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Abstract
Anthropogenic carbon emissions released into the atmosphere is driving rapid, con-
current increases in temperature and acidity across the world's oceans. Disentangling 
the interactive effects of warming and acidification on vulnerable life stages is im-
portant to our understanding of responses of marine species to climate change. This 
study evaluates the interactive effects of these stressors on the acute response 
of gene expression of postlarval American lobster (Homarus americanus), a species 
whose geographic range is warming and acidifying faster than most of the world's 
oceans. In the context of our experiment, we found two especially noteworthy re-
sults: First, although physiological end points have consistently been shown to be 
more responsive to warming in similar experimental designs, our study found gene 
regulation to be considerably more responsive to elevated pCO2. Furthermore, the 
combined effect of both stressors on gene regulation was significantly greater than 
either stressor alone. Using a full factorial experimental design, lobsters were raised 
in control and elevated pCO2 concentrations (400 ppm and 1,200 ppm) and tempera-
tures (16°C and 19°C). A transcriptome was assembled from an identified 414,517 
unique transcripts. Overall, 1,108 transcripts were differentially expressed across 
treatments, several of which were related to stress response and shell formation. 
When temperature alone was elevated (19°C), larvae downregulated genes related to 
cuticle development; when pCO2 alone was elevated (1,200 ppm), larvae upregulated 
chitinase as well as genes related to stress response and immune function. The joint 
effects of end-century stressors (19°C, 1,200 ppm) resulted in the upregulation of 
those same genes, as well as cellulase, the downregulation of calcified cuticle pro-
teins, and a greater upregulation of genes related to immune response and function. 
These results indicate that changes in gene expression in larval lobster provide a 
mechanism to respond to stressors resulting from a rapidly changing environment.
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1  | INTRODUC TION

The release of anthropogenic carbon emissions into the earth's at-
mosphere has resulted in large-scale changes in oceanic tempera-
ture and pH that have an impact on marine ecosystems and fisheries 
(IPCC, 2019). IPCC scenarios project pCO2-atm will continue to climb 
resulting in an average temperature increase of 0.6–2.0°C and a pH 
drop of 0.06–0.32 units, by the end of the century (IPCC, 2013). 
These rapid, concurrent stressors are causing concern for the sur-
vival of some marine organisms and resilience of key fisheries 
(Gledhill et al., 2015).

The impacts of ocean acidification (OA) and ocean warming 
(OW), as single and joint stressors on marine organisms, are com-
plex and species-specific (Fabry et al., 2008; Kroeker et al., 2013; 
Kurihara, 2008; Whitman & Pörtner, 2013). As genomic anal-
ysis techniques increase in efficiency, transcriptomic analyses 
have become important metrics for quantifying the expression 
of stress-related genes (Evans & Hofmann, 2012), and enable 
the examination of a broad range of genetic responses to envi-
ronmental change on organisms (Harms et al., 2014; Todgham 
& Hofmann, 2009). Not only can these techniques increase our 
understanding of the scope of the organismal response, but they 
have the potential to detect molecular compensation for environ-
mental stress that may otherwise go undetected using more tradi-
tional physiological studies (Gracey, 2007).

The American lobster (Homarus americanus) is the single most 
valuable fishery in North America and has particular socio-eco-
nomic importance in the Gulf of Maine (National Marine Fisheries 
Service, 2020). It also has a long history as a well-studied organ-
ism in physiology, development, and ecology (Factor, 1995). The 
American lobster's range extends from Northeastern Canada to 
the mid-Atlantic states of the United States, where sea surface 
temperatures during their larval seasons range from below 12°C 
in the north to over 20°C at the southern extent of its range and 
in shallow regions (Oulette et al., 2003; Quinn et al., 2013). The 
entirety of this area falls within the Northwest Atlantic and Gulf 
of Maine (GoM), where sea surface temperature is warming at a 
faster rate than the majority of the world's ocean (0.026°C per 
year since 1980) with a predicted increase ranging 0.03–0.05°C 
per year (Balch et al., 2012; LeBris et al., 2017; Pershing et al., 
2015; Thomas et al., 2017). The region is also particularly suscep-
tible to higher rates of acidification, due to depressed buffering 
capacity from freshwater inputs of rivers and incoming, relatively 
fresh currents, resulting in a low aragonite saturation level (Fabry 
et al., 2008; Gledhill et al., 2015; Salisbury et al., 2008). These con-
ditions place urgent concern and interest in how this species will 
respond to climate-related stressors, particularly for pelagic life 
stages in the upper water column. The center of the American lob-
ster fishery has already demonstrated a northward range shift in 
response to the rapidly warming temperatures within this region, 
and there is some concern this pattern may continue, affecting 
fisheries to the south (LeBris et al., 2018).

