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Abstract

Functional MRI (fMRI) has become an important tool for probing network-level effects of deep 

brain stimulation (DBS). Previous DBS-fMRI studies have shown that electrical stimulation of the 

ventrolateral (VL) thalamus can modulate sensorimotor cortices in a frequency and amplitude 

dependent manner. Here, we investigated, using a swine animal model, how the direction and 

orientation of the electric field, induced by VL-thalamus DBS, affects activity in the sensorimotor 

cortex. Adult swine underwent implantation of a novel 16-electrode (4 rows × 4 columns) 

directional DBS lead in the VL thalamus. A within-subject design was used to compare fMRI 

responses for (1) directional stimulation consisting of monopolar stimulation in four radial 

directions around the DBS lead, and (2) orientation-selective stimulation where an electric field 

dipole was rotated 0°−360° around a quadrangle of electrodes. Functional responses were 

quantified in the premotor, primary motor, and somatosensory cortices. High frequency electrical 

stimulation through leads implanted in the VL thalamus induced directional tuning in cortical 

response patterns to varying degrees depending on DBS lead position. Orientation-selective 

stimulation showed maximal functional response when the electric field was oriented 

approximately parallel to the DBS lead, which is consistent with known axonal orientations of the 

cortico-thalamocortical pathway. These results demonstrate that directional and orientation-

selective stimulation paradigms in the VL thalamus can tune network-level modulation patterns in 

the sensorimotor cortex, which may have translational utility in improving functional outcomes of 

DBS therapy.
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1. Introduction

The success of deep brain stimulation (DBS) therapy depends on the surgical precision of 

implanting a lead of electrodes to key nodal points within the brain (Papavassiliou et al., 

2004; Richardson et al., 2009) and on the subsequent selection of stimulation settings to 

selectively modulate the pathways related to pathological activity (Hua et al., 1998; Kuncel 

et al., 2006). These spatial and functional targeting considerations are important in avoiding 

side effects induced by DBS, as well as in maintaining a wide therapeutic window between 

effective stimulation amplitudes and amplitudes that induce side effects. Recent advances in 

directional lead technology (Connolly et al., 2016; Contarino et al., 2014; Pollo et al., 2014; 

Steigerwald et al., 2016) and current steering (Butson and McIntyre, 2008; Martens et al., 

2011; Barbe et al., 2014 Slopsema et al., 2018) have shown promise in enlarging therapeutic 

windows (Dembek et al., 2017; Reker et al., 2016) for improving clinical outcomes (Rebelo 

et al., 2018). However, little is known about the network-level changes in brain activity that 

occur when directing and steering electric fields through directional DBS leads.

Whole brain fMRI measurement of blood oxygenation level dependent (BOLD) contrast 

while electrically stimulating through a DBS lead implant (Carmichael et al., 2007; Gorny et 

al., 2013) has become a valuable tool to probe the mechanisms of DBS therapy at the 

network level. Porcine-model fMRI studies, for example, have shown how DBS targeting the 

ventral lateral (VL) thalamus (S.B. Paek et al., 2015), as well as the subthalamic nucleus, 

nucleus accumbens, globus pallidus, and centromedian-parafascicular nuclei can modulate 

network activity (Lee et al., 2011; Ross et al., 2016; Min et al., 2012; Kim et al., 2013). In 

particular, stimulation of the VL thalamus, which is the primary DBS target for treating 

Essential Tremor, can induce fMRI BOLD contrast in the sensorimotor cortex, basal ganglia, 

and cerebellum with contrast dependent on stimulation frequency and amplitude (S.B. Paek 

et al., 2015; Gibson et al., 2016).

The VL thalamus, or ventral intermediate nucleus (VIM) in humans, is well-suited to the use 

of directional DBS leads and current steering approaches given the clinical propensity to 

elicit side effects with stimulation (Rebelo et al., 2018; Lozano, 2000) for electrodes placed 

both within (Hubble et al., 1996; Benabid et al., 1991) and ventral-caudal to the nucleus 

(Sandvik et al., 2012; Hamel et al., 2007; Fytagoridis et al., 2013). This brain region consists 

of a convergence of axonal pathways that include cortico-thalamic/thalamo-cortical fibers 

and cerebello-thalamic fibers that are oriented approximately tangential to one another 

(Tracey et al., 1980; Asanuma et al., 1983; Pouratian et al., 2011). Improper surgical 

targeting can result in modulation of neighboring regions and pathways such as the 

corticospinal tract of internal capsule, leading to involuntary muscle contractions, and the 

medial lemniscus and somatosensory-receiving area of thalamus, leading to paresthesias. 
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Avoiding the spread of current into these regions and pathways is critical to limiting the 

likelihood of side effect inductions when programming DBS systems for Essential Tremor.

