the relative layer thickness determined by ellipsometry and surface plasmon
resonance (SPR) against the degradation time, which corresponds to two different rates
of erosion. The results revealed that in the case of PSA, the degradation rate could be
thickness dependent [73].

Another study of Stefan et al. [71] is dedicated to the degradation behavior (in SBF at
37 ◦C) of MAPLE PC based on PSADT, in dynamic regime. In general terms, bulk polyan-
hydrides have a hydrophobic backbone where anhydride bonds are subjected to hydrolysis
because they are very water-labile; these polymers degrade with a surface erosion. The
depolymerization reaction is too quick to allow water to enter the matrix, which erodes over
time. In the exemplified study of P.C. degradation, weighing measurements of degraded
samples confirmed slower degradation tendency with increasing initial PSADT amount.

Birgit Romberg et al. summarized in their paper the current status of PAA-coated
liposomes. The results regarding circulation kinetics and enzymatic degradability of the
PAA-coating revealed that the PC are degradable by proteases, which is beneficial for
reducing the risks of accumulation in vivo [78].

Visan et al. examined the long-term degradation of coatings based on various formu-
lations of PCL-polyethylene glycol blends (PCL-blend-PEG) under simulated conditions.
During the first year, PCL ester groups are hydrolytically cleaved. Next, intracellular
degradation occurs. Meanwhile, bulk PEG degrades under physiological conditions by
hydrolytic and enzymatic cleavage of the phosphate bonds in the backbone to phosphate,
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alcohol, and diols. It is soluble in aqueous solutions. Results proved that the alteration of
blend coatings is strongly governed by the properties of the main bulk polymer constituents
being enhanced by the increase of PEG content in the polymeric composite coatings [18].

4. Degradation Mechanisms

A reference work (based on the available books [30,69,108,109] and papers in the
field) that provide basic information on degradation mechanisms would constitute a
useful starting point in future selection of synthesis deposition method, properties, and
applications of biodegradable polymers.

The degradation process can happens to polymers [108] either by physical (bulk,
degradation, erosion, disintegration, dissolution) or through chemical routes (enzymatic or
hydrolytic). Physical degradation of the polymers can be a result of the chemical changes
due to the surrounding conditions.

The next section comprises the description of degradation process driven by chemical
and physical phenomena. Depending on polymer features and the exposure place in the
body, the degradation rate could be tuned in the desired way, also taking into account the
biological interactions.

4.1. Physical Degradation

Basically, physical degradation of polymers in biological environments involves two
complementary processes: degradation (refers to polymer chains scission cleaved into
oligomers and monomers) and erosion (represents the loss of material due to monomers
and oligomers leaving the polymer), respectively (Figure 5) [30].
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Bulk degradation implies a faster degradation inside than at the surface of poly-
mer [28]. In the case of an ideal bulk erosion, the rate depends on the total amount of
the material which is lost from the entire polymer volume at the same time due to water
penetrating the bulk, while remaining a constant size during the degradation process [109].
Some polymers (especially the hydrophilic ones) that exhibit this characteristic bulk erosion
degradation mechanism are: the biodegradable polyesters, Poly (lactic-co-glycolic acid)
(PLGA), PCL, PGA, and Poly-L-lactic acid (PLLA). Depending on the monomers used and
their molecular weights, the degradation time of these polymers, widely used in drug
delivery applications, varies from a few months to several years [109].

In ideal surface erosion, the rate is proportional to the surface area [34]. Concretely,
the erosion of polymer surface becomes smaller while keeping their original geometric
shape during the degradation process (biomaterial is lost only from the polymer matrix sur-
face) [34]. Some typical examples of polymers which exhibit characteristic surface erosion
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degradation mechanism are polyanhydrides as e.g., PSA, poly (1,3-bis (p-carboxyphenoxy)
propane (PCPP), poly [1,3-bis (p-carboxyphenoxy) propane-sebacic acid] (PCPP:SA), and
poly (1-6-bis (p-carboxy phenxoy) hexane) (PCPH). Such polymers exhibit generally a
hydrophobic behavior wherein water cannot penetrate easily into the bulk. The erosion
time in this case can vary from few days to several years [69].

The disintegration process is related to particles fragmentation to an acceptable size
(depending on the required application) [28].

Another discussion interferes in clarifying the dissolution term which is attributed to a
solution of macromolecules, constituting a polymeric biomaterial in a liquid medium [28].

4.2. Chemical Degradation

Of all degradation types, the chemical degradation is particularly pertinent for poly-
mers used in biomedical applications (the observed type of degradation being dependent
on the type of bonds comprising the polymer, typically within the backbone) [110]. Molec-
ular chain scission can be initiated as mentioned earlier, either passively by hydrolysis or
actively by enzyme-catalyzed hydrolysis [111]. Oxidation process may also occur [110].
Chemical degradation causes the main deterioration of polymeric chains by a random
cleavage of covalent bounds, depolymerization, or cross-linking of linear polymers, inter-
fering with regularly order chain and with crystallinity, finally resulting in a decrease of
mechanical properties [112].

Enzymatic degradation is considered by the catalytic action of enzymes under abiotic
conditions, meanwhile hydrolytic degradation is defined as degradation identified as
resulting from hydrolytic cleavage of macromolecules [28]. While enzymatically degradable
polymers contain hydrolytically labile/unstable/capable to change bonds, these bonds
are too stable under physiologic conditions and also require an enzymatic catalyst to
undergo degradation [113]. However, numerous bonds (e.g., anhydride, ortho-ester, ester,
urea, urethane/carbonate, and amide) will undergo passive hydrolytic degradation under
physiologic conditions [110]. There are illustrated the specific cases when degradation
process is accompanied by a decrease in molar mass (e.g., vinyl polymers, polyamides)
and the situations when degradation means changes in chemical structure (e.g., polymers
with aromatic rings in the main chain). The process can also be accompanied by cross-
linking [28].

Cross-linking is an important factor because the obtained polymers are generally
mechanically strong and resistant to wear, heat or attack by solvents [114]. The degree
of cross-linking that occurs is determined by the percentage of polymer chains that are
interconnected in the network [115].

Some studies revealed that polymer nanocarriers can reversibly deform under stress
while maintaining structural integrity or transmembrane diffusivity [115]. Cross-linking
may sometimes present some adverse effects exhibiting a decrease in mechanical properties
and exploitation durability [114]. It is reported that the mechanical properties of non-
mineralized and mineralized collagen fibers are significantly affected by the cross-linking
method [116]. Furthermore, the degradation process is influenced by polymer composition
and molecular structure, polydispersity, hydrophilicity or hydrophobicity characteristics,
surface area, or crystallinity.

