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Abstract

Hypomethylating agents are a classical frontline low-intensity therapy for older patients

with acute myeloid leukemia. Recently, TP53 gene mutations have been described as a

potential predictive biomarker of better outcome in patients treated with a ten-day decita-

bine regimen., However, functional characteristics of TP53 mutant are heterogeneous, as

reflected in multiple functional TP53 classifications and their impact in patients treated

with azacitidine is less clear. We analyzed the therapeutic course and outcome of 279

patients treated with azacitidine between 2007 and 2016, prospectively enrolled in our

regional healthcare network. By screening 224 of them, we detected TP53 mutations in

55 patients (24.6%), including 53 patients (96.4%) harboring high-risk cytogenetics. The

identification of any TP53 mutation was associated with worse overall survival but not

with response to azacitidine in the whole cohort and in the subgroup of patients with

adverse karyotype. Stratification of patients according to three recent validated functional

classifications did not allow the identification of TP53 mutated patients who could benefit

from azacitidine. Systematic TP53 mutant classification will deserve further exploration in

the setting of patients treated with conventional therapy and in the emerging field of thera-

pies targeting TP53 pathway.

Introduction

With little improvement in their overall survival (OS) over the last decade, older patients with

acute myeloid leukemia (AML) still harbor dismal prognosis [1, 2]. Validated therapeutic

options are currently limited. Patient selection for intensive versus low-intensity therapy

remains controversial [3, 4] and inter-physician practice variations are frequent, which under-

scores the uncertainty on the optimal strategy for any elderly AML patient [5].
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Although azacitidine failed to demonstrate its superiority in the AZA-AML-001 trial com-

pared to intensive chemotherapy (IC) for patients older than 65 years with non-proliferative

AML [6], several studies have found that patients with adverse cytogenetic risk myelodysplastic

syndrome (MDS) or AML treated with hypomethylating agents (HMA) may obtain similar or

even higher response rates than patients with intermediate-risk cytogenetics [7–9]. The preva-

lence of TP53 mutations is typically extremely high (up to 50–70% in AML with complex kar-

yotype [10–12]) in this population and the efficacy of HMA may reflect a TP53-independent

mechanism of action. Alteration of TP53 functions is a well-known negative prognostic factor

for MDS and AML patients treated with conventional chemotherapy [10, 13] and allogeneic

stem cell transplantation [14–16], which has justified investigation of alternative TP53-inde-

pendent therapy such as HMA. In preclinical studies, primary fibroblastic and for TP53-defi-

cient neoplastic cells exhibit hypersensitivity to decitabine treatment compared to wild type

cells, through apoptotic response [17, 18], illustrating a previously described concept of sensiti-

zation to apoptosis by the absence of TP53 [19, 20] and extending this concept to HMA. A sin-

gle-institution trial has described a protective effect of TP53 mutations in AML patients

treated frontline with an intensified regimen of decitabine [21]. However, only 21 patients

(18%) harboring a TP53 mutation were included in this trial, rendering necessary a confirma-

tion of these interesting results. More recently, the pivotal AZA-AML-001 phase 3 trial

described no significant association between TP53 mutations and outcome of AML patients

treated with azacitidine while TP53 mutations remained associated with shorter OS in the con-

ventional care comparator arm [22].

Although mutations in TP53 have traditionally been considered functionally equivalent

leading to a lack of function due the loss of the DNA-binding domain or mediated by a

dominant-negative effect on the remaining functional wild-type allele, recently, some

TP53 mutants were shown to display a gain of function (GOF) independent of wild-type

TP53 (TP53wt) function [23]. Several classifications of TP53 mutants have been proposed

with a correlation to the patient outcome in solid tumors and diffuse large B cell lym-

phoma [24–26]. Their clinical usefulness has never been questioned in AML patients,

although it might be highly important in the context of novel therapy targeting TP53 and/

or MDM2.