In this study, we have developed a network-level fMRI approach to measure the degree to 

which the pathways within and adjacent to a DBS target (VL thalamus) can be modulated 

using monopolar or bipolar stimulation delivered through a directional DBS lead. Previous 

computational studies have shown that one can enhance the selectivity of modulating 

pathways in the brain by increasing the segmentation of electrode contacts around and along 

the DBS lead (Teplitzky et al., 2016; Keane et al., 2012; Peña et al., 2017; Peña et al., 2018), 

using cathodic versus anodic stimulation (Anderson et al., 2019), and aligning the electric 

field to the direction of the axonal pathways of interest (Slopsema et al., 2018; Lehto et al., 

2017). Here, we used fMRI in a porcine model to investigate the principles of controlling the 

primary direction of the electric field using a novel 16-channel DBS lead designed and built 

leveraging the same materials and manufacturing methods as used on commercially 

available clinical DBS leads, with the exception that the typical four rows of electrodes are 

each segmented into four radial contacts (Slopsema et al., 2019). While in the current study 

we implemented the hemodynamic response function (HRF) parameters used by Paek et al. 

(S.B. Paek et al., 2015) in similar experimental conditions to ours, we opted to additionally 

assess the functional responses by an independent component analysis (ICA) approach, 

which does not impose constraints on the HRFs.

2. Materials and methods

2.1. Research animals

Four female domestic swine (32.0 ± 2 kg) were used to investigate network-level effects of 

targeting the electric field direction and orientation around and along a novel 16 channel 

segmented DBS lead implanted in the VL thalamus. All procedures were approved by the 

University of Minnesota’s Institutional Animal Care and Use Committee and abided by the 

United States Public Health Service (PHS) Policy on Humane Care and Use of Laboratory 

Animals.

2.2. Surgical procedure

Swine were sedated using a combination of Telazol (5 mg/kg i.m.) and xylazine (2 mg/kg 

i.m.), followed by atropine (0.04 mg/kg i.m.). Each swine was intubated, and anesthesia was 

maintained using isoflurane (1–3%). An MR-compatible swine head frame (Lee et al., 2011) 

was affixed to the swine followed by pre-operative anatomical imaging (Siemens 3T, 

software syngo MR VE11). Preoperative imaging included a 3D-MPRAGE (1 mm isotropic 

resolution, FOV 25.6 × 25.6 cm, number of slices = 176, TR/TE: 1900/2.93 ms, flip angle = 

9°). These images were brought into Slicer (http://www.slicer.org) (Fedorov et al., 2012), 

registered with localization markers on the stereotactic frame using the SimpleStereotactic 

Slicer extension (J. Jacobs, UW Madison) (Edwards et al., 2018), and registered to a swine 

atlas (Félix et al., 1999; Saikali et al., 2010) using the Landmark Registration module 

(nonlinear, affine) in Slicer. An example is shown in Fig. 1a. The registration and 

stereotactic coordinate identification processes were conducted within a 15 min period 

between the conclusion of the pre-operative imaging and the beginning of the DBS implant 

Slopsema et al. Page 3

Neuroimage. Author manuscript; available in PMC 2021 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.slicer.org


procedure. The SimpleStereotactic Slicer extension enabled input of: 1) a user-defined 

position of the DBS lead within the MR images and 2) a user-defined orientation of the DBS 

lead to avoid implanting the lead through the lateral ventricle or a cortical sulcus. The target 

was identified on the atlas as the VL thalamus on the border between the ventral anterior 

(VA) and ventral posterior (VP) regions of thalamus in the swine atlas (Fig. 1a).

In an aseptic procedure, a 14-mm cranial burr hole was created based on the position of a 

stylet through the calibrated Leksell head frame. The base of a Stimloc (Medtronic) burr 

hole cap was anchored to the cranium with two titanium bone screws. The dura was pierced 

to facilitate guiding an insertion cannula / stylet through the Leksell head frame and to 5-mm 

above the targeted implant depth. The stylet was then removed from the insertion cannula, 

and a novel 16-contact (4 rows × 4 columns) directional DBS lead (Fig. 1b) with similar 

form factor (diameter: 1.3 mm, 1.5 mm tall contacts, 0.5 mm spacing between rows) to 

clinically available human DBS leads (Slopsema et al., 2019) was implanted through the 

insertion cannula into the VL thalamus. The orientation of the DBS lead was controlled by a 

marker fiducial on one side of the DBS lead shank. The DBS lead was temporarily anchored 

to the Leksell head frame with a blunt set screw, the insertion cannula retracted, and the 

DBS lead secured to the burr hole ring using the Stimloc cap (Medtronic). The scalp was 

sutured closed to provide further support for the lead wires. The Leksell stereotactic frame 

was removed from the MR-compatible head frame before transporting the swine back to the 

3T MRI scanner.

