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tions are made on the basis of MIC data to ensure successful treatment outcomes. Therefore, reliable
antimicrobial susceptibility data is crucial, and it will help clinicians about which drug to prescribe.
Although few prediction studies based on strategies have been conducted, however, no single machine
learning (ML) modelling has been carried out to predict MICs in N. gonorrhoeae. In this study, we propose
a ML based approach that can predict MICs of a specific antibiotic using unitigs sequences data. We
Antimicrobial resistance retrieved N. gonorrhoeae genomes from European Nucleotide Archive and NCBI and analysed them com-
Neisseria gonorrhoeae bined with their respective MIC data for cefixime, ciprofloxacin, and azithromycin and then we con-
Minimum inhibitory concentration structed unitigs by using de Brujin graphs. We built and compared 35 different ML regression models
to predict MICs. Our results demonstrate that RandomForest and CATBoost models showed best perfor-
mance in predicting MICs of the three antibiotics. The coefficient of determination, R?, (a statistical mea-
sure of how well the regression predictions approximate the real data points) for cefixime, ciprofloxacin,
and azithromycin was 0.75787, 0.77241, and 0.79009 respectively using RandomForest. For CATBoost
model, the R? value was 0.74570, 0.77393, and 0.79317 for cefixime, ciprofloxacin, and azithromycin
respectively. Lastly, using feature importance, we explore the important genomic regions identified by
the models for predicting MICs. The major mutations which are responsible for resistance against these
three antibiotics were chosen by ML models as a top feature in case of each antibiotics. CATBoost,
DecisionTree, GradientBoosting, and RandomForest regression models chose the same unitigs which
are responsible for resistance. This unitigs-based strategy for developing models for MIC prediction, clin-
ical diagnostics, and surveillance can be applicable for other critical bacterial pathogens.
© 2022 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction In October 2020, the World Health Organization (WHO) declared
top-ten global public health threats faced by humankind and
Antimicrobial resistance (AMR) is a major threat to global AMR was stated as one of them (Prestinaci et al.,, 2015). AMR
health and development that affects millions of people each year. spread is typically driven by the overuse and misuse of antimicro-
bials in clinical settings and agriculture sector. These two factors
mainly drive the development of resistant pathogens in clinics as
* Corresponding authors at: Special Infectious Agents Unit, King Fahd Medical well as agriculture. Consequently, AMR causes significant morbid-
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kr (A.M. Karim). . [ .
1 These authors contributed equally to this work. each year by 2050 and it could force up to 24 million people into
Peer review under responsibility of King Saud University. extreme poverty (WHO' 2019). Currently' 700,000 deaths occur
worldwide each year due to drug-resistant diseases and in USA
AMR costs about 55 billion dollars annually because of health care
related expenses (WHO, 2019). With each passing day, the number
FLSEVIER Production and hosting by Elsevier of untreatable infectious diseases increases, such as sexually trans-
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mitted infections, urinary tract infections, and respiratory tract
infections. Sexually transmitted diseases (STDs) are very common
(WHO, 2019), and millions of new infections occur every year in
USA and around the world.

After chlamydia, gonorrhea is the second most common STD in
Europe, which is caused by N. gonorrhoeae and it can infect both
women and men (ECDPC, 2019). Gonorrhea can cause infections
in the throat, rectum, and genitals. Typically STDs affect individuals
of all ages, however, STDs are very common among young people
(ages 15-24 years) (ECDPC, 2019). Recently, the WHO estimated
the worldwide prevalence of urogenital gonorrhea to a total of
30.6 million (0.7% in men and 0.9% in women) cases. By region,
the occurrence among women was highest in the WHO African
region (1.9%), followed by the Western Pacific (WP) region (0.9%),
Americas (0.9%), and were lowest in the European region (0.3%).
Likewise, gonorrhea occurrence was highest among men in the
WHO African region (1.6%), followed by the Americas (0.8%), WP
region (0.7%) and lowest in Europe (0.3%) (Kirkcaldy et al., 2019).
Moreover, in the UK, an increase of 26% of gonorrhoeae infections
was reported from 2017 to 2018 (Kirkcaldy et al., 2019). According
to data (2005-2012) released by the ministry of health of Saudi
Arabia, the annual incidence of STDs was high with an overall inci-
dence of 92.1 infections per 100,000 of population (Kirkcaldy et al.,
2019). Moreover, many infected people (especially women) experi-
ence no symptoms, which exacerbates the spread of the disease
(WHO, 2019). However if the infection is left untreated, it can lead
to infertility in women and can occasionally spread to other parts
of the body such as joints, heart valves, the brain, or the spinal cord
(Centers for Disease Control and Prevention, 2021).