We took advantage of our extensively analyzed prospective regional AML registry [1, 27,

28] to investigate the impact of TP53 mutations in a very large cohort of AML patients treated

frontline with azacitidine. We further assessed the usefulness of TP53 mutation classifications

as a biomarker with the aim to eventually identify a sub-group of patients with TP53 mutations

who might specifically benefit from azacitidine.

Patients and methods

Regional cancer network ONCOMIP registry

AML patients (excluding M3) treated frontline with azacitidine were enrolled in the

regional cancer network ONCOMIP registry between 2007 and 2016 [1, 27, 28] (Toulouse

AML database). Patient’s bone marrow samples were obtained following standard ethical

procedures (Helsinki principles), after informed written consent, and stored at the HIMIP

collection. According to the French law, the HIMIP collection was declared to the Minis-

try of Higher Education and Research (DC 2008–307 collection 1). The French Commis-

sion Nationale de l’Informatique et des Libertés (CNIL) authorised the use of patient data

analyzed in our study Cytogenetic risk was assessed according to the MRC classification

[29].
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TP53 next generation sequencing

Genomic DNA (gDNA) was extracted from baseline bone marrow sample using a Qiagen

DNA extraction kit (Qiagen). TP53 status was derived from exome sequencing for 49 patients

or using a Next Generation Sequencing multiplex PCR for 179 patients.

Exome capture was performed using Sureselect All-Exome V4 kit (Agilent). Exome libraries

were then sequenced using a NextSeq500 sequencer (Illumina) and a SureSelect QXT Reagent

kit (paired-end, 150bp, sequencing 2 x 150 cycles).

TP53 Next Generation Sequencing was performed using a multiplex TP53 PCR covering

the complete coding sequences of exons 4 to 10 (primers listed in S1 Table). TP53 libraries

were then sequenced using a Miseq Reagent kit V2 (paired-end, 150bp, sequencing 2 x 150

cycles) and MiSeq sequencer (Illumina).

Alignment and variant calling were performed using NextGene software (SoftGenetics).

TP53 variants with a variant allele frequency (VAF) higher than 1%, were filtered using the

TP53 International Agency for Research on Cancer R18 database released in April 2016

(IARC) (http://www-p53.iarc.fr/) [30].

TP53 mutation classifications

Each TP53 mutation was analyzed according to 3 different classifications. For patients with

more than one TP53 mutation, we selected the mutation with the highest predicted impact

[31].

(1) Disruption classification [24]. This classification was based on the consequences of

the TP53 mutation on its protein folding, segregating disruptive versus non-disruptive muta-

tions. This clustering was validated as a prognosis factor for OS in a series of head and neck

carcinoma patients by Poeta et al [24]. It relies on the location of the mutation and the pre-

dicted amino acid alterations. Disruptive mutations are composed of (i) stop codons in any

region or (ii) non-conservative mutations (i.e. change of category of the mutated amino-acid

[non-polar as F, M, W, I, V, L, A and P; polar non charged as C, N, Q, T, Y, S and G; polar neg-

atively charged as D and E and polar positively charged as H, K and R]) inside the key DNA-

binding domains (L2–L3 region, corresponding to codons 163 to 195 and 236 to 251). All

other mutations are classified as non-disruptive.

(2) Evolutionary action TP53 Score classification. Computational approach with the cal-

culation of an evolutionary action score summarizing the phenotype to genotype relationship

for each TP53 missense mutation reliably stratified patients with head and neck cancers or

metastatic colon cancers harbouring TP53 mutations as high or low risk [25, 32]. The score

was calculated for each TP53 missense mutation identified in our cohort [25]. A threshold of

75 derived from the work of Neskey et al. was used to separate high risk from low risk TP53
mutations.

(3) Relative fitness score (RFS) classification. Kotler et al. used a massively parallel pro-

liferation assay deciphering the sequence to structure and function relationship of TP53 muta-

tions in human cells, leading to the establishment of a comprehensive catalogue of 9,833

unique TP53 DNA-binding domain variants (DBD, corresponding to amino-acids 102 to 292)

with their functions evaluated in human cells in vitro and in vivo [33] giving a relative fitness

score for each of these TP53 mutant.