Here, we evaluate the joint effects of elevated pCO2 and sea 
surface warming associated with end-century projected oceanic 
conditions using next-generation RNA sequencing (RNA-seq) to 
monitor gene expression changes in early life stage American lobster 
(Homarus americanus). Postlarval H. americanus have demonstrated 
a shift in gene regulatory response under increasing temperature 
treatments representative of end-century SST warming (Harrington 
et al., 2020). However, to our knowledge, this is the first report of 
the impact of changes in pCO2 and temperature, as joint stressors, 
on gene expression in the early life stages Homarus americanus, and 
one of the few examining these two stressors on planktonic deca-
pods as a group (Walther et al., 2010, 2011; Harms et al., 2014; Small 
et al., 2015; Waller et al., 2017).

Surprisingly, little is known about how this species will respond 
to end-century pCO2 and temperatures as concurrent stressors, but 
it is suggested that molting through several key developmental pe-
lagic and benthic life stages in a single season makes this species 
especially vulnerable to these oceanic changes (Gledhill et al., 2015; 
Kurihara et al., 2007; Pörtner & Farrell, 2008; Waller et al., 2017). 
Physiology and metabolic demand differ between life stages, indi-
cating stage-specific vulnerability and developmental success are 
closely tied to environmental conditions; as a result, few individu-
als survive these biological bottlenecks to settlement stage (Hines 
et al., 2014; Small et al., 2015; Waller et al., 2017). Thus, the final 
pelagic stage of this organism, the postlarvae, serves as an ideal and 
relevant organism for this study, since it must complete all larval 
ontogenetic stages within the water column to reach the stage of 
recruitment.

Results from physiological studies on larval and early juvenile 
Homarus congeners suggest a range of responses to end-century 
acidification and warming as joint stressors (Agnalt et al., 2013; 
Keppel et al., 2012; Menu-Courey et al., 2019; Rato et al., 2017; 
Ries et al., 2009; Small et al., 2015; Waller et al., 2017). Elevated 
temperature and pCO2 can interact to cause changes in behavior, 
carapace length, carbon content, and development time; however, 
reports are conflicting in some cases (Small et al., 2015; Waller 
et al., 2017). The few studies to date that have tested thermal and 
pCO2 effects together under similar experimental designs suggest 
that larval or postlarval physiological and behavioral response to 
predicted end-century warming may be greater than that of pCO2 
alone (Agnalt et al., 2013; Small et al., 2015; Waller et al., 2017).

The primary goal of this study was to examine the gene 
regulatory response of the postlarval Homarus americanus to 
end-century projected sea surface temperature and pCO2 both 
as independent and joint stressors, and to better understand 
organismal response on a molecular level to predicted OW and 
OA. Based on previous studies using a similar experimental de-
sign (Small et al., 2015; Waller et al., 2017), we hypothesized that 
the gene regulatory response to temperature would be more pro-
nounced than to increased pCO2 which is consistent with the prior 
physiological observations of larvae and postlarvae noted above. 
Utilizing next-generation sequencing, our results suggest strong 
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direct responses to pCO2 and greater interactive effects of pCO2 
and temperature on genes associated with immune functions and 
shell formation.

2  | METHODS

2.1 | Experimental design

The Rhode Island Department of Environmental Management's 
Fisheries Section collected seven ovigerous female American lob-
sters (Homarus americanus) from the coastal waters of Rhode Island 
in summer 2016. Lobsters were transported to the University 
of Maine's Darling Marine Center, Walpole, ME, and held in aer-
ated, 300 L hatching tanks at ~15°C until hatching. Upon hatching 
(±6 hr), stage I larvae were transported to Bigelow Laboratory for 
Ocean Sciences and distributed randomly in 18 × 20 L buckets, 
pre-equilibrated to the experimental treatments. Each bucket was 
stocked with 250 larvae, resulting in a starting average density of 
12.5 larvae/L. Larvae were fed live newly hatched Artemia salina 
daily, in excess, until they reached postlarval stage (15–31 days).