Widespread and higher levels of resistance in N. gonorrhoeae
reported in recent times has compromised the management and
control of gonorrhoeae. N. gonorrhoeae highly variable strains have
rapidly developed resistance to penicillins, sulphonamides, macro-
lides, tetracyclines, early generation cephalosporins, and fluoro-
quinolones (Roberts, 2019). At present, in many countries of the
world, injectable extended-spectrum cephalosporin and ceftriax-
one is the only remaining empiric monotherapy for gonorrhoeae
(Magnus and Shafer, 2014). Globally, most of the countries now
recommend a dual therapy (azithromycin and ceftriaxone) to treat
gonorrhoeae infections (Magnus and Shafer, 2014). However, azi-
thromycin was removed from recommendations because of
increasing levels of resistance to this antibiotic and later only cef-
triaxone was left for prescriptions to the gonorrhoeae patients in
the United Kingdom (Derbie et al., 2020; Fifer et al., 2018; Fifer
et al., 2020). Recently, in February 2018, first case of ceftriaxone
and azithromycin resistance has been reported (Whittles et al.,
2018).

Simultaneously, with the growing prevalence of bacterial resis-
tance against antimicrobials, there has been a consistent reduction
in the discovery of novel antibiotics. It is more worrisome that the
antibiotic pipeline has slowed to a trickle. Though scientists have
paid more attention towards AMR, but the overall situation is
increasingly deteriorating. Thus, we still need to design new com-
binational therapies, novel antimicrobial peptides, and effective
resistance prediction strategies to combat and reduce AMR effi-
ciently. Although few prediction studies based on strategies have
been conducted, however, no single machine learning modelling
has been carried out to predict MIC in N. gonorrhoeae (Whittles
et al,, 2018). In a study, conducted by Golparian et al, Oxford Nano-
pore MinION sequencer was used, and BLAST algorithms were used
for the prediction of decreased susceptibility or resistance to rec-
ommended therapeutic antimicrobials in N. gonorrhoeae isolates
(Golparian et al., 2018). In another study, authors had demon-
strated a whole genome sequence-based MIC prediction approach
that allowed prediction for different gonorrhoeae antimicrobials
(Whittles et al., 2018).
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Many bacterial infections are treated empirically, and doctors
prescribe a standard antibiotic to treat the patients. Therefore,
there’s a growing interest to know the antibiotic resistance profile
before the treatment of the patient begins. In case of clinical per-
spective, fast diagnostics are crucial to improve patient care. How-
ever, some practical limitations are there. For a conventional
microbiology laboratory testing, the total time for organism
growth, isolation, taxonomic identification, and antimicrobial
MIC determination may exceed 24 h (i.e., MRSA) (Giltner et al,,
2014) to months (i.e., tuberculosis) (Forbes et al., 2018). Develop-
ments in DNA sequencing technology has offered scientists very
effective tools to sequence whole genomes including resistant
genes. After this breakthrough, sequencing is being widely used
to help diagnostic, for health surveillance and patient care deci-
sions and it can give us results in hours rather than days. The resis-
tance mechanisms coded in the resistant bacterial DNAs could
reveal us about resistance to different antibiotics and also give
valuable information on rising novel resistance mechanisms.
Although sequencing reveals resistance in these bacteria however,
we don’t always know information on resistance. Since minimizing
the time to optimal antimicrobial therapy significantly improves
patient outcomes, rapid sequencing-based ML approaches for the
prediction of MICs may have clinical utility. In this study, we have
used ML algorithms to predict MICs using genome sequences (unit-
igs; are an efficient but flexible way of representing DNA variation
in bacteria) which could enhance our understanding and ability to
recognize and contain new resistant strains.