The chemical degradation category also covers the degradation in a biological envi-
ronment, which could be defined as a gradual breakdown of a biomaterial mediated by a
specific biological activity. When polymers are exposed to body fluids they may undergo
changes in their physico-chemical properties as a result of chemical, physical, mechanical,
and biological interactions between the biomaterial and the surrounding environment [30].
Therefore, the manipulation of the degradation process is fundamental not only to modu-
late the duration of a biomaterial inside the body but also to control the biocompatibility or
the drug release [30].

The degradation process of a polymeric biomaterials inside the body is generated
mainly through oxidation, hydrolytic, or enzymatic mechanisms.
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In Table 2 the principles of above-mentioned general mechanisms are collected.

Table 2. Exemplification of the general degradation mechanisms type-bulk polymers (B.P.) versus P.C.

D.M. Basic Steps of the Degradation Mechanism Reference (B.P.) Reference (P.C.)

HYDROLYTIC

The first degradation reaction is the hydrolytic scission of the
polymer chains which leads to a decrease in the molecular weight
[117]. By further hydrolysis, the molecular weight of degradation
products is reduced allowing them to diffuse from the bulk
material to the surface and then to the solution, causing thus a
significant weight loss. Acids, bases, or salts may catalyze the
hydrolysis reactions. The biomaterial absorbs water and swells,
and degradation will progress from the outside of material
towards its interior.

[118–120] [18,121]

OXIDATION

Degradation takes place by oxidation when P.C. are exposed to
body fluids and tissues. The oxidative effect of the highly reactive
oxygen species (e.g., hydrogen peroxide, superoxide (O2),
hypochlorous acid (HOCl) and nitric oxide) produced by
inflammatory cells (especially macrophages and leukocytes)
during inflammatory response to foreign biomaterials may cause
polymer chain scission and contribute to their degradation [122].

[123,124] [125–127]

ENZYMATIC

Degradation occurs when enzymes cannot penetrate the inner of
the polymer, due to high cross-link density or limited access to
cleavage points, forcing the surface or exterior bonds to cleave
first [117,128]. Basic interaction steps between enzymes and
polymeric chains are:

1. Diffusion of the enzyme from the bulk solution to the solid
surface.

2. Adsorption of the enzyme on the substrate, resulting in the
formation of the enzyme-substrate complex.

3. Catalysis of the hydrolysis reaction.
4. Diffusion of the soluble degradation products from the

solid substrate to the solution [117,128].

[124] [129]

Abbreviations of the table legends: Degradation mechanism type = D.M.

All polymers which contain hydrolysable bonds (e.g., glycosides, esters, anhydrides,
orthoesters, amides, carbonates, ureas, or urethanes) exhibit a hydrolytic degradation
mechanism [130]. As mentioned before, the hydrophilic characteristics of polymers support
the modulation of the hydrolytic degradation rate. Biomaterials such as PEG have a high
solubilization rate [131].

In the case of aliphatic polyesters such as PLGA, the acid products accelerate degrada-
tion due to autocatalysis [132]. Superoxide could accelerate the degradation of aliphatic
polyesters by the cleavage of ester bonds via nucleophilic attack of O2

− [117,133]. It was
also reported that polyurethanes are attacked initially by neutrophils which secretes reac-
tive oxygen species and HOCl, one of the most oxidative compounds [134]. In the presence
of cholesterol esterase enzyme, polyurethane degradation is about ten times greater than
in the absence of the enzyme [135].

The action of particular enzymes prevents enzymatic degradation of natural origin
polymers. In the case of hyaluronic acid in mammals [136], the degradation was carried
out by theaction of three enzymes: hyaluronidase, β-D-glucuronidase, and β-N-acetyl-
D-hexosaminidase. As for chitin derivatives, lysozyme is the enzyme involved in their
degradation inside the body [117].

4.3. Factors Affecting Degradation Mechanisms

There are a large number of factors that influence polymers degradation capability
and their overall rate of degradation. Among them, one should mention the copolymer
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composition [137], morphology [138], autocatalysis by acidic degradation products inside
a matrix [139], presence of drugs [140], and preparation technique [141]. Hydrophilicity–
hydrophobicity balance, the structure and molecular weight of the polymer can also
predetermine the degradation behavior [142]. Moreover, the environmental conditions
such as temperature, the presence of other additives in the polymer, pH, humidity, oxygen,
the amount and the microbial strains, salinity, or exposure to external influences (e.g., UV,
X-ray, γ-ray, ion beams, or mechanical strain) could also have a great influence [142].

For example, temperature and glass transition temperature (Tg) was evidencing
to affect the rate of hydrolysis of a PGA/PLLA copolymer (about 25%–30%), the rate
increasing with increasing temperature [143]. An increase in temperature enhances the
degradation rate and it is more pronounced when is above the Tg of the polymer [144].

Depending on the polymer chain type arrangement (e.g., linear, branched or cross-
linked [145]) and its crystallinity or amorphous nature, the degradation rate can be al-
tered [145].

Additionally, molecular weight proved to produce effects on polymeric degradation
rate. Thus, a high molecular weight (Mw) polymer degrades slowly compared to a low
molecular weight polymer. However, the high Mw PLLA degrades faster due to its amor-
phous nature [146]. The lower Mw nanocarriers degraded more quickly, resulting in mass
loss, pH decline, and a rapid drug release rate in vitro. In the case of PLGA, the degradation
and the drug release are dependent on the polymer Mw [147].

Additionally, cross-linking causes packing of the polymer, make it impermeable to
water which will slow down the degradation process [148].

Morphology, size and geometry also represent important parameters. A large active
surface that interacts with surrounding environment can accelerate the degradation rate of
the polymer.

During the bulk degradation of as-polymerized PLLA, a rapid decrease of Mw and
tensile properties was observed. This could be explained by the morphology of the material
and the presence of thermal stresses and subsequent generation of micro-cracks [149].

Large size plates degrade faster and heterogeneous than thinner films. A linear
relationship between the degradation rate and the particle size was found, with larger
particles degrading fastest. For smaller particles, the degradation products formed within
the particle can diffuse easily to the surface, while for the larger ones the degradation
products have a longer path to the surface. Thus, autocatalytic degradation of the remaining
polymer material can occur [150].

It was shown [151] that devices with large surface area degrade faster.
Copolymer composition and monomer structure and composition are things to be

considered when evaluating B.P. and/or P.C. Thus, it was shown that the increase in
glycolide content accelerates polymer degradation [152].