Statistical analyses

The analysis date for the clinical evaluation of the database was June 1, 2018. All the data used

for the analyses were deposited in Figshare: https://doi.org/10.6084/m9.figshare.12897077.v1.

Clinical response was assessed using ELN criteria [34] after 3 and 6 cycles of azacitidine as
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indicated. For patient who failed to achieve at least partial clinical remission, we also assessed

hematological improvement using the MDS IWG 2006 response criteria [35].

Data were summarized using descriptive statistics. Categorical variables were presented as

frequency, percentage and number of missing data. Continuous variables were presented as

median, range and number of missing data. Comparisons between groups were performed

using the Chi-squared or Fisher’s exact test for categorical variables and the Mann-Whitney

test for continuous variables. Duration of response was evaluated in patients achieving a

response as defined by complete remission (CR) and complete remission with incomplete

hematologic recovery (CRi). It was defined as the time from the date of response to the date of

relapse or death from any cause and was estimated using the Kaplan-Meier method. Overall

survival (OS) was defined as the time from the date of diagnosis to the date of death from any

cause, patients alive were censored at last follow up news. Survival rates were estimated using

the Kaplan-Meier method. Univariable and multivariable analyses were performed using the

Logrank test and the Cox proportional hazards model; hazard ratios were estimated with their

95% confidence intervals. All tests were two-sided and p-values < 0.05 were considered statis-

tically significant. Statistical analyses were conducted using STATA 13 (StataCorp, Texas,

USA) software.

Results

Characteristics of patients treated with azacitidine

From January 1st 2007 to December 31st 2016, 279 AML treated frontline with azacitidine were

enrolled in the regional cancer network ONCOMIP registry. Patients received a median of 6

cycles of azacitidine (range: 1 to 67) with a median follow up of 66.1 months. Median age was

76 years (range: 45 to 93). AML was secondary to a previous myeloid malignancy in 34% of the

cases, MDS in 71 patients (25.4%) or myeloproliferative neoplasms in 24 patients (8.6%). AML

was therapy-related in 46 patients (16.5%).

Cytogenetic risk was adverse in 135 patients (49.1%), including 54 patients with complete

(-17) or partial (del17p) deletion of chromosome-17, chromosome containing the TP53 locus

(19.4%). TP53 status was available before azacitidine treatment for 224 patients.

We detected a TP53 mutation in 55 patients (24.6%) at a VAF threshold of 10% and 64

patients (28.6%, S1 Fig) at a threshold of 1%. The following analysis was done using a VAF

threshold of 10%. TP53 locus was deleted and/or mutated (TP53 alteration) in 68 patients

(30.4%). Patient characteristics according to TP53 mutational status are summarized in

Table 1. Compared to patients without TP53 mutation, patients harboring a TP53 mutation

presented more often with altered performance status (ECOG score�2 in 26.4% vs. 42%,

respectively, p = 0.037), had a lower baseline median platelet count (74 G/L vs. 46 G/L, respec-

tively, p = 0.001) and higher rate of adverse cytogenetics (33.1% vs. 96.4%, respectively,

p<0.001).

Prognosis factors for overall survival under azacitidine

Among the 224 patients with available TP53 status at baseline, we looked for factors affecting

overall survival (Table 2). Older age (hazard ratio [HR] = 1.02; 95% CI = [1.00;1.04]; p =

0.040), a higher level of LDH (HR = 1.08; 95% CI = [1.04;1.11]; p<0.001), an adverse karyotype

(HR = 1.79; 95% CI = [1.35;2.37]; p<0.001) and presence of TP53 mutation (HR = 2.22; 95%

CI = [1.60;3.08]; p<0.001) or alteration (TP53 mutation and/or -17/17p-; HR = 2.53; 95% CI =

[1.85–3.45]; p<0.001) were significantly associated with a poorer OS in univariable analysis

(Table 2).
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Table 1. Patient characteristics according to TP53 status.