2.3. Imaging procedures

Post-surgery, the animal was returned to the 3T MRI Siemens Prisma system where the lead 

was connected to an Advanced Bionics Precision SC-1110 current-controlled pulse 

generator via Cat5 cables through a radio-frequency filter plate in the Faraday cage. Using 

the Advanced Bionics pulse generator, electrode impedances were measured in vivo through 

each segmented contact, which resulted in an average of 1630 ± 277 Ω across all electrodes 

and swine. The animal remained under isoflurane anesthesia (1–3%) throughout imaging 

and administered a bolus of pancuronium bromide (2 mg) followed by 3 mg/hr (i.v.) to 

reduce movements during the scans. Vitals including heart rate, EtCO2, SpO2, respiratory 

rate, and temperature were monitored throughout the procedure.

Anatomical scans were repeated for lead localization. These scans included an MPRAGE 

(parameters above) and an ultrashort echo time (UTE) (Bergin et al., 1991) scan (1.04 × 1.04 

× 1.125 mm, FOV = 400 × 400 cm, slices = 144, flip angle = 5°, TR/TE: 2.6/0.11 ms, 640 

Hz/pixel) that provided approximately a 50% reduction in susceptibility artifact (~ 3 mm) 

from the lead as compared to the MPRAGE artifact (~6 mm). A pre-implant MPRAGE was 

overlaid with a post-implant UTE (Fig. 1c) to identify the location of the implanted lead. 

Following anatomical scans, fMRI scans were performed using gradient-echo EPI (2.2 mm 

isotropic, FOV = 22 × 22 cm, slices = 34, flip angle = 90°, TR/TE: 2000/30 ms). To estimate 

which rows of contacts would provide the strongest response of the motor cortex, initial 

functional scans were completed in each swine using quads of 4 electrodes (2 rows × 2 

columns) pointing in the medial direction with 3 mA of current per contact, BOLD contrast 

in the motor cortex, resulting from stimulation through two-row quads on the medial side of 

Slopsema et al. Page 4

Neuroimage. Author manuscript; available in PMC 2021 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the lead, was qualitatively compared using the Siemens (VE11C) on-line BOLD 

reconstruction. The quad of electrodes with the strongest BOLD contrast was identified, and 

the two rows defined by the quad were used for the directional stimulation and for the 

orientation-selective stimulation experiments.

2.4. Stimulation paradigms

Blood Oxygenation Level Dependent (BOLD) Contrast.—fMRI scans were 

performed over a 20 s baseline period (no stimulation), followed by 20 s of stimulation, and 

then a 60 s wash-out period (no stimulation), repeated three times for a total of ~5 min for 

each trial. All stimulation paradigms used a 130 Hz pulse train with an initial phase pulse 

width of 90 μs delivered through the Advanced Bionics pulse generator.

Directional Stimulation.—Using the two adjacent rows identified to have the highest 

response in motor cortex during the baseline qualitative scans were then used in the 

directional stimulation experiments. Directional stimulation was applied simultaneously 

through two contacts along a single column and with 6 mA of current through each contact. 

Stimulation was applied through these columnar contact pairs in each of the four radial 

directions around the lead (Fig. 2a) using the same stimulation paradigm and EPI sequence 

as described above. The current used in this study was higher than what is typically used 

clinically, which was necessary to achieve robust stimulation-induced BOLD signaling in the 

presence of presumed edema around the acutely implanted DBS lead (Moffitt and McIntyre, 

2005) and anesthetized conditions.

Orientation-Selective Stimulation.—Within the previously optimized quad of 

electrodes, stimulation settings were applied using a cathode-anode dipole rotated relative to 

the center of the quad in 8 directions (Fig. 2b). Stimulation was applied at 6 mA, which was 

half of the current applied in the directional stimulation protocol. This reduction was due to 

the amount of current applied through a single electrode as the number of active contacts 

varied with the stimulation direction. Specifically, when the electric field was oriented at 

45°/135°/225°/315° with respect to the lead only two contacts are active in a bipolar 

configuration (±6 mA, bipolar). For the electric field orientations at 0°/90°/180°/270°, the 

bipolar configuration was split across 4 contacts, therefore ±3 mA of current was applied 

through each contact for a total of 6 mA (bipolar).