The experiment was designed as a full factorial with two tem-
peratures and two levels of pCO2, representing four distinct treat-
ment groups: control, elevated temperature, elevated pCO2, and 
elevated temperature and pCO2. Temperatures were replicated 
from previous larval studies on H. americanus (Waller et al., 2017). All 
tanks were held in a temperature-controlled room at 16°C (±0.1°C), 
representative of the average summer sea surface temperature 
during larval season in Midcoast Maine (Mackenzie, 1988; Quinn 
& Rochette, 2015). The elevated temperature treatment (19°C; 
±0.5°C) was achieved using Hydor submersible aquarium heaters, 
representing an end-century increase of 3°C (IPCC, 2013). This tem-
perature (19°C) is also just below the thermal threshold recorded 
for lobsters in the region, where the mortality rate increases with 
temperature (Mackenzie, 1988).

The two pCO2 treatments (400 ppm and 1,200 ppm) were cre-
ated by mixing pure CO2 with CO2-stripped, compressed air to cre-
ate predetermined concentrations of gasses (Waller et al., 2017). 
The two pCO2 concentrations represented the ambient atmospheric 
concentration (400 ppm), and an elevated pCO2 concentration to 
generate pH values consistent with end-century projected estuarine 
and coastal regions (~7.6) (Gledhill et al., 2015; IPCC, 2013; Table 1). 

Each of the four treatment combinations was maintained in triplicate 
for a total of 12 tanks.

Salinity, temperature, and pH were monitored daily. Salinity was 
measured using an Oakton SALT meter, and pH and temperature 
were monitored using a Thermo Orion 3-star benchtop pH probe, 
calibrated using NIST buffers. To calculate the carbonate chemistry 
of the water, total pH (pHt) was measured spectrophotometrically 
(Hitachi U-310 dual-beam, Hitachi, USA) using the pH-sensitive in-
dicator dye m-cresol purple (Sigma-Aldrich) following SOP (standard 
operating procedure 6b: Dickson et al., 2007; Table 1). Total alkalinity 
(ALKt) was measured from samples preserved in mercuric chloride 
using a Metrohm 888 Titrando (Metrohm, USA). Both pHt and ALKt 
were measured twice a week throughout the experiment and were 
used to calculate carbonate chemistry parameters (pCO2, [HCO3

−], 
[CO3

2−], ΩAr, ΩCa) using the CO2SYS2.1 system (Lewis et al., 1998).
Communal rearing tanks were maintained under treatment con-

ditions for the entirety of larval development. Upon reaching stage 
IV, we separated postlarvae into individual containers for 48 hr, 
maintaining treatment conditions in each. After this period, postlar-
vae were starved for 24 hr to remove residual Artemia salina genetic 
material from their digestive tract. Postlarvae were rinsed in UV-
sterilized 0.2 µm filtered seawater and placed in sterile cryotubes 
with 3 ml RNAlater (Ambion, USA). All samples were flash frozen and 
stored at −80°C.

2.2 | RNA extraction

RNA was extracted following the method of Clark, Acorn, 
et al. (2013) and RNA-seq performed on a total of 11 animals drawn 
from the four treatment combinations (n = 3 in all treatments ex-
cept the control 16°C, 400 ppm treatment, where n = 2). Briefly, the 
preserved postlarvae were individually homogenized in 1 ml Trizol 
(TH electric homogenizer; OMNI International), placed in a chloro-
form/Trizol mixture (200 µl chloroform/ml of Trizol), and incubated 
for 3 min at room temperature. Samples were then centrifuged at 
12,000 g at 4°C (15 min), and the collected supernatant was added 
to an equal volume of 100% ethanol. RNA was extracted with a 
RNeasy kit (Qiagen) with an on-column DNasel digestion, and quan-
tified using a NanoDrop1000 spectrophotometer (Thermo Fisher 
Scientific). Quality was verified with the Agilent Bioanalyzer 2100 
and RNA Nano 6000 chips.