Azacitidine cohort N = 279 TP53wt N = 169 TP53mut N = 55 TP53 unknown N = 55 TP53wt vs TP53mut p value

Baseline characteristics

Median Age—years (range) 76 (45–93) 76 (45–90) 75 (50–86) 76 (57–93) 0.089

Male gender—n (%) 155 (55.6) 100 (59.2) 29 (52.7) 26 (47.3) 0.401

AML status—n (%)

De novo 138 (49.5) 92 (54.4) 26 (47.3) 20 (36.4)

Secondary to MDSa 71 (25.4) 43 (25.4) 9 (16.4) 19 (34.5) 0.084

Secondary to MPNb 24 (8.6) 10 (5.9) 7 (12.7) 7 (12.7)

Therapy related AML 46 (16.5) 24 (14.2) 13 (23.6) 9 (16.4)

ECOG performance status—n (%)

0–1 168 (69.7) 109 (73.6) 29 (58.0) 30 (69.8)

2–4 73 (30.3) 39 (26.4) 21(42.0) 13 (30.2) 0.037

Unknown 38 21 5 12

Charlson score—n (%)

0–1 176 (76.5) 103 (73.0) 37 (80.4) 36 (83.7)

>1 54 (23.5) 38 (27.0) 9 (19.6) 7 (16.3) 0.316

Missing 49 28 9 12

Extramedullary disease-n (%)

No extramedullary disease 228 (88.7) 140 (88.6) 46 (88.5) 42 (89.4) 0.977

Extramedullary disease 29 (11.3) 18 (11.4) 6 (11.5) 5 (10.6)

Missing 22 11 3 8

Median WBCc count (n = 274)—G/L (range) 2.7 (0.4–271.0) 2.4 (0.7–122.7) 2.3 (0.5–85.0) 3.4 (0.4–271) 0.440

Median platelet count (n = 274) -G/L (range) 67 (3–1271) 74 (7–771) 46 (3–1271) 71.5 (5–736) 0.001

Median LDHd (n = 260)—U/L (range) 540.5 (135–3525) 502 (135–3525) 569.5 (163–3175) 662.5 (168–3503) 0.149

Median % BM blast count (n = 272)–(range) 33 (0–85) 35 (0–83) 29.5 (9–85) 28 (2–78) 0.075

Albumin—n (%)

Normal 164 (81.2) 106 (84.8) 32 (74.4) 26 (76.5) 0.125

<Normal 38 (18.8) 19 (15.2) 11 (25.6) 8 (23.5)

Missing 77 44 12 21

Cytogenetics (MRCe)—n (%)

Non adverse 140 (50.9) 113 (66.9) 2 (3.6) 25 (49.0) <0.001

Adverse 135 (49.1) 56 (33.1) 53(96.4) 26 (51.0)

Unknown 4 0 0 4

Monosomal karyotype—n (%) 66 (24.6) 14 (8.4) 37 (67.3) 15 (31.9) <0.001

Del17p or monosomy 17- n (%) 54 (19.4) 13 (7.7) 32 (58.2) 9 (16.4) <0.001

Outcome

Median number of azacitidine cycles n(range) 6 (1–67) 8 (1–67) 5 (1–22) 6 (1–26) <0.001

Response 0.502

CRf/CRig –n(%) 54 (19.4) 30 (17.8) 12 (21.8) 12 (21.8)

Failure–n(%) 225 (80.6) 139 (82.2) 43 (78.2) 43 (78.2)

Median duration of response–months [95%IC] 9.3 [6.7; 14.0] 9.9 [6.7; 19.2] 6.5 [4.4; 20.8] 13.3 [1; NR] 0.303

Median OSh -–months [95%IC] 10.6 [9.7; 12.1] 12.6 [10.3; 15.6] 7.9 [3.1; 9.8] 10.0 [5.1; 16.4] <0.001

aMDS myelodysplastic syndrome
bMPN myeloproliferative neoplasm
cWBC white blood cell
dLDH lactate deshydrogenase
eMRC Medical Research Council
fCR complete response
gRCi complete response with incomplete hematologic recovery
hOS overall survival.

https://doi.org/10.1371/journal.pone.0238795.t001
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In multivariable analysis: age (HR = 1.03; 95% CI = [1.01;1.05]; p = 0.001), LDH

(HR = 1.07; 95% CI = [1.03–1.11]; p<0.001), adverse karyotype (HR = 1.58; 95% CI = [1.15–

2.34]; p = 0.024) remained significantly associated with OS (Table 3).The effect of TP53 muta-

tion on OS was just below the threshold of statistical significance (HR = 1.49; 95% CI = [0.95–

2.34]; p = 0.081).