2. Materials and methods
2.1. Data pre-processing

We used genome sequences from N. gonorrhoeae bacterial spe-
cies (Chisholm et al., 2016; Demczuk et al., 2015, 2016; Eyre et al.,
2017; Fifer et al., 2018; Jacobsson et al., 2016; Lee et al., 2018;
Sanchez-Busé et al., 2019; Simon et al, 2018; Unemo et al,
2016; Grad et al., 2014, 2016). The whole genome sequences and
antibiotic resistance data of gonorrhoeae was gathered from the
European Nucleotide Archive (ENA) and NCBI. To analyze the col-
lected data, the related gathered MIC values of the azithromycin,
cefixime, and ciprofloxacin antibiotics were used. We constructed
unitigs according to Jaillard et al. (2018). Briefly, a De Brujin graph
was built using the genomes as input in the GATB C++ library and
contigs were used to compact the DBG graph using traversal algo-
rithms and getting unitigs in the DBG (Jaillard et al., 2018;
Wheeler, 2019). DBGs are directed graphs that efficiently represent
all the information contained in a set of sequences. In these graphs,
nodes represent all the unique k-mers (genome sequence sub-
strings of length k) extracted from the input sequences while edges
represent (k — 1)-exact-overlaps between k-mers. These graphs
can be compacted into cDBGs by merging linear paths into a single
node referred to as a unitig. Compaction yields a graph with locally
optimal resolution: regions of the genome which are conserved
across individuals are rep-resented by long unitigs, while regions
which are highly variable are fractioned into shorter unitigs. The
unitigs were further filtered to get the precise sequences associ-
ated with resistance. This process allowed us to represent the sim-
ilarities and differences between these different bacteria in an
efficient way (Jaillard et al., 2018). The filtering resulted in 8290
unitigs strongly associated with resistance.

2.2. Problem description

In this study we used observed MIC values as the target value.
The machine learning models were trained to predict the MIC
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values. Therefore, we solved a regression problem where the target
of the ML model is to predict exact value of MIC for the specific
antibiotic under study.

2.3. Comparison between machine learning models

We first used 35 models to check and compare the prediction
accuracies of different models using unitigs (Table S1). The random
seed parameter was set to 313 in order to maintain consistency in
the splitting of the dataset for comparative analysis of the results.
Several machine learning models exist which can be used for solv-
ing a regression task. We tested the performance of 35 machine
learning models to predict the exact value of MIC of three antibi-
otics. The names of these models are listed in Table S1.

2.4. Train test split

We split the data into a 80% training and 20% test set. The split-
ting was done randomly to avoid any bias. The training data was
further split into training and vali-dation sets during K-Fold cross
validation. The process of K-Fold cross validation was used for
hyperparameter optimization. During cross validation, the data is
split into training and validation subsets. Splitting data into train-
ing and validation subsets can be done using various methods,
such as leave-one-out, leave-p-out, k-fold, and Monte-Carlo sam-
pling. The model is trained on the training set, while its accuracy
is measured on the validation set. The aim of this process is to
assess the ability of the machine learning algorithm to generalize
to new data and select hyperparameters. The value of K was 10
during K-Fold cross validation. After selecting the best hyperpa-
rameters for the model, we evaluated it's performance on test
set. The test data was not seen by the model during training. In this
way, the generalization ability of the model on unseen data was
assessed. The RMSE and R2 values reported here for different mod-
els are of test dataset.

2.5. Hyperparameter optimization

The performance of machine learning algorithm is strongly
affected by the choice of hyperparameters used to build it. Several
algorithms exist for optimization of hyperparameters of machine
learning algorithms. These include, grid search, random search
and Bayesian optimization algorithm. We optimized the perfor-
mance of models using Bayesian optimization algorithm. The most
important set of parameters for each ML model were chosen and
optimized.

2.6. Performance metrics

We used mean squared error (MSE) for training of machine
learning models. On the other hand, we used coefficient of deter-
mination (R?) during optimization of hyperparameters. Since the
optimization problem was solved as a minima problem, we used
(1-R2) as objective function to be minimized. We also recorded
the bias in the prediction of the models. The positive value of bias
indicate the predicted MIC value is higher than the true MIC value
while the negative bias shows that the predicted MIC value is
lower than true MIC value. The formula to calculate MSE, BIAS
and R2 is given below;

"
MSE = M (Pavan and Lughi, 2012)
BIAS — % (Aslam et al., 2021)

i=1
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Zn,l (0"76)
and pi are the observed and predicted MIC, respectively, and n indi-
cates the number of datasets.