2.5. Statistical analysis

Preprocessing of functional data: general linear model analysis.—Image data 

preprocessing and general linear model (GLM) analysis were performed in BrainVoyager 

21.4 (Brain Innovation, Maastricht, The Netherlands, www.brainvoyager.com). 

Preprocessing of functional time series were performed separately for each paradigm and 

animal. From the 150 volumes collected for each trial, the first 20 volumes were removed to 

guarantee full signal stabilization. Preprocessing included: slice scan time correction using a 

cubic spline interpolation procedure; head motion correction by a rigid re-alignment of all 

the volumes to the first volume based on a Levenberg-Marquardt algorithm, optimizing three 

translation and three rotation parameters on a resampled version of each image; spatial 

smoothing with an isotropic gaussian kernel of 4.4 mm FWHM, temporal filtering using a 
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high-pass filter with cut-off set to 0.008 Hz to reduce linear and non-linear trends in the 

time-courses; alignment of the functional time-series to the anatomical T1w reference 

acquired after implantation. In order to extract the functional maps, a single study GLM was 

first applied at a voxel-based level. The predictor was defined as a box-car representing the 

stimulation paradigm convolved with a double-gamma HRF as used previously (Paek et al., 

2015) (onset −6, response undershoot ratio 3, time to response peak 15 s and time to 

undershoot peak 25 s). The six motion parameters were added in the GLM model as 

confound predictors. A correction for serial correlation was applied using fit-refit procedure 

with a second-order autoregressive model applied to the GLM residuals. Z-transformation 

was applied to the time courses before the GLM fitting.

A swine atlas (Félix et al., 1999) was registered to the post-op MPRAGE. This atlas was 

used to segment out the motor, premotor, and somatosensory cortices as regions of interest 

(Fig. 3a). A false discovery rate (FDR) threshold of p<0.001 was applied to the t-statistic 

maps to quantify the mean effect in each region of interest (Fig. 3b). As an example, the 

mean time series of the voxels for each cortex was normalized relative to the last 10 s of the 

baseline prior to the first block of stimulation as shown in Fig. 3c. Results of the GLM 

fitting were also reported at a region of interest (ROI) level in correspondence of the 3 

primary regions of premotor, primary motor and somatosensory cortices (Supplementary 

Figure 1). For comparison of average t-statistic in the sensorimotor cortices, Friedman tests 

were performed for the directional and orientation-selective results.

Preprocessing of functional data: independent component analysis (ICA).—In 

order to analyze the data without a-priori assumptions on the shape of the HRF, we 

additionally performed an independent component analysis (ICA) of each time-series 

(LeVan and Gotman, 2009; Moeller et al., 1987). In this case, the full functional time-series 

were first preprocessed with SPM12 (www.fil.ion.ucl.ac.uk/spm/) running on MATLAB 

R2016a. Pre-processing steps were similar to the GLM analysis described above, and 

included slice-time correction, head motion correction and smoothing with an isotropic 

Gaussian kernel of 4.4 mm FWHM, alignment to the anatomical reference. To compute the 

ICA, we used the MELODIC v.3.15 toolbox of FSL v.6.0.1 (https://fsl.fmrib.ox.ac.uk/fsl/) 

with free dimensionality, i.e., letting MELODIC establish the number of components that 

explain the variance of the data. For each paradigm (total of 48 experimental sessions), a 

visual inspection of the independent component time-series was performed to identify the 

components that unambiguously correlated with the stimulation paradigm (Supplementary 

Figure 2). For 46 out of 48 experimental sessions, we identified either one or no 

components. However, for 2 directional paradigms of one animal, two independent 

components were found to correlate with the stimulation paradigm. For these specific cases, 

we reduced the dimensionality of the ICA to achieve only one component correlating with 

the stimulation paradigm. The corresponding spatial maps of the ICA were then shown as z-

statistic maps with values between 2.5 and 5, and the mean z-statistic of the final ICA maps 

were calculated for each region of interest. Friedman tests were again performed to compare 

the z-statistic in the sensorimotor cortices for the directional and orientation-selective 

results.
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The data and code supporting the findings of this study are available from the corresponding 

author, upon reasonable request. The data and code sharing comply with requirements of the 

funding bodies and institutional practices.