Patient outcome according to the TP53 status

The 55 patients with TP53 mutations had a significantly lower OS compared to wild-type TP53
patients (Fig 1A; median OS: 7.9 months with TP53 mutation vs. 12.6 months without;

HR = 2.22; 95% CI = [1.60–3.08]; p<0.001). The 68 patients with TP53 alteration (Fig 1B) had a

worst OS compared to patients without (median OS: 5.4 vs. 14.0 months, respectively, HR = 2.53;

95% CI = [1.85–3.45]; p<0.001). Within the group of 109 patients with adverse karyotype, TP53
mutation (Fig 1C; median OS 7.9 months vs. 9.6 months, respectively; HR = 1.61; 95% CI =

Table 2. Prognosis factors for overall survival in univariable analysis.

6 mos.-OS (%) HR [95%CI] p-value

Age (continuous variable) 1.02 [1.00; 1.04] 0.040

Gender

Male 69 1.00 0.299

Female 71 0.86 [0.65; 1.14]

AML status

De novo 74 1.00 0.558

Secondary 65 1.09 [0.82; 1.43]

ECOG Performance status

0–1 72 1.00 0.071

2–4 60 1.35 [0.97; 1.86]

Charlson score

0–1 70 1.00 0.852

>1 72 0.97 [0.68; 1.38]

Extramedullary disease

No 71 1.00 0.554

Yes 58 1.15 [0.73; 1.81]

WBC count (continuous variable) 1.01 [1.00; 1.02] 0.088

Platelets count (continuous variable) 0.87 [0.73; 1.04] 0.117

LDH (continuous variable) 1.08 [1.04; 1.11] <0.001

Albumin

Normal 72 1.00 0.099

< Normal 53 1.42 [0.93; 2.16]

Cytogenetic risk (MRC)

Non-adverse 82 1.00 <0.001

Adverse 57 1.79 [1.35; 2.37]

TP53 mutation

No 75 1.00 <0.001

Yes 53 2.22 [1.60; 3.08]

TP53 alteration

No 79 1.00 <0.001

Yes 49 2.53 [1.85; 3.45]

https://doi.org/10.1371/journal.pone.0238795.t002
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[1.08;2.41]; p = 0.019) and TP53 alteration including mutation and/or deletion (Fig 1D; median

OS 5.4 months vs. 11.2 months, respectively, HR = 2.03; 95% CI = [1.33–3.09]; p<0.001)

remained significantly associated with poorer OS compared to patients with unaltered TP53.

Fig 1. Overall survival according to TP53 alterations. A. OS in patient with TP53 mutation versus TP53wt. B. OS in patient with TP53 mutation

and/or deletion versus patient without TP53 alteration. C. OS in patient with TP53 mutation versus TP53wt in the subgroup of adverse karyotype. D.

OS in patient with TP53 mutation and/or deletion versus patient without TP53 alteration in the subgroup of adverse karyotype.

https://doi.org/10.1371/journal.pone.0238795.g001

Table 3. Prognosis factors for overall survival in multivariable analysis.