R2score(p’, 0) (Aslam et al., 2021)where o;

2.7. Python libraries

We used XGBoost, LightGBM, CatBoost and Scikit-learn libraries
to build the machine learning models. The hyperparameters were
optimized using scikit-optimize library which implemented Baye-
sian optimization algorithm. The complete machine learning pipe-
line from data-preprocessing, to building and training of models,
prediction of MICs and analysis of results was performed using
Al4Water which is a python based framework for performing
aforementioned tasks (Abbas et al., 2021).

2.8. Code availability

The code to reproduce the results presented in this article is
available at GitHub repository (link: https://github.com/Asad-
malic/mic_prediction_ml).

3. Results
3.1. Performance of models

We used 35 different ML models to predict the MICs for three
antibiotics (cefixime, ciprofloxacin, azithromycin). Table 1 shows
a brief summary of accuracies of different models and show how
a model relate to observations in terms of their RMSE (root mean
square error) and coefficient of determination. Among all the used
ML models, five models (5/35) showed high accuracies as com-
pared to the other models (Table S1). The value of accuracies were
high for all the antibiotics under study for these five models. Ran-
domForest, XGBoost, CATBoost, HitsGradientBoosting, Gradi-
entBoosting and ADARegressor models showed high accuracies
for three antibiotics as compared to other models (Table 1). Among
three antibiotics, the accuracies for azithromycin were highest for
all the models (Table 1). RandomForest and XGBoost showed
higher accuracies for azithromycin (R? = 0.79009, 0.76031) and
cefixime (R? = 0.75787, 0.79708) respectively. Moreover, MIC pre-
diction is complex process, so we observed some models with very
poor accuracies. Among these models, ElasticNet (R? = 1.8281e
—19) and Lasso (R? = 1.883e—15) showed very poor accuracies.

3.2. Comparison of R2 and RMSE of models

Among 35 regression models used for azithromycin, we chose 3
models with best accuracies. CATBoost, RandomForest, and Bag-
gingRegressor performed best among all the tested models as
shown in Table 1 and Fig. S5. The accuracy of the different models
was compared by the comparison of the RMSE, R?, and relative
error between the predicted values and true values for each of
the drug resistance prediction models. The accuracy of the differ-
ent models for ciprofloxacin and cefixime is given in the Figs. S6
and S7 respectively. Moreover, among 35 used ML models, five
top performing models predicted the MIC values, which were sim-
ilar to true MIC values as shown in Figs. 1 and S1 and S2. These Fig-
ures show ML based predicted and true MIC values of
azithromycin, ciprofloxacin, and cefixime for N. gonorrhoeae and
the results presented in this figure are for CATBoost model only
(Figs. 1, S1 and S2).
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Table 1
Metrics comparison of 35 different ML regression models. Models were compared on the basis of their performance to predict MIC values of three antibiotics on test datasets.
Names of models used Ciprofloxacin Cefixime Azithromycin
RMSE R? RMSE R? RMSE R?

1 ADABoostRegressor 13.61701 0.12067 0.04143 0.66328 6.28431 0.14474
2 ADARegressor 9.58793 0.62305 0.04086 0.76301 1.61560 0.78313
3 BaggingRegressor 6.10417 0.69089 0.04038 0.67140 1.37854 0.7369