3. Results

3.1. Sensorimotor fMRI bold contrast induced by VL-thalamus DBS

Directional DBS leads were implanted in the VL thalamus (Fig. 4) in four swine. Functional 

responses of the motor, premotor, and somatosensory cortices were quantified using fMRI 

while stimulating through the directional DBS lead. Two stimulation paradigms were 

investigated: directional stimulation around the DBS lead and orientation-selective 

stimulation around a quad of electrodes on the DBS lead. Atlas-based segmentation of the 

sensorimotor cortex was used for the analysis of the functional maps. In both cases, mostly 

negative BOLD responses were detected. The quality of the GLM fitting was generally good 

for 3 swine, but was suboptimal for one swine (namely swine 2), in which case the shape of 

the functional responses were not fully captured by the used HRF (Supplementary Figure 1).

3.2. Directional stimulation

Directional stimulation was investigated using two row-adjacent cathodes in each of the 4 

columns on the DBS lead (Fig 2a). While significant BOLD contrast was present in the 

motor, premotor, and somatosensory cortices in all four animals (Fig. 5a), the degree to 

which these responses depended on the direction of the cathode pair in turn depended on the 

implant location (Fig. 5b,c). In swine 1 and 3, the BOLD contrast in all three cortical regions 

did not depend on the direction of the active electrode pair. Swine 2 exhibited the most 

significant directional tuning, with the strongest response of all three cortices in the medial 

posterior, lateral posterior, and lateral anterior directions, and reduced response in the lateral 

anterior direction. Swine 4 exhibited mixed results with little directional tuning in the motor 

and premotor cortices and modest directional tuning in the motor cortex such that the medial 

posterior direction provided greatest response in terms of the GLM. With a more refined 

ICA analysis, Swine 4 showed no response in the medial anterior direction and low response 

in the other three directions. Comparing directions using a Friedman test, the functional 

response in all three cortices was not significantly related to the direction of stimulation 

using the GLM method (motor: p = 0.68; premotor: p = 0.96; somatosensory: p = 0.44), or 

the ICA method (motor: p = 0.53; premotor: p = 0.80; somatosensory: p = 0.90).

3.3. Orientation-Selective stimulation

Orientation-selective stimulation was applied by rotating the primary direction of the electric 

field around a quad of electrodes positioned on the medial side of the directional DBS lead 

in 45° increments with 0°/180° (superior/inferior) representing electric fields parallel to the 

lead and 90°/270° (posterior/anterior) representing electric fields perpendicular to the lead 

using GLM analysis (Fig. 6a) and ICA (Fig. 6b). Orientation-selective tuning of the BOLD 

signal was observed in all four swine with GLM analysis, and three out of four swine using 

the ICA method. Comparing directions using a Friedman test and the GLM analysis, the 

functional response in the premotor cortex was significantly related to orientation of 

stimulation in the premotor cortex (p = 0.01) but was not significant in the motor (p = 0.73) 
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and somatosensory cortices (p = 0.19). A trend of orientation selectivity was observed in the 

premotor cortex also when using the z-scores from the ICA approach (p = 0.09), but not in 

the motor (p = 0.25) or somatosensory (p = 0.14) cortex.

Orientation-selective stimulation resulted in a differential effect on cortical regions in each 

swine. DBS in Swine 1, the GLM revealed maximum response at 90°, 180°, and 180° for the 

motor, premotor and somatosensory cortices, respectively, while ICA analysis identified 

response at 0°/180° in all three cortices. Swine 2 showed largely equivalent response across 

cortical regions of interest using the GLM and ICA with the exception of a peak at 270° in 

the premotor cortex using ICA. Swine 3 exhibited modest tuning in the motor and premotor 

cortices using the GLM with peaks at 360° and 180° respectively and little tuning in the 

somatosensory cortex, no independent components were related to the stimulation using 

ICA. Swine 4 showed orientation-selective turning in all three cortices with maximums at 

315°, 0°/360°, and 0°/360° for the motor, premotor and somatosensory cortices respectively 

using the GLM method and 0°/360° in all three cortices using ICA.

4. Discussion

In this study, we showed how directional and orientation-selective stimulation through a 

directional DBS lead can differentially modulate activity patterns in the primary motor, 

premotor, and somatosensory cortices. While directional stimulation has become a 

promising approach to improve clinical outcomes of DBS therapy (Dembek et al., 2017; 

Rebelo et al., 2018), the utilization of orientation-selective stimulation concepts have yet to 

be broadly leveraged in the clinical context.