TA B L E  1   Water Chemistry parameters during the course of experiment. All parameters list average value and SD through experimental 
period

Treatment Temperature (°C) Salinity (ppt) pH ΩCa ΩAr

400 ppm 16°C 16.6 ± 0.5 30.3 ± 0.8 7.94 ± 0.06 2.34 ± 0.10 1.45 ± 0.06

1,200 ppm 16°C 17.0 ± 0.4 30.0 ± 0.8 7.56 ± 0.01 1.16 ± 0.025 0.72 ± 0.02

400 ppm 19°C 18.7 ± 0.4 30.2 ± 0.9 7.89 ± 0.03 2.44 ± 0.25 1.52 ± 0.16

1,200 ppm 19°C 19.5 ± 1.0 29.9 ± 0.7 7.63 ± 0.01 1.42 ± 0.004 0.88 ± 0.002

Abbreviations: ppt, parts per thousand; SD, Standard Deviation; ΩAr, aragonite saturation; ΩCa, calcite saturation.



     |  809NIEMISTO ET al.

F I G U R E  1   Heat map depicting 
expression of the 1,108 differentially 
expressed genes subject to single and 
joint stressor treatments, relative to 
control treatment of 400 ppm, 16°C. This 
represents only 0.27% of all transcripts 
identified. Colors represent absolute 
value of log2 fold change. Red represents 
a downregulation relative to the control, 
whereas green represents upregulation. 
More than half of these genes (55%) were 
functionally annotated and subject to 
further analysis (Figures 2–6)
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2.3 | Bioinformatics

The collected RNA was sequenced at Genome Quebec (Montreal, PQ, 
Quebec) with libraries prepared using a TruSeq Stranded Total RNA 
Prep kit (Illumina). Quality was assessed and PE100 sequencing was 
performed on an Illumina HiSeq4000 using all samples on a single 
lane. Raw sequence reads were uploaded onto the main Galaxy web 
platform and analyzed on the public server at usegalaxy.org (Afgan 
et al., 2016). We assessed quality of raw reads with FastQC (Andrews, 
n.d.; Galaxy Version 1.0.0) and trimmed adapter sequences using Trim 
Galore! (Krueger, n.d.; Galaxy Version 0.4.3.1). A de novo transcrip-
tome was constructed using Trinity (Langmead et al., 2009, Galaxy 
Version 0.0.1). Trimmed sequences were mapped to the transcriptome 
using HISAT2 (Daehwan et al., 2015; Galaxy Version 2.1.0), and a count 
file for each sample was generated using StringTie (Pertea et al., 2015; 
Galaxy Version 1.3.4). Count files were merged using StringTie Merge 
(Pertea et al., 2015; Galaxy Version 1.3.4.) and normalized using fea-
tureCounts (Liao et al., 2013; Galaxy Version 1.6.3.).

Differential expression of transcripts was analyzed statistically 
between treatments using both DESeq2 (Love et al., 2014; Galaxy 

Version 2.11.40.2) and edgeR (Conesa et al., 2016; Liu et al., 2015; 
Robinson et al., 2009; Galaxy Version 3.20.7.2), as the integration 
of multiple methods has been shown to improve accuracy and re-
duce error rates (Costa-Silva et al., 2017). While edgeR and DESeq2 
are based on a negative binomial distribution and are both rec-
ommended for small sample sizes, DESeq2 uses a geometric nor-
malization method, whereas edgeR calculates a weighted mean of 
log-ratios for normalization (Dillies et al., 2013; Nguyen et al., 2018). 
The integration of both tools in our methodology produces a more 
robust gene expression analysis (Nguyen et al., 2018).

RNA transcripts were compared from H. americanus postlarvae 
raised in the control treatment (400 ppm, 16°C) to the other tempera-
ture/pCO2 treatment concentrations. Results were depicted graphi-
cally as venn diagrams to show the proportion of transcripts related to 
each treatment (Heberle et al., 2015), and as “volcano plots” to show 
direction, magnitude, and statistical significance of the differential ex-
pression of each transcript under each experimental treatment relative 
to the control. Differentially expressed transcripts were uploaded onto 
Blast2GO (Götz et al., 2008) and assigned gene names using Blastx 
(Camacho et al., 2008) against the GenBank protein nr database, 

F I G U R E  2   Percent of total (a) and 
annotated (b) differentially expressed 
transcripts as quantified by DESeq2 
analysis within elevated temperature 
treatment (400 ppm 19°C), elevated 
pCO2 treatment (1,200 ppm 16°C), and 
joint temperature and pCO2 treatment 
(1,200 ppm 19°C). All differential 
expression is relative to control treatment 
(400 ppm 16°C)
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functional terms were assigned with Gene Ontology (Ashburner 
et al., 2000; Gene Ontology Consortium, 2019), enzyme numbers 
were assigned with KEGG (Kanehisa, 2019; Kanehisa & Goto, 2000; 
Kanehisa et al., 2019) and domain information assigned with Interpro 
(Mitchell et al., 2019; Blast2GO 4.0.2).