Monomers containing hydrolyzable bonds (e.g., anhydrides) undergo rapid degra-
dation compared to polymers with ester bonds. The order of degradation of different
chemical groups is anhydride > ester > amide [153].

Copolymers can be random, alternative, graft, or block copolymers. The possibility of
forming a particular type of copolymer depends on the reaction conditions during poly-
merization and the monomers reactivity ratio. The degradation behavior of alternative and
random copolymers consisting of the same molar ratio of co-monomers can be significantly
different [154].

There are available numerous combinations of polymeric blends available, which
are including a wide range of matrix and dispersed phase bulk biomaterials (e.g., they
vary in component compatibility/incompatibility, partial miscibility, or size and shape of
inclusions). Thus, another aspect to be considered is deformation of polymer blends which
includes a number of micromechanisms (e.g., crazing, shear yielding, different forms of
cavitation). These deformability effects may affect decrease in mechanical properties and
exploitation durability [155].
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Another aspect to be considered is the hydrophilicity/hydrophobicity nature of stud-
ied material. The results revealed that the hydrophilic polymers show faster degradation
due to the higher water absorption or diffusion into the polymer. Thus, preparation tech-
nique could be of great importance. PDLA and PLGA spray-dried particles degrade faster
than particles prepared by solvent evaporation [151]. In addition, differences in processing
conditions, during fabrication, may also play a role. Polymers that undergo bulk erosion
degrade faster than those that undergo surface erosion [156].

On the other hand, pH should not be neglected. Polymers immersed in neutral pH
medium undergo slower degradation or solibilization than in acidic and/or alkaline pH [153].

Crystallinity (or Tg) offers interesting information about the degradation process.
Crystalline polymers undergo slower degradation compared to amorphous ones [146].

Autocatalysis is another interesting example to be considered to induce an effect on
degradation process. There is a study where it is shown that degradation is uneven and
takes place faster in the center compared to surface [152].

Additionally, the type of drug may influence the polymer degradation, which may
vary from bulk to surface erosion. Similarly, polymeric devices with higher drug loading
show higher initial release compared to those with less drug loading [157].

The structural polymeric characteristics such as flexibility, chemical linkages, degree of
cross-linking, composition, morphology, microstructure, polarity, and extent of crystallinity
have a strong influence on the degradability of polymers. In general, polymer degradation
is accelerated by polarity, superior hydrophilicity in the backbone or end groups, inferior
crystallinity, lower average molecular weight, and a smaller size of the finished device [145].
The influence of various factors on the degradation process of most widely used polymers
is presented in Table 3.

Table 3. Influence of various factors on the polymer degradation.

Factor Polymer Reference

TEMPERATURE and Tg PGA/PLLA, PLGA copolymer [158,159]

Molecular weight PLGA, PCL, PEG [160,161]

Morphology, size and geometry
PGA, PLLA [162,163]

Poly (D-lactic acid) (PDLA), PLGA [159,164]

Copolymer composition PLGA [137,165,166]

Monomer structure and
composition Anhydride [153]

Copolymer type of polymer PEG [157]

Hydrophilicity/hydrophobicity proteins, polyethylene glycol ethers,
polyamide, polyacrylic amides [167]

Preparation technique PDLA, PLGA [141,166,168]

pH PLA, Chitosan, Polyhydroxybutyrate
(PHB) [169]

Crystallinity (or Tg) PLGA

Autocatalysis PDLA [139,170]

Drug type and drug loading PLGA [157]

An important factor that affects the degradation process of polymeric films used for
drug delivery applications is the interaction between the polymeric matrix and the drug.
Besides the drug embedment, the physico-chemical properties are a critical parameter with
strong effect on the polymer degradation process and implicitly in the drug release [171].
Hydrophilic drugs accelerate the polymer degradation by facilitating the water penetration
in the system and creating highly porous polymer networks upon drug leaching. In contrast,
lipophilic drugs slow down the polymer degradation by hindering the water diffusion into
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the matrix [171]. In the case of acidic drugs, one can notice an accelerated degradation due
to the acid catalysis justified by a faster hydrolysis of ester bonds [171]. For basic drugs,
the autocatalytic effect of acidic chain ends can be minimized or eliminated based on two
effects: (1) base catalysis of ester bond cleavage and (2) neutralization of carboxyl end
groups of polymer chains [171]. Thus, the degradation can be either accelerated or slowed
down depending on the relative importance of the two observed effects [171,172].

The literature examples emphasize once again an important aspect to be considered
in the design of controlled drug delivery systems, namely that the degradation rate of a
polymer depends to a large extent on easily controllable factors, as discussed above.

5. Deposition Techniques for Polymeric Thin Films Fabrication
5.1. Sample Development Methods

Thin film deposition methods can be classified as chemical or physical [33]. Basi-
cally, chemical methods (e.g., chemical vapor deposition, sol-gel) involve gas-phase or
liquid-phase chemical reactions. Physical methods typically include evaporation, sput-
tering (ejection of materials from a target followed by condensation to form films), and
spraying [173].

In order to obtain better quality polymeric thin films, one should point out some re-
quirements regarding the substrate and processing methods (control of several parameters
during and after deposition) which are essential when choosing the deposition technique.
Some techniques which require high processing temperatures (e.g., thermal evaporation)
proved unsuitable for some biopolymers [32]. Other aspects to be considered are related to
the proper deposition rate, cost, and potential for scaling-up the deposition method [32]. It
must be borne in mind that the overall behavior on surfaces is usually different to what is
expected from bulk behavior. Even in the case of multiple processes (used to deposit the
same source material onto the same substrate), the selection of optimal parameters is of
key importance in the achievement of the final properties and structure of the coating [32].

In the following, specifics of coating development with the advantages and specifics of
different P.C. and MD applications (insisting on drug delivery ones) are concisely addressed.
Taking into account that the deposition process is dependent upon several factors (e.g.,
substrate nature, operating temperature, deposition rate) it is understandable that thin
film properties (e.g., thickness, mechanical properties, or surface chemistry) synthesized
by different methods differ greatly [33]. Thus, the deposition technique choice requires
a systematic study and comparison [173]. Moreover, the combination of the different
deposition techniques (chemical and physical) can realistically enable the exploration and
expansion of existing techniques for the fabrication of future films and coatings [173].

In the case of dip-coating method, viscosity of the polymer-solvent solution, the
deposition speed or substrate nature affects thickness and the adhesion strength between
film and substrate [32] which is an important factor in degradation tests [33].

Up until now, the drawbacks of Langmuir-Blodgett coatings limited their use and im-
peded the industrial application. Their mechanical and thermal stability is quite low [174].
The polymerization improves stability towards mechanical, thermal, and environmental
attack by inducing structural reorganizations, but unfortunately, it can lead to defects in
the multilayers (e.g., by shrinkage) [174]. These problems can be minimized by appropriate
molecular design [174].