4 BayesianRidge 6.06775 0.69462 0.03931 0.68590 1.54538 0.70676
5 CATBoostRegressor 3.87531 0.77393 0.03807 0.74570 1.40781 0.79317
6 DecisionTreeRegressor 7.82284 0.54359 0.04396 0.61863 191145 0.66770
7 DummyRegressor 9.12458 0.31455 0.07010 1.2696e732 2.84645 —0.00093
8 ElasticNet 7.39072 0.58821 0.07011 1.8281¢7° 2.72904 0.65383
9 ElasticNetCV 0.03914 0.68890 0.68433 0.68433 1.51770 0.71596
10 ExtraTreeRegressor 8.01472 0.53616 0.04531 0.59814 1.81783 0.68063
11 ExtraTreesRegressor 0.04073 0.66861 0.04373 0.62071 1.75033 0.70090
12 GaussianProcessRegressor 0.04942 0.68436 0.04259 0.65792 1.99184 0.54625
13 GradientBoostingRegressor 6.02614 0.70108 0.03914 0.68890 1.44105 0.74478
14 HistGradientBoostingRegressor 5.71240 0.73384 0.03816 0.70486 1.35686 0.77633
15 HuberRegressor 6.68917 0.65186 0.04073 0.66861 1.59841 0.68702
16 KNeighborsRegressor 0.08358 0.63807 3.49214 0.63424 1.21033 0.71268
17 KernelRidge 9.60091 0.46778 0.03990 0.67779 1.62867 0.68134
18 LarsCV 9.51242 0.45764 0.04045 0.66715 1.55067 0.70463
19 Lasso 7.58347 0.57166 0.07010 1.883e71° 2.84645 0.73652
20 LassoCV 8.64752 0.54124 0.03942 0.68436 1.50917 0.71937
21 LassoLarsCV 0.03989 0.67792 0.04104 0.65787 1.52546 0.71292
22 LassoLarsIC 6.72328 0.63309 0.04039 0.66812 1.53725 0.70890
23 LinearRegression 8.41567 0.54621 0.34524 0.01717 1.76178 0.64022
24 MLPRegressor 6.61081 0.68461 0.05356 0.53807 1.57986 0.73443
25 NuSVR 7.65251 0.58619 0.03863 0.69966 2.20857 0.66841
26 OrthogonalMatchingPursuit 11.75760 0.31796 0.03991 0.67679 1.55638 0.70262
27 OrthogonalMatchingPursuitCV 6.73327 0.62534 0.04989 0.66592 1.54569 0.70547
28 PoissonRegressor 6.10017 0.69149 0.06490 0.58745 2.30000 0.46240
29 RandomForestRegressor 2.69214 0.77241 0.04104 0.75787 1.33418 0.79009
30 Ridge 9.60075 0.46806 0.03989 0.67792 1.62883 0.68132
31 RidgeCV 6.79794 0.64527 0.03931 0.68599 1.53935 0.70838
32 SGDRegressor 4.29214 0.68241 0.04483 0.67187 1.82504 0.70766
33 SVR 7.71597 0.58373 0.07486 0.57187 2.21276 0.66886
34 XGBoostRegressor 6.01090 0.70446 0.03859 0.79708 1.44787 0.76031
35 XGBoostRFRegressor 5.81138 0.72186 0.44421 0.68538 1.47658 0.73711

RMSE: root mean square error, R?: Coefficient of determination, NuSVR: Nu Support Vector Regression, SVR: Support Vector Regression.
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Fig. 1. Graph shows machine-learning based predicted and true MIC values of
azithromycin in the dataset for CATBoost model. Blue dots show the true MIC values
of azithromycin antibiotic for N. gonorrhoeae, while orange dots show the predicted
MIC values by the CATBoost machine learning-based regression model.

3.3. Feature importance

The feature importance of ML models is shown in Figs. 2 and
S3, S4 for MICs prediction of azithromycin, ciprofloxacin and
cefixime. Fig. 2 shows that which unitig sequence was how
much important for the model for predicting MICs. We found
that the unitig sequence (GGGTTTAAAACGTCGTGAGACAGTTT-G
GTCCCTATCTGCAGTGGGCGTTGGAAGTTTGACG) was the most
important feature for prediction of MICs for azithromycin
(Fig. 2). This unitig contained a mutation in the 23S ribosomal
RNA which is responsible for most high-level azithromycin resis-
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tance. The following models chose this sequence of unitigs as the
most important feature; ADABoost, CATBoost, DecisionTree,
ExtraTree, ExtraTrees, GradientBoosting, RandomForest, XGBoost
Regressors. Moreover, in case of ciprofloxacin, the major muta-
tion (GTGCGACAGCAAAGTCCAAACCAGCGTCCCCGCC) which is
responsible for resistance was chosen by following models as a
top feature; ADABoost, CATBoost, DecisionTree, ExtraTree, Gradi-
entBoosting, RandomForest, and XGBoost RF Regressor (Fig. S3).
Similarly, in Fig. S4 in case of cefixime, the major mutation
(CGAACAGGCGACGATGTCTTTCGGTTACGGCCTGCA) that drives
resistance was chosen as a top feature by these models; CAT-
Boost Regressor, DecisionTreeRegressor, ExtraTreeRegressor, Gra-
dientBoostingRegressor, and RandomForestRegressor.