Several genes of interest related to carapace formation were 
selected for more in-depth investigation based on their functional 
importance and their response to elevated pCO2. Specific genes 
families (and the number of genes) related to calcification and shell 

formation were tracked through all treatments: cuticle proteins (13), 
cuticle protein binding molecules (CBM) (2), chitin-binding protein 
(3), chitinase (4), calcification-associated peptides (2), and arthrodial 
cuticle proteins (4). In addition, we examined the differential expres-
sion of several transcripts related to immune response and function 
(Clark & Greenwood, 2016) including heat shock proteins (HSP) (3), 
hemocyanin subunits (27), mannose-binding proteins (5), crustin (2), 
c-type lectin (2), glutathione S-transferase (2), and octopamine re-
ceptor (1), as indicators of a stress response.

F I G U R E  3   Volcano plots from 
DESeq2 analysis depicting the statistical 
significance (−Log10(p-values)) of 
transcripts against the Log2 transformed 
magnitude of change of each transcript 
across samples of treatments of elevated 
temperature (a), elevated pCO2 (b), 
and elevated temperature and pCO2 
(c), relative to the control condition. 
Values in green represent statistically 
significant upregulated and red represent 
downregulated genes in treatment 
samples relative to control treatment
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3  | RESULTS

A de novo assembled transcriptome was generated containing 
414,517 unique transcripts. The minimum transcript length was 
201 bp, and the maximum was 21,784 bp. The N50 transcript length 
was 1,909. Using the DESeq2, we found 1,108 transcripts (0.27% 
of all transcripts) that were differentially expressed (upregulated or 
downregulated) across treatments (Figure 1). The vast majority of 
all identified transcripts (99.73%) were therefore not differentially 
expressed.

Elevated temperature and pCO2 together had a stronger effect 
on gene expression than did either factor alone. Out of the 1,108 
differentially expressed transcripts, elevated temperature alone in-
duced the differential expression of 199 transcripts (18% of all dif-
ferentially expressed transcripts) relative to the control conditions; 

elevated pCO2 alone induced differential expression of 483 tran-
scripts (44%), and 919 transcripts (83%) were differentially ex-
pressed when both stressors were present (Figure 2a).

Functional annotation was possible for 55% of the differentially 
expressed transcripts using Blast2GO (Figure 2b). As with the un-
annotated genes, we found the majority of differentially expressed 
annotated genes in the joint treatment of elevated temperature and 
elevated pCO2 (89% of annotated, differentially expressed tran-
scripts) compared to only 59% in the treatment with only elevated 
pCO2 and 12% with only elevated temperature (Figure 2b). Overall, 
differentially expressed transcripts were predominantly upregulated 
in the elevated pCO2 treatment (1,200 ppm 16°C) and joint stressor 
treatment (1,200 ppm 19°C; Figure 3).

Although edgeR resulted in a more conservative number of 
statistically significant transcripts, 75.3% of those significantly 

F I G U R E  4   Comparison of number 
of annotated, statistically significant 
(p < .05), differentially expressed 
transcripts identified by DESeq2 
and edgeR analysis within elevated 
temperature (a), elevated pCO2 (b), and 
joint elevated temperature and pCO2 
treatments (c)
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differentially regulated transcripts were also identified with 
DESeq2. We found 7% of the differentially expressed DESeq2-
identified transcripts to be shared between both analyses for the 
elevated temperature treatment (Figure 4a). There were no dif-
ferentially expressed transcripts within the pCO2 treatment using 
edgeR (Figure 4b). Conversely, there were 30% of the differentially 

expressed DESeq2 identified transcripts shared with edgeR within 
the joint stressor treatment, representing 71.9% of all identified dif-
ferentially regulated transcripts via edgeR analysis (Figure 4c).

Analysis of annotated genes revealed that DESeq2 and edgeR 
were in 100% agreement with regard to the direction of gene regula-
tion. While DESeq2 consistently found lower differential expression, 

F I G U R E  5   Response of lobster postlarval exoskeleton formation transcripts to elevated temperature and pCO2 by DESeq2 (orange) and 
edgeR (green) analyses. Depicted are Log2 fold change of 28 genes of interest at elevated temperature (a), elevated pCO2 (b), joint elevated 
temperature & pCO2 and (c) relative to gene expression under control conditions. Darkened colors indicate statistically significant outcomes 
(p < .05)
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more of these transcripts were found to be statistically significant 
(p < .05) using this analysis (Figures 5 and 6).