Nahir Dib et al. [175] evaluated in their work, simple and Albendazole (ABZ)-dendron
mixed films synthesized by Langmuir-Blodgett technique, the composite coating being
proposed as surface mediated antitumoral delivery systems without cytotoxic effects [175].

Dib et al. used Methyl thio-5-propyl-1H-benzimidazole2-yl carbamate (Albendazole,
ABZ) as a model anthelmintic therapeutic agent, proving its good potential as an antitumor
agent. Formation and characterization of pure (dendrons) and composite (drug-dendron)
stable and reproducible monolayers, and their transfer to solid substrates, was reported
also in their work [175].
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The sol-gel technique is a classic example of substrate-dependent technique. In partic-
ular, new perspectives are opened by the so-called in situ processes where the inorganic
phase is produced in the presence of a polymer or a monomer [176]. Concretely, polymer
to gel process involving mild synthesis conditions (e.g., Pechini method (citrate gel) or
evaporation of the solution of the water soluble in the initial solution) can allow the coating
of substrates in polymeric form at a low temperature and bioencapsulation of relevant
functional biomacromolecules [176]. Besides the advantages (e.g., simpler equipment, low
cost, homogeneous films preparation, or reduced densification temperature) exhibited by
the P.C. synthesized by sol-gel technique, there still remains some important difficulties to
be overtaken (e.g., low wear-resistance and a poor coating adhesion which can often lead
to ”peel off” phenomenon) [173].

The incorporation of drugs (Chlorpheniramine maleate, theophylline, and famotidine
mixed with Opadry amb II® or Kollicoat IR®) into various polymeric compositions using
spin coating technology to screen amorphous solid dispersion film formation for oral
applications was reported by Albarahmieh E. et al. [177].

Combining spin coating and breath figure process, Thiruselvam Ponnusamy et al.
developed a single stage process aiming to obtain porous thin films with incorporated
drugs. Both surface and bulk features of porosity were further characterized by SEM and
the degradation pattern of PC was examined in PBS. The authors also emphasized that
the addition of a small amount of PEG into PLGA facilitates ingress of water into the
structure, suggesting that the delivery can be modulated [178]. Salicylic acid (highly water
soluble) and ibuprofen (sparingly water soluble) have been chosen as two model drug
compounds to characterize the release rates, which proved higher in films of the breath
figure morphology rather than in non-porous films [178].

Bulk polymers with in situ gelling behavior can be used alone or in blends for the
preparation of drug delivery systems in the form of solid formulations (i.e., polymeric
matrices, films) [179]. They can be administered through different routes, to achieve either
local or systemic vehicles for drug delivery with further prolonged residence time at the
site of action/absorption [179,180].

In another study, a drug delivery system based on chitosan nanoparticles acquired by
ionotropic gelation, loaded with teicoplanin, and incorporated in tripolyphosphate (TPP)
was investigated. No interaction between teicoplanin and chitosan was evidenced but an
increase in nanochitosan size caused by the drug was confirmed [181].

Gandhi et al. also demonstrated the potential of sol-gel technique for potential use
as a sustained release device for intracanal drug delivery systems (e.g., chlorhexidine-
GELRITE® Gellan (polymer)) [182].

The laser-based technologies are widely used for the fabrication of polymeric coatings,
exhibiting controlled thickness, good adhesion to the substrate, low material consumption,
and stoichiometry conservation of the growing film [173]. Laser-based thin film deposition
techniques (e.g., matrix-assisted pulsed laser evaporation (MAPLE)) are competing with
conventional methods used for the development of new materials with tailored properties,
a core advantage being the ability to combine multiple materials in different configurations
(layered or blended) [183]. The deposition of viable and functional thin films require several
key elements: laser depositing system characteristics, the choice of targets and receiver
substrates, etc. [183]. Cristescu et al. adopted various protocols in order to perform MAPLE
experiments, since pullulan, like most polysaccharides, has poor solubility in common
organic solvents. Pullulan, either in bulk [184] or coating form [185], is widely used in drug
delivery applications (e.g., epirubicin-loaded cholesterol-modified pullulan self-aggregated
NPs [186,187]). Varying the thickness and the composition of the biodegradable polymer
in a multilayer implementation, the authors demonstrated that MAPLE processing relies
on achieving a modulatory release profile of drug particles [188].

In another study, implants consisting of indomethacin coated with polymeric PEG:PLGA
films were produced by MAPLE [189].
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Laser-induced forward transfer (LIFT) constitutes a viable alternative to more con-
ventional laser direct writing techniques for microprinting of complex polymers [190],
with the additional advantages of presenting higher degrees of integration [191], and
avoiding contamination and clogging problems thanks to its non-contact nozzle-free na-
ture [173,192,193].

Another example, the printing of polyvinyl alcohol (PVA) polymer thin films via
LIFT was accomplished by using water soluble PVA polymer as a support material for
3D-printed structures [194]. The effects of the laser fluence, the thickness of the donor
film, and the collector material on the deposition morphology (shape and size) have been
studied. The transfer process in PVA printing by LIFT demonstrated the ability of the
deposited material to be solubilized in water, the PVA solubility after the laser irradiation
being confirmed by the polymer behavior in deionized water.

The good deposition and adhesion of salmon sperm DNA spots onto poly-L-lysine
substrates by LIFT with a pulsed Nd:YAG laser was obtained [195].

Ink jet technology can “print” pharmacologic agents onto small needles, producing a
low-cost, painless drug delivery system [196]. In recent studies, ink jet printing has been
applied to microneedles-arrays of tiny lancet-shaped polymer needles that are already
being used to painlessly deliver vaccines [196].

In the last years, a number of studies on bulk silk [197,198] or silk-based coatings [199]
were reported due to polymer capacity of maintaining the functional drugs, tunable
degradation, and biocompatibility. In this context, water-based silk fibroin (SF) inks exhibit
many attractive features, including the ability to make biochemical compounds available in
printed formats, printer-friendly rheological properties, controllable degradation profiles,
and good mechanical properties [200]. The bulk polymer properties can be tuned by
controlling silk polymorphism and by mixing with other biomaterials (e.g., the addition
of keratin, collagen), for supplemental functions [200]. Furthermore, a large variety of
signaling molecules (e.g., enzymes, growth factors, cytokines) can be embedded in the silk
inks [200].

Lysozyme was used as biologic drug model and was formulated as a solution for
printing (hydroxypropyl methylcellulose and chitosan) by thermal inkjet printing [201].