4.1. Neural pathways involved in the effects of vl thalamus dbs

Our results demonstrated that high-frequency electrical stimulation of the VL thalamus 

resulted in functional response of the primary, premotor, and somatosensory cortices. These 

results are consistent with previous fMRI studies of the VL thalamus, which showed 

modulation of the primary motor cortex, premotor cortex, and somatosensory cortex in a 

frequency and amplitude dependent manner in a swine model (S.B. Paek et al., 2015). 

Additionally, positron emission tomography studies have shown increases in regional 

cerebral blood flow in the motor cortex during stimulation of the VL thalamus (Ceballos-

Baumann et al., 2001; Haslinger et al., 2003). The functional response in the sensorimotor 

cortex could be attributed to several pathways and mechanisms. Tracing of the cerebello-

thalamo-cortical circuit (Asanuma et al., 1983; Ilinsky and Kultas-Ilinsky, 1987; Mason et 

al., 1996; Lee et al., 2019) have shown that the VL region is reciprocally connected with the 

motor cortex (Ilinsky and Kultas-Ilinsky, 2002). Given these connections, DBS of the VL 

thalamus is likely to excite thalamo-cortical fibers resulting in orthodromic response of the 

motor cortices and excite cortico-thalamic fibers resulting in antidromic response of the 

motor cortex (Kultas-Ilinsky et al., 2003; Guillery, 1995; Kakei et al., 2001). A previous 

magnetoencephalography study supports the notion that such response of sensorimotor 

cortex could be due to antidromic stimulation of corticofugal pathways in addition to 

orthodromic response of the motor cortex (Hartmann et al., 2018). It is worth noting that the 

most prominent cortical region modulated by VL thalamus DBS in our study was the 
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premotor cortex across the four animals and the degree to which this occurred could be 

tuned through directional DBS. Stimulation paradigms consistently induced negative BOLD 

contrast in the sensorimotor cortex, as assessed using the GLM method. This is consistent 

with previous studies based on the amplitude and frequency used in this work (Gibson et al., 

2016).

4.2. Location-dependent directional tuning

Studies have shown that directional DBS can reduce thresholds for therapy and increase 

thresholds for side effects when implanted in the subthalamic nucleus for treatment of 

Parkinson’s disease (Contarino et al., 2014; Pollo et al., 2014; Steigerwald et al., 2016; 

Dembek et al., 2017; Reker et al., 2016) and when implanted in the VIM thalamus for 

treatment of Essential Tremor (Pollo et al., 2014; Rebelo et al., 2018). In the present study, 

directional stimulation was applied through two contacts in a single column in 4 radial 

directions around the lead targeting the homologue of Vim thalamus. ICA analysis in Swine 

1 and 2 showed greater response of the premotor cortex (Fig. 5b) compared to the motor and 

somatosensory cortices. This is likely due to the DBS lead implant having been located 

slightly anterior of the VL/VP border. Tracing studies have shown that the anterior region of 

VL has proportionally greater connections to premotor cortex, whereas the posterior region 

of VL has proportionally greater connections to the primary motor cortex (Fang et al., 2006). 

In addition, activity in the motor cortex when stimulation was directed lateral could be 

related to current spreading into the internal capsule. Thus, stimulation directed to either the 

medial or lateral side of the lead could result in response of the motor cortex through 

different anatomical pathways. In contrast, swine 3 and 4 were implanted closer to the 

border between the VL and VP nuclei, and response was more equally distributed across the 

three cortices (Fig. 5a).

The direction of stimulation resulted in approximately equal response of the different 

cortices in swine 1 and 3; however, response in swine 2 was weakest in the lateral anterior 

direction, and in swine 4 maximum and minimum response was dependent on the cortical 

region analyzed. ICA analysis in Swine 3 did not identify any components related to the 

stimulus as can be seen in Supplementary Figure 2. Overall this swine had a much noisier 

fMRI signal which could be attributed to motion. In general, there were no strong 

differences in cortical modulation as the active electrodes were directed around the lead; this 

reduced effect of directional stimulation relative to stronger effects shown in the literature 

(Rebelo et al., 2018) could be a result of shunting of the current along and around the lead 

due to formation of edema immediately after lead implantation (Vedam-Mai et al., 2011). 

We would expect this directional effect to be more pronounced for a chronically implanted 

DBS lead in which edema events have resolved (Vedam-Mai et al., 2011). In support of this 

argument, a previous study by Dembek et al., showed no functional outcome differences 

between ring-mode stimulation (i.e. grouping all contacts around a segmented lead) and 

directional stimulation in a short-term cross over; however, they did show an improvement in 

therapeutic windows using directional contacts compared to circular stimulation at three and 

six month follow-ups (Dembek et al., 2017). The amplitude of stimulation also can have a 

large effect on whether or not directional stimulation can be achieved. For instance, 

computational models have predicted that when stimulation amplitudes are too small, there 
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is no activation of axons in any direction, while stimulation with too high of an intensity can 

activate axons in multiple directions especially if edema is present around the implant 

(Slopsema et al., 2018; Lehto et al., 2017).