3.4. Cross validation

We monitored the performance of ML models during each of
the 10 folds of cross validation. The results are plotted as box
and whisker plots for the best performing models for each of the
three antibiotics are shown in Fig. 3A-C. The minimum variation
is shown by BaggingRegressor model while the largest variation
is shown by GradientBoost model for azithromycin (Fig. 3A). In
case of ciprofloxacin and cefixime, the minimum variation was
shown by GradientBoost and HitsGradientBoost respectively
(Fig. 3 B and C).
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GGGTTTAAAACGTCGTGAGACAGTTTGGTCCCTATCTGCAGTGGGCGTTGGAAGTTTGACG
CAAACAAAAACCAAGAAGTTCGCTTAAATAATATA 4
ATATCGCTGCTTGCGCCGTTCCAGATATTCCGCGCCAAAA
GTCTGATTTCACAAGTCTTGTGAAGTCTTACCTGCCTTACCGTCCAACATCCGCCGCAGCC
TTGTCCTGATTTTTGTTAATCCACTATATCC
CGGCTCAAAGGGAACGGTTTCCTAAGGTGCCCAAGCACCA 4
AAGTCGGGAAATGCCCTTATCCGGTATGCGACCA
ATGCGCGTCGCCTACGGACACGTCAGACACG
GACGGTCAGGGCGGCAAGCAGCAGCAGGGGGC
CGTTCCCCGGAGCACCCAGGAGGCCATGGCGGTCGGCAGGGCGG
TCCCCAGTTGTGGTAGCGGTAGCCGGCGTCC
GGCGGGCAGCACATCGGAAATTTTGGCGCGGAATATCTGGAACGGCGC
AAAGGCGTTTGCGTTGCGAGGAGTTCATATC
ACCGTAACCGGCAATGCGGATATTACGGTCA
AGGCATTTGACCCGCCAACCCGACCGCCGTG
ATGGCGGTCGTTTCTTGCTGCCAGTTGCTAAG
AGGCGTTTGCGTTGCGAGGAGTTCATCTCGTATGCCGTCTTCTGC 4
TGTTCGCATTTTGCCACGCCTGCAATCAGGACCTTGACTTGTTCGGGTGTCAGCATAGTGG
CAATACGACATCACCCCCATCGATCCGTCCAGCCTGAAGCAG
CCAAGCGTCCCCAGTTGTGGTAGCGGTAGCCG
rest_495 4
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Feature Importance
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Fig. 2. Most important features (unitigs) selected by different machine learning-based models for MIC predictions of Azithromycin. Figure shows the feature importance

results selected by ADABoostRegressor model.
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Fig. 3. Performance of ML models during each of the 10 folds of cross validation. The results are plotted as box and whisker plots for the best performing models for each of
the three antibiotics. The minimum variation is shown by BR model while the largest variation is shown by GB model for azithromycin (A). In case of ciprofloxacin and
cefixime, the minimum variation was shown by GB (B) and HGB (C) respectively. Orange lines within the box show median MSE values. LGBM: Light Gradient Boosted
Machine, RF: Random Forest, CATB: CATBoost, HGB: Hits Gradient Boosting, GB: Gradient Boosting, BR: Bagging Regressor, XGB: XGBoost.

4. Discussion

We built, using 35 models, machine learning-based MIC predic-
tion models for N. gonorrhoeae. Importantly, our proposed models
offer an approach for performing prediction of MIC directly from
sequence (genome) data using unitigs and actual MIC values that
could be applied to more veterinary or human bacterial pathogens.