Another example is related to layer-by-layer (LbL) adsorption technique which
presents adjustable features (e.g., layer structure, component selection, biocompatibil-
ity, degradability, and size/dimension) which can support to overcome any outstanding
practical difficulties in delivering therapeutics [202]. Four basic mechanisms of LbL films
were reported: (i) disruption of layer interactions, (ii) degradation of the LbL film, (iii) multi-
layer destruction via physical stimuli, and (iv) phase transitions or polymer rearrangements
within the LbL film [202]

Being a simple and inexpensive technique, LbL can also satisfy the strict demands
from the economic point of view [203].

A newly proposed LbL self-assembly, known as “instructed assembly (IA)”, showed
that the ordered structures of individual molecules can be formed under stimuli (e.g., light,
chemical, enzymatic reaction, ligand−receptor interaction) [204]. The LbL technique could
also be used to design bioreactors using multi-responsive and multi-compartment capsules
for controlled enzymatic reactions [205].

Hu Yan et al. assembled LbL films of chitosan/gelatin pairs where mesoporous silica
nanoparticles loaded with b-estradiol are embedded for a nanoreservoir-type drug delivery
system onto titanium substrates. B-estradiol release proved responsible for regulating
the growth of both osteoblasts and osteoclasts, and the fabrication of such nanoreservoir
structures displayed potential to maintain bone homeostasis [206].

Dexamthasone was controlled release from microcapsules produced by polyelectrolyte
layer-by-layer nanoassembly. Drug particles encapsulated with up to five double layers
were formed by alternating the adsorption of positively charged poly(dimeth-yldiallyl
ammonium chloride), negatively charged sodium poly(styrenesulfonate) and depending
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on the pH positively or negatively charged gelatin A or B onto the surface of the negatively
charged drug particles [207].

One major advantage of plasma-enhanced chemical vapor deposition (PECVD) over
conventional thermal chemical vapor deposition (CVD) is that the lower temperature in
PECVD allows the deposition of layers that cannot tolerate a high temperature, which is
respected in most cases of polymers. Moreover, the deposition rate in PECVD is typically
higher because the arrival rate of the ionized precursors can be easily controlled [32].
Recently, Alexandra Khlyustova et al. review the technological development in vapor-
deposited functional polymer coatings, highlighting their biological applications, including
drug delivery and/or tissue engineering [208].

Another example could be plasma polymerization which can offer the opportunity to
tailor the surface (either bioreactive or non-reactive) and to change the surface chemistry
(possible due to the high retention of functional groups from the organic monomers) [209].

Polymeric bulk materials can be also deposited in form of coatings by vacuum deposi-
tion technologies (e.g., thermal reactive evaporation, PECVD, physical vapor deposition,
e-beam evaporation, and atomic layer deposition (ALD)). Recently introduced, ALD, com-
pared with conventional CVD methods, allows for a better uniformity and conformity on
complex substrates due to the longer lifetime of the precursor molecules to transport and
diffuse to the cavities in complicated three-dimensional substrates [210]. It is true that ALD
usually do not work on a polymeric material surface [211] but recently Hong Chen Guo
et al. developed new nanostructured materials using a binary sequence of self-limiting
reactions on curve surfaces beyond planar deposition of thin film. Thus, ALD deposition
process can be coupled with precursor permeation into polymer bulk, as well as precursor
reaction with polymer chains. These results revealed that polymeric material systems
have a large number of various sub-systems based on different polymer chain network,
functional groups attached, and interstitial space formed [211].

Vogel et al. demonstrated that ALD can be utilized to slow the mat degradation in both
humid and aqueous conditions, from several minutes to multiple weeks, just by controlling
the thickness of the deposited Al2O3 coating on electrospun poly (vinyl alcohol) nanofibers
through increased ALD cycles [212]. Thus, changing the rate at which nanofibers dissolve
modulates the release of embedded small molecules (ketoprofen) within the polymer
matrix from minutes to weeks while reducing the “burst” effect [212].

The feasibility of transforming a drug-containing liquid polymer into a solid hybrid
material was demonstrated by Boehler et al. using ALD [213]. While the PEG serves
as a dispensing medium for any kind of potential biologically relevant molecules, the
subsequent atomic layer deposition of ZnO converts the liquid drug-solution into a solid
hybrid layer, forming the storage phase [213]. This solid film can be coated with a thin
conducting polymer film serving as a gate-keeper, enabling an active release system for a
broad variety of substances [213].

Film deposition by sputtering is predictable and stable and the evaporation process
requires a relatively good vacuum to ensure collision-less trajectories of evaporated atoms
before condensation. To minimize residual gases that can contaminate the film, a high
(10−5 Pa) or ultrahigh (<10−7 Pa) vacuum may be needed to produce films with a desired
purity [209]. The deposition of polymeric coatings by RF magnetron sputtering proved
suitable for so-called plasma polymer deposition and can be used for controlled release
of antibiotic substances [214]. These type of coatings exhibit a considerably higher levels
of cross-linking and branching, as well as an absence of regularly repeating monomer
units [215]. Despite their random and inherently complex structure, plasma polymer
coatings offer the possibility to fine tune wettability and a bio-adhesive/bio-repellent
behavior of deposited surfaces [215].

Another interesting example, the electrostatic powder deposition (ESPD) method, was
applied in the development of films for drug delivery. Prasad et al. proposed a technique
which allows for a high degree of flexibility in preparation of films with discrete shapes
and sizes, without the need for cutting. Films were prepared using PEO, a physical mixture
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of PEO and acetaminophen (APAP), and co-processed PEO and APAP particles [216].
Additionally, the healing times in the case of ESPD films proved to be significantly reduced
compared to films obtained by solvent casting processes (the solvent evaporation can
take hours). In other areas, the ESPD is already employed at industrial scale, thus many
processing parameters and formulation features [216] were already investigated and part
of this knowledge can be translated or expanded and used for pharmaceutical manufac-
turing [216]. Khalil S. et al. recently reported a research regarding the development of a
multi-nozzle deposition system for biopolymers. In order to fabricate three-dimensional
structures, three types of nozzle systems have been used for the deposition of sodium
alginate from aqueous solutions (with various viscosities) and one for PCL [217]. The
system is capable to simultaneously design scaffolds, depositing a controlled amount of a
bioactive compound with precise spatial position [217].

We summarized in Table 4 the most widely used techniques for the controlled synthesis
of polymer-based coatings used as drug delivery systems.

Table 4. Widely used deposition methods for polymeric thin films employed on the degradation subject.