4.3. Orientation-selective stimulation provided tuned modulation with less current

Current steering based on the orientation of the electric field is a relatively new concept in 

DBS given the advent of directional DBS lead technology. The approach has shown to be 

valuable in computational and small animal studies (Slopsema et al., 2018; Lehto et al., 

2017). Here, using a clinically-viable directional DBS lead design, we showed in a large 

animal that the functional response of the motor, premotor, and somatosensory cortices by 

VL thalamus DBS could be modulated based on orientation of the electric field. Stimulation 

at 0° and 180° would be expected to induce equal response in homogeneous tissue 

(Slopsema et al., 2018). However, since the tissue in the nuclei is inhomogeneous and 

anisotropic, there are two competing effects, the primary direction of the electric field 

relative to the orientation of adjacent fibers as well as the proximity of the cathode to the 

target due a non-symmetric distribution of current using bipolar and monopolar 

configurations (Schmidt and van Rienen, 2012; McIntyre et al., 2004; Chaturvedi et al., 

2013). An orientation-selective approach to stimulation is potentially advantageous as the 

current can be more precisely steered toward the region or pathway of interest while limiting 

the spread of current to neighboring regions via a bipolar or multipolar configuration 

(Chaturvedi et al., 2013).

One key point to interpreting the results is appreciating the unequal distance between the 

anode and cathode contacts for each electric field orientation. When the field was oriented 

parallel to the lead, the edge-to-edge distance between anodes and cathodes was 500 μm, 

whereas when the field was oriented perpendicular to the lead, the edge-to-edge distance 

between anodes and cathodes was 180 μm. This could result in a shorting effect between the 

anode and cathode. However, if this were the case, the diagonal off-axis configurations (i.e. 

45°, 135°, 225°, 315°), which had a proximal corner-to-corner distance of 531 μm, did not 

show a stronger effect in most cases (Fig. 6). Indeed, the 0° or 180° orientation was most 

prominent in all eight of the twelve cortex measurement using GLM and were the only 

angles showing any response using ICA analysis in two swine.

4.4. Value of 4 × 4 lead

This study demonstrates the utility of a novel directional DBS lead for preclinical use with 

four rows and four contacts within each row (Slopsema et al., 2019), which provides 

flexibility to steer current along and around a DBS lead. Computational studies have shown 

that directional leads with more than four radial electrodes result in minimal improvement in 

the ability to steer current around a lead (Teplitzky et al., 2016). Current clinical leads 

provide three contacts around the lead and only have segments in the middle two rows. 

Clinical studies have used bipolar configurations axially around the lead to reduce side 

effects and improve therapy in a single patient study (Reker et al., 2016). The design 

provided additional flexibility to steer current axially around the lead and along the lead in 

the experiments, and here we demonstrated that segmented contacts in multiple rows can be 
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used with bipolar configurations to further steer current using orientation-selective 

paradigms.

4.5. Study limitations

DBS implants targeted the VL region of the thalamus as it is a homologue of the clinically 

relevant target of DBS for human Essential Tremor. Though the implants targeted the same 

region, there was variability of implantation across swine as shown in Fig. 4. This implant 

variability is likely due to the accuracy with which we were able to register an atlas to the 

imaging data, the precision of our stereotactic frame, and brain shift following the 

craniectomy. We attempted to mitigate these errors through training on atlas registration, 

maximizing precision with the frame and equipment, and implanting the lead within five 

minutes of the craniectomy.

Of note, although the pig brain is closer in volume and structure to the human brain than the 

rodent brain, there are marked differences between pigs and humans in the volume of brain 

size (human: 1300–1400 g, rhesus monkey: 90–97 g, domestic swine: 180 g, rodent: 2 g) 

(Springer, 2011; Hofman, 1985). Due to the smaller size of the pig brain while using a 

human probe, the current field might be too large to see more fine steering discrimination. 