Genes involved in exoskeleton formation (cuticle proteins, 
chitin-binding proteins, and calcification peptides) were largely 
downregulated in response to OW and OA, with few exceptions 
(Figure 5). In treatments where only temperature was elevated 
relative to control conditions, six of the 28 genes showed signifi-
cant downregulation and one showed significant upregulation by 

at least one of the statistical analysis methods (Figure 5a). In treat-
ments where only pCO2 was elevated, DESeq2 showed significant 
upregulation for cuticle protein binding molecules, chitinase, and 
chitinase-like proteins, but edgeR resulted in no differential regu-
lation for any of these genes (Figure 5b). In treatments where both 
temperature and pCO2 were jointly elevated, both methods indi-
cated significant downregulation of cuticle proteins, chitin-binding 
proteins, and calcification-associated peptides, and upregulation 

F I G U R E  6   Response of lobster postlarval immune function transcripts to elevated temperature and pCO2 by DESeq2 (orange) and 
edgeR (green) analyses. Depicted are Log2 fold change of 42 transcripts of interest at elevated temperature (a), elevated pCO2 (b), joint 
elevated temperature and pCO2 treatment and (c) relative to gene expression under control conditions. Darkened colors indicate statistically 
significant outcomes (p < .05)
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of cuticle protein binding molecules, chitinase, and chitinase-like 
proteins (Figure 5c).

With respect to the differential expression of genes associated 
with the immune response, in the elevated temperature treatment, 
postlarvae downregulated HSP83, and upregulated one transcript 
for hemocyanin subunit 1 according to the DESeq2 (Figure 6a). In 
the elevated pCO2 treatment, DESeq2 indicated significant up-
regulation of HSP70, 15 transcripts related to hemocyanin and its 
subunits, mannose-binding units, crustin, C-type lectin, and gluta-
thione S-transferase, but edgeR detected no statistically significant 
(p < .05) change in these transcripts (Figure 6b). In the joint stressor 
treatment, DESeq2 indicated postlarvae upregulated more tran-
scripts related to hemocyanin and its subunits, octopamine receptor, 
in addition to the genes differentially regulated within the elevated 
pCO2 only treatment, whereas for edgeR, only 11 transcripts within 
this category were significantly differentially expressed (Figure 6c).

4  | DISCUSSION

To our knowledge, this is the first study to examine how the joint 
stressors of these SST warming and acidification conditions may 
affect gene expression of American lobster postlarvae. DESeq2 
analysis indicates that postlarval response to elevated pCO2 is 
more pronounced relative to warming than indicated in physiologi-
cal and morphometric studies reported to date (Agnalt et al., 2013; 
Keppel et al., 2012; Menu-Courey et al., 2019; Rato et al., 2017; Ries 
et al., 2009; Small et al., 2015; Waller et al., 2017). In addition, analy-
sis of gene regulatory responses revealed an even greater response 
to joint effects of elevated pCO2 and temperature on transcripts in-
volved in developmental processes and immune function of lobster 
postlarvae.

Contrary to the DESeq2 results, the analysis using EdgeR did 
not detect any statistically significant differential expression under 
the pCO2 treatment and detected fewer differentially expressed 
(DE) genes within other treatments. This may be due to the sam-
ple size in this study. While the accepted number of replicates in 
transcriptomic studies is not universally standardized, (Costa-Silva 
et al., 2017; Stark et al., 2019), comparative analysis of different ge-
netic methodologies certainly would benefit from greater sample 
numbers. That said, both methodologies are robust and well-suited 
to small sample sizes, and have high accuracy rates (DESeq2 being 
one of the highest ranked methodologies compared to qRT-PCR 
analyses) (Costa-Silva et al., 2017).

Furthermore, direction of gene expression was in 100% agree-
ment between the two methods, and the discrepancy in DE genes 
between methodologies lies in the normalization strategies of the 
tools (Dillies et al., 2013; Nguyen et al., 2018). The inclusion of multi-
ple methods in our analysis reduces the likelihood of false negatives 
and provides greater confidence in the results when in agreement 
(Costa-Silva et al., 2017).