Deposition Method PC Examples Reference

MAPLE

Advantages: Coatings of nanoparticles, application
to both organic and inorganic coatings, multilayers

and multistructures

pullulan

[218–224]PEG

Drawbacks: Small covering areas
PCL

PEG: PLGA

LIFT

Advantages: Patterns with high spatial resolution
polyepichlorhydrine (PECH)

[173,190–193,218–220,225–227]
polyisobutylene (PIB)

Drawbacks: Limited to patterns; difficulties for
large area thin coatings

polyethylenimine (PEI)

poly-L-lysine

Ink-jet printing

Advantages: Thicker films
PCL/chitosan

[228–232]
Silk

Drawbacks: Possible nozzle blockage for
composites

hydroxypropyl methylcellulose

chitosan

Spin coating
Advantages: Simple, uniform coatings

PLGA/ PCL composite [7,233–235]Drawbacks: Solvent issue during multilayers,
adherence

Sol-gel

Advantages: Macroporous bioactive scaffold Chitosan/BG composite

[193,225,228,232,236–240]
Drawbacks: Poor coating adhesion

Polyurethane carboxylated poly
(vinyl chloride)

gellan

Langmuir-Blodgett
Advantages: Monolayers Glucose

[18,241,242]
Drawbacks: Limited to very thin films PCL

LbL

Advantages: Viscoelasticity/bioactivity

PLGA and alginate

[20,130,136,243,244]

Chitosan

Polysaccharide

Drawbacks: Involvement of liquid media limit
multi-layer assembling (affect interfaces)

Chitosan

gelatin

Electrostatic
deposition

Advantages: Solvent-free coating process PLGA
[130,193,236,237,245–247]

Drawbacks: Limited to single coating polysaccharide

Multi-nozzle
Deposition

Manufacturing

Advantages: Porous structures PLA/tricalcium phosphate
[217,248,249]Drawbacks: Possible nozzle blockage for

composites PLGA

Abbreviations of the table legends: Relevant examples of polymeric coatings used for drug delivery applications = PC examples.
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5.2. Degradation Simulation Methods

In vitro degradation behavior can be evaluated by mass loss measurements of weight
changes of the sample (e.g., degradable polymers used as coating materials for surface
functionalization of metallic implants) at different time intervals. One method could be
to place the tested sample in a bioreactor, e.g., a laboratory-controlled system, so that
parameters such as SBF/PBS flow rate, pH, temperature, and humidity can be controlled.

To simulate the processes occurring inside human tissues [250], the polymeric-coated
samples can be tested under physiological-mimicking dynamic conditions (in different
solutions which simulate the body fluids, SBF or PBS, at a temperature of 37 ◦C) using a
manufactured set-up consisting of a multichannel degradation cell [71,251].

Different type of bioreactors (e.g., spinner flask, rotating wall bioreactors, or perfusion
systems) could be applied for in vitro PC testing. While spinner flasks [252] and rotating
wall [253] bioreactors have been shown to boost in vitro culture conditions by increasing
homogeneity of nutrients in the media, perfusion systems [254] exposed cells to shear
stress and efficiently enhance nutrient transfer [255]. A bioreactor has the potential to
minimize the contamination from bacteria, reduce labor intensity, or the costs through
automatization. Moreover, a cell source could be attached to a bioreactor, seeded, and
cultured continuously in the closed system. Nutrient and oxygen concentrations could be
monitored by the system and the media replacement could be automated [255].

One of the mentioned reactors, designed for testing the polymeric coatings, was
reported by Socol G. [71] and represents a reliable method for studying the degradation
behavior of polymeric materials, either in bulk or coating form, owing to its simplicity and
similarity to the organism conditions. However, the accuracy of the method is not fully
controllable [71] due to the statistical process of synthesizing reproducible thin films and
also to the small amount of active substance (e.g., drugs, natural antimicrobial agents, etc.)
that can be incorporated into the polymeric matrix.

In vivo characterization of polymers used as coating materials for surface function-
alization of implants and drug delivery applications is even more challenging due to
contributions from adsorbed inflammatory exudates, proteins, and reactive oxygen species
which are coming in contact with the polymeric surface [171]. In vivo characterization
could be extended to different passive and active drug delivery P.C. systems used in wound,
cancer treatment or for antimicrobial applications [256–258].

Various animals like mice, rats, rabbits, hamsters, fish (e.g., zebra fish, trout), birds
(e.g. chicken), guinea pigs, amphibians (xenopus frogs), dogs, and cats could be used in
research for in vivo testing [259].

Various integrated approaches (e.g., computer models, bioinformatics tools, enzymatic
screens, modern analytical techniques, data acquisition, and statistical procedures) could
be used as alternatives to animal involvement in scientific procedures. Thus, it is required
to investigate the theoretical kinetics modeling and perform simulations to predict the
properties [171].

For example, [151,167] it was shown by computational modeling that PLLA degrada-
tion erosion is sensitive to crystallinity.

6. In Vitro Degradation Characterization Methods

According to the ISO 846-97 standard, polymers degradation can be determined either
by the visual observations or by the measurement of changes which occurs in mass and
physical properties. Depending on requirements, different categories of testing methods
are applied (e.g., in vivo simulation and in vitro laboratory tests).

The most employed techniques applied to evidence the degradation of polymeric
coatings or stabilization in time are listed below [260].

1. Compositional assessment (e.g., oxidation; hydrolysis; chemical reactions)—the chem-
ical changes resulted due to scission or cross-linking of polymer chains as well as
changes in intermolecular forces. These changes can be analyzed by spectroscopic
methods, wet-chemical analysis, gravimetric tests, Energy-Dispersive X-ray Spec-
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troscopy (EDXS), or X-ray Photoelectron Spectroscopy (XPS). Fourier Transform
Infrared (FT-IR) and RAMAN Spectroscopy are complementary methods commonly
used to indicate chain degradation, oxidation, increase of hydroxyl group impact,
water adsorption, etc.

The changes observed on FTIR spectra (the disappearance of peaks) as a consequence
of degradation were evidenced in the in vitro study performed on PLLA meshes. Thus,
FTIR applied to monitor the degradation provided information by chain scissions on both
polymer composition and crystallinity. Then, mappings of in vivo degraded PLLA meshes
were realized to better visualize their degradation mechanisms [261].

Other spectroscopic techniques could be also used, e.g., with TOF-SIMS. Thus, a
good linearity was obtained in the kinetics study of PLLA degradation [170,171]. X-
ray Diffraction (XRD) and XPS can yield important information about the structure and
chemical composition of polymers and their mechanisms of degradation.