HR [95%CI] p-value
Age (continuous variable) 1.03 [1.01; 1.06] 0.016
ECOG PS

0–1 1.00 0.838
2–4 0.96 [0.67; 1.39]

WBC count (continuous variable) 1.00 [0.99; 1.02] 0.798
LDH (continuous variable/100) 1.07 [1.03; 1.11] <0.001
Platelets count (continuous variable/100) 0.94 [0.80; 1.09] 0.395
Cytogenetic risk

Non-adverse 1.00 0.024
Adverse 1.58 [1.06; 2.34]

TP53 mutation

No 1.00 0.081
Yes 1.49 [0.95; 2.34]

https://doi.org/10.1371/journal.pone.0238795.t003
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In contrast to OS, response rates (CR/CRi) did not significantly differ according to the pres-

ence of TP53 mutation (21.8% with TP53 mutations vs. 17.8% without; p = 0.502) or alteration

(19.1% with vs. 18.6% without; p = 0.926). Extending the definition of clinical response to par-

tial responses (PR) or hematologic improvement (HI) did not modify the impact of TP53
mutation in response to azacitidine (CR, CRi and PR: 23.6% with vs. 24.3% without; p = 0.925;

CR, CRi, PR and HI: 36.4% with vs. 42.6% without; p = 0.414). Similarly, within the group of

109 patients with adverse karyotype, TP53 mutation did not impact response achievement

(20.8% RC/RCi with TP53 mutation vs. 14.3% without; p = 0.374).

Patient outcome according to TP53 mutation classifications

Among the 55 patients with a TP53 mutation, we identified 49 cases (89%) with a unique TP53
mutation (42 missenses [86%], 3 nonsenses [6%], and 4 frameshifts [8%]) and 6 cases (11%) with 2

mutations (2 patients with missense and frameshift mutations and 4 with 2 missense mutations).

As the impact of the TP53 mutations is heterogeneous, we may assume that a specific sub-

group of variants might be sensitive to HMA. We evaluated their impact on azacitidine

response using three recent classifications of TP53 mutations [24, 25, 33]. Twelve of these

patients were classified as responders and 43 as non-responders.

Disruptive mutations were detected in 15 patients (27.3%), classification based on the con-

sequences of the TP53 mutations relying on the location of the mutation and the predicted

amino acid alterations. A TP53 Evolutionary Action Score was assessable for 48 patients (87%)

and a relative flexible score derived from Kotler et al. for 54 patients (98.2%). Functional cate-

gorization of TP53 variant is summarized in S2 Table. Comparison of these 3 different classifi-

cations of TP53 mutations is summarized in Tables 4 and 5. None of these classifications were

associated with response to azacitidine or OS (Fig 2).

Discussion

Our study of 224 patients constitutes, to our knowledge, the largest cohort of elderly AML

patients treated with HMA analyzed for TP53 mutations so far. We identified an overall preva-

lence of 24.6%. of TP53 mutations with a VAF >10%. Among them, 30% were localized in the

main TP53 hotspots for single base substitutions, which is in line with previous descriptions in

solid tumors [30] and in AML [12]. The percentage of patients with TP53 mutation in our

cohort is higher than previously reported in elderly AML patients [36–38], which could be

Table 4. Univariable comparison of TP53 mutation functional characterization and response to azacitidine.

Overall sample n = 55 Responders N = 12 Non responders N = 43 p-value

Disruptive TP53 mutation

Yes—n(%) 15 (27.3) 3 (25.0) 12 (27.9) 1.000

No—n(%) 40 (72.7) 9 (75.0) 31 (72.1)

Evolutionary Action score (n = 48),

continuous variable 0–100 73.9 (28.1–95.7) 79.3 (28.1–89.8) 73.3 (48.5–95.7) 1.000

Median (range)

Evolutionary Action score

<75—n (%) 25 (52.1) 5 (45.5) 20 (54.1) 0.616

�75—n (%) 23 (47.9) 6 (54.5) 17 (45.9)

Missing 7 1 6

Relative Fitness score (n = 54), log2 scale 0.675

Median (range) 0.094(-2.525–0.838) 0.094(-0.789–0.579) 0.094(-2.525–0.838)

https://doi.org/10.1371/journal.pone.0238795.t004
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easily explained by the high proportion of adverse cytogenetics and secondary AML in this

group of patients deemed unfit for IC.