Based on the genomic data, sequence analysis was used to
obtain unitigs information and ML methods were applied to estab-
lish prediction models for the MIC values of N. gonorrhea. Based on
MIC values and unitigs, in this study, 35 machine learning model
were used. By feature importance, we proposed a top feature-
based CATBoostregression model, which had the best predictive
performance for all three antibiotics. According to recent studies,
we found that gene mutations might affect drug resistance of bac-
teria; therefore, we make an effort to find the relevant unitigs caus-
ing resistance (Naha et al., 2021). We used 8290 unitigs for
prediction, and the prediction results above show that the mean
accuracy of the unitigs was above 85% which shows that the per-
formance of the regression models is best (Pataki et al., 2020;
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Pesesky et al., 2020; ValizadehAslani et al.,, 2020). To evaluate
our models, we compared MIC prediction models used by other
related studies. In these published studies, different machine
learning models were used to predict MICs or antibiotic resistance
in bacteria (Pesesky et al., 2020; ValizadehAslani et al., 2020; Yang
et al., 2018; Nguyen et al., 2019; Li et al., 2021). In a study, the
authors used the XGBoost model with k-mers features, and their
results reveals a precision of around 91% for MIC predictions, and
our results are also close to the previously published results
(Nguyen et al., 2019). In our study, among 35 used models, the best
accuracies were obtained for 5 models including RandomForest,
and CATBoostRegressor models. Similarly, according to a study,
XGBoost model to predict MICs for non-typhoidal Salmonella,
resulted in a good accuracy without a large number of samples
(Nguyen et al., 2019; Li et al., 2021).

We also used classification models for MIC prediction on the
same samples; how-ever, the mean accuracy of classification mod-
els was less than the mean accuracy of the regression models,
which shows that the performance of the classification models
was not good as compared to regression models. This result
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demonstrate that the regression model performed very well. Sim-
ilar results were reported by Tan et al. for the prediction of MIC of
meropenem against Klebsiella pneumoniae using metagenomic
data (Tan et al., 2021).

Our study shows that the unitig sequences which are very
important features for high-level of resistance in N. gonorrhoeae
against different antibiotics were truly selected by five models
for each antibiotic. For MIC prediction of azithromycin, 9 regres-
sion models predicted same unitig which is responsible for resis-
tance. Similarly, 5 regression models predicted the specific unitig
that is responsible for the cefixime resistance. Moreover, in case
of ciprofloxacin, 7 models predicted the important resistance
determinant unitig that is causing high level of resistance in gonor-
rhoeae and similar results were obtained by other studies for dif-
ferent bacterial species using MIC predictive models (Tan et al.,
2021). This establishes that the important features obtained from
our models may help to understand the reasons for the develop-
ment of resistance in gonorrhoeae. Moreover, these three antibi-
otics belongs to different classes of antibiotics. Azithromycin
belongs to macrolides, ciprofloxacin belongs to fluoroquinolones
and cefixime belongs to cephalosporin class of antibiotics. Thus,
the unitigs selected by our predictive models should be considered
when determining their MICs.

Among 35 used ML models, some of them had lower accuracy
while predicting MICs. The machine learning modelling requires
adequate input data to train the ML models to form a training data-
set and a “testing dataset” to assess the performance of the model
(Macesic et al., 2017; Li et al., 2020). Among the three antibiotics,
the resistant background of N. gonorrhoeae was different for each
drug, therefore, after randomly split the limited data into training
dataset or testing dataset, different ML models could not have
enough to learn from the training dataset and therefore lead to a
relative lower accuracy while predicting the testing set of the
model.

5. Conclusions

In summary, our used models predicted the MICs which are
close to real MIC values of these antibiotics. Moreover, there can
be a lot of resistant genes in gonorrhoeae that can be missed in
the predictive models but this study can help to annotate and
study novel resistant hypothetical genes. The 35 used models,
being trained exclusively on the presence-absence of the unitigs
and MIC values, demonstrate promising performance in our study.
Moreover, currently we have used publicly available collections of
gonorrhoeae genomes with MIC data from different countries.
Since the resistant gene content may vary across pathogen popula-
tions, validation of the gonorrhoeae models using strains from dif-
ferent countries is important to its application in global health.
Additionally, in clinical practice while prescriptions, machine
learning based prediction models can perform well by selecting
important feature values and can meaningfully improve detection
efficiency compared to experimental methods of measuring MIC
values, providing doctors with a faster access to information on
drug resistance profile of the patient for drug prescription and
administration. This will im-prove the usefulness of antibiotic,
avoiding future resistance and allowing patients to take medica-
tion promptly and finally reducing the time and cost of the labora-
tory experiment.
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