For example, it was found that the hydrolysis of ester bonds proceeds linearly with
time. This finding shows that the chemical reaction, rather than water diffusion, is the gov-
erning mechanism. The results also show that degradation rate increases with increasing
polydispersity [165,166].

Distinct spectroscopic evidence of morphological changes (i.e., an increase of crys-
tallinity) was noticed [168,169,262]. The hydrolytic degradation of polyethylene(terephthalate)
(PET) in water occurs preferentially at terminal ester sites, whilst in alkaline solution it is a
much more random process [154,157].

Additionally, nuclear magnetic resonance could represent a powerful spectrometric
technique which provides information about stability and degradation of the polymers
(e.g. degree of acetylation, of amination, or sulfonation [27]. In a study related to the
functionalizing the nanocarriers surfaces with a tissue-recognition ligand [27], Nuclear
Magnetic Resonance (NMR) analysis confirmed the incorporation of the ligands (PLA-
PEG- folic acid and PLA- PEG -biotin conjugates) on the nanoparticles.

2. Morphological changes investigations—study of surface cracking responsible for the
change in mechanical properties. Applied techniques: Scanning Electron Microscopy
(SEM); Atomic Force Microscop (AFM); Optical microscopy (OM).

Qualitative evaluation of polymer degradation can be performed by SEM, OM (when
cracks peel off or holes can be observed) and by AFM which can provide insight into the
rugosity of P.C. In the study of Cui Zhixiang et al., AFM and SEM techniques were used to
demonstrate that the surface roughness increases with the degradation time. Additionally,
it is found that both the number and size of pores increase with the degradation time [69].

In another example, the degradation behavior of polymeric coatings was evidenced
by SEM images of the PCL-blend-PEG during immersion in SBF up to 16 weeks correlated
with SEM images yielded from electrochemical experiments [18]. The appearance of holes
corresponding to eroded areas were observed [18]. It was found that the PEG solubilizes
fast, immediately after the immersion, while the PCL degrades slowly over the whole
period of time [18,153].

3. Macromolecular properties evaluation-chain length that produces the shrinkage
forces leading to surface cracking. Applied techniques: XRD, Differential Scanning
Calorimetry (DSC), and Size Exclusion Chromatography (SEC). The study of ther-
modynamic parameters, such as: thermal (DSC differential scanning calorimetry) or
thermomechanical properties analysis (TMA), including Tg, melting point (crystalline,
semicrystalline polymers), decomposition point; decomposition can be determined
from thermogravimetric analysis (TGA). Dynamic mechanical analysis (DMA) is
worth mentioning also and may provide important information that can be used
in the development of new products and improvement of those already in the mar-
ket [164]. For example, Tg and Mw decrease as degradation proceeds [152,164].

In the next example, the DSC curves of PSADT samples processed at different tempera-
tures are very similar to that of the unprocessed ones, indicating that the processing method
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does not induce any additional crystallinity compared to the raw material. Additionally, in
the same study it was found that processing temperature has no significant effect on the
PSADT degradation rate [69].

Another important standard technique to characterize polymers degradation is deter-
mination of the molecular weight reduction by means of gel permeation chromatography
or by intrinsic viscosity [263]. Many theories link the drug diffusion coefficient inside
degradable polymers to the polymer molecular weight, as small chain molecules offer less
restriction for drug diffusion than long chains, thus making the presented above technique
of great importance [27].

Thermal properties of the polymeric materials are reported in the work of Flores-
Ramırez et al. TGA results on the functionalized hybrid chitosan material with two
different stoichiometric molar ratios revealed that the degradation temperatures decrease
as the degree of functionalization increases [264].

4. Mechanical properties tests (e.g., tribological measurements; nanoindentation tests)
—degradation often corresponds to a transition from a ductile to brittle mode of failure
which can be studied by Young’s modulus. One should note that the whole stress
-strain behavior is an important indicator of degradation as the Young’s modulus may
also increase sometimes due to crystallization, whereas total sigma-epsilon behavior
indicates reduced strain, etc.

5. Degradation behavior can be also evaluated by mass loss weights and/or electro-
chemical measurements. The fact that the metallic implants corrode in the human
body remains a challenge, the electrochemical experiments can be also used to induce
accelerated degradation effects. Therefore, the control of blending biomaterials can be
applied with the pursuit to regulate the corrosion rate and prevent rapid corrosion.
However, one should mention that this is an accelerated test method, and the test
parameters are quite different from actual environmental conditions.

The degradation study of PSADT was confirmed by mass measurements that the
rates of mass loss is almost linear during the degradation process, indicating that a near
zero-order degradation kinetics theory holds good for this polymer [69].

Meanwhile, bulk characterization offers information on the macroscopic properties of
the biomaterial such as mechanical, solubilization, optical, thermal, or dielectric properties,
the surface characterization can reveal critical morphological information for interfacing
the implant or drug delivery device with the host tissue.

Additionally, in the lower pH of media conditions, the PLGA was faster degraded
generally. The presence of various additives, moreover, affected decrease of pH and slight
acceleration of LA and GA detection [156].

A literature survey on polymeric biomaterial characterization techniques used to
evidence the degradation processes is given in Table 5.

Table 5. Characterization techniques used to study polymer degradation behavior.

Polymer Degradation Parameters Characterization
Technique Drug Reference

PDLA Mw, Tg, Thermal changes DSC, SEM Prednisolone [265–267]

Polyesters

Absorbance of peak quantify changes
in the concentration of degradation

products and thus to provide
indications regarding the kinetic

constant of the hydrolysis reaction.

FT−IR Antihypertensive
drugs [268–270]

PCL-blend-PEG Weight measurements
Bioreactor,

Electrochemical tests;
SEM; FT-IR

Paclitaxel [18,66,271]

PET Changes in concentration IR 5-fluorouracil and
6-thioguanine [272–274]
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Table 5. Cont.

Polymer Degradation Parameters Characterization
Technique Drug Reference

PLLA Polymer structure and composition Computational
modeling lidocaine [275–277]

SF-PSADT Weight measurements FT-IR, XRD, SEM,
bioreactor cisplatin [71,278]

LA and GA in PLGA pH HPLC MEK1/2 inhibitor
GDC-0623 [279,280]

Copolymer of
lactide/caprolactone

Chemical composition, molecular
weight, morphology Raman Spectroscopy vancomycin [281–283]

PLLA Surface molecular weight and
end-group TOF-SIMS Ciprofloxacin [65,284,285]

One should note here that the same techniques for characterizing and highlighting
the degradation phenomenon are applied both for bulk material and coatings.