The increasing knowledge of mutant forms of TP53, has provided detailed insights into the

functional consequences of TP53 mutations and supports the hypothesis that all TP53 muta-

tions are not functionally equivalent [23]. The majority of these mutations are missense muta-

tions in the DBD and therefore lead to loss of target gene transactivation [39]. In addition to

this loss of function, mutant TP53 may exhibit dominant negative effect on wild-type TP53
[31] or gain-of-function properties with capacity of transactivating non-canonical target genes

that confer selective growth advantage, migratory potential, and drug resistance [40]. Different

approaches have been used to systematically categorize various mutant TP53 forms, based on

their functionality in tumor suppression. We selected 3 different classification systems [24, 25,

33] able to characterize TP53 mutations and we compared this predicted phenotype with

patient outcome under azacitidine. Although none of these predictive methods succeed in

identifying TP53 mutated AML patient who could benefit from azacitidine, it remains

unknown whether this lack of reliability could be explained by the classification system, or by

the biology of this subgroup of AML. It also remains unknown whether these classifications

could distinguish TP53 mutated AML patients with specific outcome treated with other ther-

apy. With the potential differential effect of TP53 status regarding decitabine or azacitidine

therapy, it would be of great interest to investigate the accuracy of these phenotype-genotype

tools in predicting the outcome of AML patients treated with decitabine. Given the difficulty

of choice between intensive and low-intensity therapy one might also investigate the impact of

these TP53 mutant classification system in patients treated with IC.

We did not find any association between TP53 alterations (including mutation and/or dele-

tion) and response to azacitidine but an association with shorter OS which was significant in

univariable analysis (12.6 months in TP53wt versus 7.9 months in TP53mut [p<0.001]] and

just below the threshold of significance in multivariable analysis (HR = 1.49; 95% CI = [0.95–

2.34]; p = 0.081). This finding is comparable to recent data from phase II trial testing frontline

decitabine in AML deemed unfit for IC [7, 41]. Survival outcomes in our cohort are also in

line with the biomarker cohort of the phase 3 trial AZA-AML-001 [22], which have a median

OS of 7.2 months in TP53mut patients compared to 12 months in TP53wt patients. This con-

firms that TP53 mutations have limited impact on remission achievement in AML as in high-

risk MDS but strongly affect OS [42, 43]. We could not reproduce results from Welch et al.
[21] who reported TP53 mutation as a positive prognosis factor for response to decitabine

without survival advantage, raising the question whether decitabine should be preferred to aza-

citidine in TP53 mutated AML patients. We assessed the impact of TP53 mutation on response

rate as defined by CR/CRi, while Welch et al. compared TP53 mutational status and response

defined by morphological leukemia free state (MLFS) rate after the first treatment cycle but it

Table 5. Univariable comparison of TP53 mutation functional characterization and overall survival.

Event/N 6 mos.-OS (%) HR [IC95%] p-value

Disruptive TP53 mutation

No 38/40 55 1.00 0.798

Yes 15/15 47 0.92 [0.50; 1.71]

Evolutionary Action score (0–100)

<75 24/25 48 1.00 0.923

�75 22/23 61 0.97 [0.54; 1.75]

Evolutionary Action score (continuous variable, 0–100) 1.01 [0.99; 1.03] 0.515

Relative Fitness score log2 scale (continuous) 0.75 [0.45; 1.22] 0.244

https://doi.org/10.1371/journal.pone.0238795.t005
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was not clear in their description of responders whether patient achieving MLFS after first

cycle of decitabine eventually converted to a complete remission or improved OS. Of note, we

did not find any impact of TP53 mutation on overall response rate when response was defined

with less stringent criteria including patients achieving at least HI. The differences could also

rely on the doses of HMA administrated, Welch et al. used decitabine at a 200mg/m2 divided

daily dose for 10 days every 4 weeks, i.e. twice the dose of the current FDA approved scheme

for high risk MDS and more than twice the monthly dose of the regimen tested by Lübbert

et al. in elderly patients with AML [7]. Although, Blum et al. [44] reported improved CR rate

in a phase II trial of elderly AML patients with this intensified scheme, the preferred dose and