For example, stimulation of the VL shown here often lead to BOLD contrast in the 

somatosensory cortex, likely due to current spread to the medial lemniscus associated with 

paresthesias (Gibson et al., 2016). In a larger human brain, the direction of stimulation may 

be more precisely tuned to individual pathways. Previous studies have seen a stimulation 

amplitude effect, higher voltage stimulation causing less regional specificity in cortical 

BOLD response in a thalamic DBS swine study (Kim et al., 2013). For the acute animal 

experimental paradigm tested, each stimulus setting could only be tested with a single trial 

and three repetitions within each trial; future studies may benefit from animal preparations 

that are chronic leveraging periodic fMRI tests over multiple days in the same animal.

Finally, the negative BOLD responses observed in our studies were similar to those observed 

previously in the anaesthetized swine (S.B. Paek et al., 2015). However, we also noticed that 

the GLM fitting was suboptimal in one out of 4 animals (Supplementary Figure 1), 

highlighting that the use of a single HRF, although modified to account for differences with 

the canonical HRF used for awake humans, did not fully capture the variability of responses 

observed in our dataset. Some level of caution is thus warranted when evaluating the results 

of a GLM approach with a fixed HRF, and it is advisable to display the GLM fitting results 

at least at an ROI-based level to verify whether there are different shapes of the functional 

responses that deserve special consideration. Notably, the definition of the most proper and 

flexible HRF for the anaesthetized swine during DBS merits systematic investigations that 

go beyond the scope of the current study. On the other hand, we opted to tackle the issue of 

different shapes of functional responses by additionally evaluating the study outcomes with 

ICA, i.e., with an approach inherently free from assumptions on the HRF. The ICA approach 

qualitatively reproduced the main findings of the present study observed with GLM analysis. 

Besides inter-subject differences in the shape of the IC, directional paradigms almost always 

exhibited a stimulus-related IC, whereas stimulus-related ICs were observed only for a 
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subset of OSS paradigms, typically at 0° or 180° Such observations support a higher degree 

of selectivity achievable with OSS vs directional paradigms.

5. Conclusions

Here we investigated the use of a novel 16-contact directional DBS lead to steer current 

axially in a monopolar manner and to steer the primary direction of an electric field around a 

quad of electrode contacts. Directional stimulation axially around the lead provided 

differential response in some sensorimotor cortices. We additionally presented in vivo 

evidence that steering the primary orientation of the electric field can be used to maximize 

cortical response when the field is approximately aligned with an adjacent pathway. While 

the swine model does not provide an exact homologue to the VIM thalamus in humans, the 

paradigms presented here show promise for translation to more selectively activate pathways 

of interest in future clinical studies.
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Fig. 1. 
Experimental setup. A swine atlas was registered to a pre-operative MRI (a) to determine the 

location of the VL thalamus, a 16 channel (4 rows × 4 columns) DBS lead (b) was 

stereotactically implanted in the VL thalamus followed by postoperative anatomical MRI 

(c).
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Fig. 2. 
Stimulation was applied in two paradigms through a 16-contact directional DBS lead. (A) 

Unwrapped version of the lead showing directional stimulation where a pair of cathodes in 

each column were used to stimulate in each of the 4 directions around the lead. (B) 

Orientation-selective stimulation consisted of rotating a dipole 360° around a quad of 

electrodes.
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Fig. 3. 
fMRI BOLD contrast in the sensorimotor cortex to VL-thalamus DBS. (A) Atlas-based 

segmentations of the somatosensory, premotor, and primary motor cortices. (B) An example 

of the BOLD contrast to VL-thalamus stimulation from a single trial. (C) An example mean 

time series of the response shown in (B). DBS was applied for 20 s followed by 60 s of no 

stimulation, repeated 3 times.
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Fig. 4. 
Localization of 16-contact DBS lead implants to the VL thalamus. (VL = ventral lateral, VA 

= ventral anterior, VP = ventral posterior, R = reticular). Anatomical post-implant UTE scan 

showing the artifact of the DBS lead is overlaid with a swine atlas. (Félix et al., 1999; 

Saikali et al., 2010).
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Fig. 5. 
fMRI negative BOLD contrast is shown in the motor, premotor, and somatosensory cortices 

(A) when stimulating in four radial directions around the DBS lead. The negative BOLD 

contrast was quantified by the average t-statistic in the primary motor (blue), premotor 

(orange), and somatosensory (yellow) cortices using the GLM method (B) and the ICA 

method (C).
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Fig. 6. 
fMRI BOLD contrast during orientation-selective stimulation through a quad of electrodes 

on the medial side of the lead. 0°/180° represents orientation of the electric field parallel to 

the lead and 90°/270° represents orientation of the electric field perpendicular to the lead. 

The average t-statistic of significant voxels within each cortical region was quantified for 

each orientation using the GLM method (A) and the z-statistic using the ICA method (B).
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