Due to the fact that in the case of coatings where small quantities of material are
involved, more attention is needed in order to obtain any form of meaningful data on
P.C., the measuring results are often at the limit of detection of the devices. Thus, the low
detection limit of the devices in case of coatings exposes them to higher errors, thus making
difficult the whole process of characterization of the degradation phenomenon. Although
the techniques resolution (e.g., tribological equipment, spectrometric analyzers) has been
improved significantly in recent years, a more careful interpretation of these results is
still needed.

Moreover, the complete mathematical analysis of the different degradation mecha-
nisms is not fully elucidated [286], here also being place for more detailed studies.

Additionally, the difficulties that appear only in the specific case of thin film degrada-
tion strengthen the above-mentioned comments. We refer here to exfoliation of the film
(e.g., peel off) which may occur due to poor adhesion to substrate or there may be situations
when water can enter under the deposited film so the degradation assessment process can
be seriously compromised.

All these observations justify the small number of publications on the degradation of
polymeric systems in the form of coatings because these studies involve a higher volume
of work compared to bulk materials and leads to the need for greater statistics.

7. Outlines and Perspectives

Manipulation of the degradation process is fundamental not only for the tuning of
a polymeric biomaterial inside the body but also to modulate the biocompatibility or
drug release. This work provides a basic overview of polymer degradation mechanisms,
pointing the factors influencing the degradation, the advanced characterization techniques
employed to evaluate the degradation, and the most widely used polymers in drug delivery
applications. Because degradation processes can significantly differ from system to system,
all discussions in this review are always made in comparison: bulk polymeric systems
versus thin film form. Understanding the degradation mechanism of polymers (e.g., degra-
dation kinetics, identification of degradation products, influencing factors) is, therefore, of
great importance when selecting and designing polymeric systems for desired applications.

The information centralized in this paper will help readers to find out more about this
challenging subject and will be a useful reference in the future.

However, it must be borne in mind that polymeric coatings become more important for
long term performance of new products develop and a more comprehensive approach must
be performed. Furthermore, social and industrial demands for cost effectiveness, lower
environmental impact, and high-performance increase the technologies choice impact.
For example, in the context of the COVID-19 pandemic, the production of biodegradable
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gloves coated with drugs that do not encourage the proliferation of the virus may consist
as a feasible solution for rubber solid waste disposal problem along with a solution for
slowing down the hazard pandemic. Another possible application could be 3D printing of
drug delivery implants or even personalized 3D printed implants. In order to improve the
production process and succeed to the market penetration, the laboratory-scale or pilot-
scale applications restrict should be overcome. Many aspects still need to be considered
(the statistical process of synthesizing reproducible thin coatings or the proper amount of
active substance that can be embedded into the polymeric matrix) to thoroughly investigate
the polymer degradation-based coatings behavior.
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5-fluorouracil (5-FU)
Acetaminophen (APAP)
Arginine glatiramer acetate (GA)
Artemisinin (AMS)
Atomic Force Microscopy (AFM)
Atomic layer deposition (ALD)
Bulk (B.P.)
Cellulose nanocrystals (CNCs)
Chemical vapor deposition (CVD)
Cisplatin (Cis)
Curcumin (CUR)
Degradable polymer (D.P.)
Degradation mechanism type (D.M.)
Degradation mechanism (D.M.)
Degradation time (months) (D.T.)
Deguelin (Deg)
Differential Scanning Calorimetry (DSC)
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Docetaxel (DocT)
Doxorubicin (DOX)
Dynamic Mechanical Analysis (DMA) Electrostatic Powder Deposition (ESPD)
Energy-Dispersive X-ray Spectroscopy (EDXS)
Fibroblast growth factor 2 (FGF2)
Fibronectin (FN)
Fourier Transform Infrared Spectroscopy (FT−IR)
Gel Permeation Chromatography (GPC)
Gemcitabine (Gem)
Glycolic acid (GA)
Grazing Incidence X-ray Diffraction (GIXRD)
High-performance liquid chromatography (HPLC)
Human Growth Hormone (hGH)
Hypochlorous acid (HOCl)
Indocyanine green (ICG)
Indomethacin (IDC)
Infrared Spectroscopy (IR)
Instructed assembly (IA)
Lactic acid (LA)
Laser-induced forward transfer (LIFT)
Layer-by-layer (LbL)
Levofloxacin (LEV)
Mass spectrometry (MS)
Matrix assisted pulsed laser evaporation (MAPLE)
Medical devices (MD)
Metformin hydrochloride (MH)
Metoprolol tartrate (MPT)
MUC4β-nanovaccine (MUC4-vac)
Multi Angle Light Scattering (MALS)
Nobiletin (Nob)
Nuclear magnetic resonance (NMR)
Paracetamol (PaC)
Phosphate buffered saline (PBS)
Plasma-enhanced chemical vapor deposition (PECVD)
Poly (sebacic acid) diacetoxy terminated (PSADT)
Poly [1,3-bis (p-carboxyphenoxy) propane-sebacic acid] (PCPP:SA)
Poly (1,3-bis (p-carboxyphenoxy) propane (PCPP)
Poly (1-6-bis (p-carboxy phenxoy) hexane) (PCPH)
Poly (3-hydroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV)
Poly (amino acid) (PAA)
Poly (D-lactic acid) (PDLA)
Poly (lactic-co-glycolic acid) (PLGA)
Poly (sebacic acid) (PSA)
Poly (ε-caprolactone) (PCL)
Polyepichlorhydrine (PECH)
Polyethylene (terephthalate) (PET)
Polyethylene glycol (PEG)
Polyethylene oxide (PEO)
Polyethylenimine (PEI)
Polyglycolide or Poly (glycolic acid) (PGA)
Polyhydroxybutyrate (PHB)
Polyhydroxyvalerate (PHV)
Polyisobutylene (PIB)
Polylactic acid (PLA)
Poly-L-lactic acid (PLLA)
Polymeric coatings (P.C.)
Polyvinyl alcohol (PVA)
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Scanning Electron Microscopy (SEM)
Scanning Transmission Electron Microscopy (STEM)
Silk fibroin (SF)
Simulated body fluid (SBF)
Size Exclusion Chromatography (SEC)
Surface plasmon resonance (SPR)
Thermogravimetric Analysis (TGA)
Thermomechanical Properties Analysis (TMA)
Time-of-Flight Secondary Ion Mass Spectrometry (TOF–SIMS)
Transmission Electron Microscopy (TEM)
Tripolyphosphate (TPP)
Ultraviolet–visible spectroscopy (UV-VIS)
Vancomycin (VaC)
X-ray Diffraction (XRD)
X-ray Photoelectron Spectroscopy (XPS)
β-tricalcium phosphate (β-TCP)
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