schedule of decitabine remains uncertain and is mainly limited by the myelotoxicity of the

drug. Even though decitabine and azacitidine are both cytosine analogs with identical ring

structure, they differ by the sugar attached to this ring. The deoxyribose in decitabine allows

the incorporation of all metabolites to DNA, whereas only 10–20% of azacitidine is converted

into a deoxyribonucleotide, the remaining of the drug being incorporated into RNA. The

mechanism of action of both drugs is not fully understood and observed differences in out-

come with decitabine compared to azacitidine for patient with specific genotype could pre-

sumably give information into precise mechanisms of action of these drugs.

In depth TP53 genetic integrity analysis will also become inevitable for patients treated with

FDA-approved association of HMA and BCL-2 inhibitor venetoclax. Recent data on molecular

predictors of response with venetoclax combinations in older patients with AML indicate that

TP53 loss promotes resistance to both venetoclax and chemotherapy with apparition of bialle-

lic TP53 defectives clones at progression [45]. It remains unknown if a subset of TP53 abnor-

malities evase this selective pressure.

Regarding the growing field of TP53-activating compounds [46] and targeted therapy

against TP53 pathway genes [47] (e.g., MDM2), a better characterization of mutational and

non-mutational TP53 alterations will become useful in the initial workup of each AML patient

[48]. In this regard, our cohort constitutes a reference for ongoing non-randomized phase II

trial testing these TP53-activating compounds whose results are eagerly anticipated.
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Software: Naïs Prade, Stéphanie Lagarde, Julien Plenecassagnes.

Supervision: Eric Delabesse.

Validation: Laetitia Largeaud, Thomas Filleron, Luc-Matthieu Fornecker, Célestine Simand,

Sarah Bertoli, Christian Recher, Eric Delabesse.

Writing – original draft: Pierre Bories.

Writing – review & editing: Pierre Bories, Bastien Cabarrou, Luc-Matthieu Fornecker, Sarah

Bertoli, Christian Recher, Eric Delabesse.

References
1. Bertoli S, Tavitian S, Huynh A, Borel C, Guenounou S, Luquet I, et al. Improved outcome for AML

patients over the years 2000–2014. Blood Cancer J. 2017 Nov 29; 7(12):635. https://doi.org/10.1038/

s41408-017-0011-1 PMID: 29184070

2. Derolf AR, Kristinsson SY, Andersson TM-L, Landgren O, Dickman PW, Björkholm M. Improved patient

survival for acute myeloid leukemia: a population-based study of 9729 patients diagnosed in Sweden

between 1973 and 2005. Blood. 2009 Apr 16; 113(16):3666–72. https://doi.org/10.1182/blood-2008-09-

179341 PMID: 19020306

3. Juliusson G, Swedish AML Group. Most 70- to 79-year-old patients with acute myeloid leukemia do

benefit from intensive treatment. Blood. 2011 Mar 24; 117(12):3473–4. https://doi.org/10.1182/blood-

2010-11-321737 PMID: 21436081

4. Kantarjian H, Ravandi F, O’Brien S, Cortes J, Faderl S, Garcia-Manero G, et al. Intensive chemotherapy

does not benefit most older patients (age 70 years or older) with acute myeloid leukemia. Blood. 2010

Nov 25; 116(22):4422–9. https://doi.org/10.1182/blood-2010-03-276485 PMID: 20668231

5. Bories P, Lamy S, Simand C, Bertoli S, Delpierre C, Malak S, et al. Physician uncertainty aversion

impacts medical decision making for older patients with acute myeloid leukemia: results of a national

survey. Haematologica. 2018; 103(12):2040–8. https://doi.org/10.3324/haematol.2018.192468 PMID:

30006448

6. Dombret H, Seymour JF, Butrym A, Wierzbowska A, Selleslag D, Jang JH, et al. International phase 3

study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with

>30% blasts. Blood. 2015 Jul 16; 126(3):291–9. https://doi.org/10.1182/blood-2015-01-621664 PMID:

25987659
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