The effects of elevated pCO2 and temperature on the transcrip-
tion level associated with cuticle formation and calcification were 

treatment-dependent. Elevated temperature resulted in down-
regulation of cuticle proteins and a calcification-associated pep-
tide. Calcification-associated proteins act as acidic protein sites 
for nucleation of CaCO3 during larval biomineralization (Addadi & 
Weiner, 1985; Faircloth & Shafer, 2007). Downregulation indicates a 
temperature cost to calcification, though fewer genes were differen-
tially regulated than in other treatments. Warming has been shown 
to reduce shell integrity in the mussel Mytilus edulis when food lim-
ited, an effect attributed to a reallocation of energy away from bio-
mineralization in order to address temperature-related increases in 
maintenance requirements (MacKenzie et al., 2014).

Under elevated pCO2, postlarval lobster upregulated chitinase 
and cuticle proteins associated with calcium binding, both of which 
are important components of exoskeleton development and re-
modeling. This result is consistent with previous findings in which 
larval lobster upregulate chitinase synthesis genes during ontog-
eny, presumably to support increased chitin synthesis and main-
tenance (Cohen, 2010; Hines et al., 2014). Juvenile lobsters also 
increase shell calcification under elevated pCO2 conditions (Ries 
et al., 2009; Whitely, 2011). The combination of end-century tem-
perature and pCO2 has an additive effect on exoskeleton forming 
genes causing additional cuticle protein downregulation. These find-
ings mirror other studies that have examined skeletal formation in 
marine invertebrates when exposed to elevated temperature and 
acidity. Downregulation of calcification-related genes was reported 
for pearl oysters (Pinctada fucata) after being exposed to end-cen-
tury conditions (Liu et al., 2012). Larvae of the purple sea urchin 
(Strongylocentrotus purpuratus), however, exhibit inhibited skele-
tal growth under elevated pCO2, but not at elevated temperatures 
(Padilla-Gamino et al., 2013). Nevertheless, bivalve mollusks and 
urchins appear to have lower capacity to compensate for these ele-
vated pCO2 than the relatively small set of crustaceans evaluated to 
date (Kurihara, 2008; Wood et al., 2008).

Heat shock proteins (HSP) were downregulated in lobster lar-
vae under elevated temperature alone, but were upregulated when 
exposed to elevated pCO2, and an even greater upregulation when 
pCO2 and temperature were elevated simultaneously. Heat shock 
proteins are molecular chaperones that are upregulated after expo-
sure to stressful conditions to prevent improper folding or denatur-
ation of proteins (Alberts et al., 2015; Flaherty et al., 1990; Kiang 
& Tsokos, 1998). Virtually, all organisms upregulate HSP expression 
as a method to alleviate physiologically stressful conditions (Evans 
& Hofmann, 2012). Thus, HSPs can modify an organism's thermal 
sensitivity and act as important biological stress markers (Tedeschi 
et al., 2015). When reared in elevated pCO2, or joint stressor condi-
tions, HSP70 was the highest upregulated transcript in our immune 
or shell formation transcripts, suggesting a potentially prominent 
role in compensating for environmentally stressful conditions. Liu 
et al. (2012) reported upregulation of HSP70 under joint treatment 
of elevated temperature and pCO2 in pearl oysters (Pinctada fucata).

When larvae were exposed to 1,200 ppm pCO2 at ambient tem-
peratures, we observed the upregulation of 15 transcripts related to 
hemocyanin, mannose-binding proteins, crustin, and c-type lectin, all 
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of which play roles in pathogen recognition and/or defense (Clark & 
Greenwood, 2016). These same genes were differentially expressed 
in greater numbers in the high temperature/high pCO2 treatment, 
indicating an overall higher energy input to immune function when 
both stressors are present. Differential expression of transcripts 
coding for antilipopolysaccharide factors (ALFs) and their isoforms 
can indicate individual pathogens through differential expressions 
(Beale et al., 2008; Clark, Acorn, et al., 2013; Clark, Greenwood,s 
et al., 2013), but none of these factors were identified as differen-
tially regulated among any of our treatments, indicating that tran-
scripts were nonspecific to known lobster pathogens, and therefore 
likely a response to treatment conditions. The effect of elevated 
temperature and pCO2 on nonspecific immune response could have 
implications on the H. americanus antigen defense systems in future 
oceanic conditions.

Crustaceans, as a group, have shown relative resistance to 
end-century ocean acidification compared to other calcifying or-
ganisms (Whitely, 2011). This may be the result of a heightened 
capacity for ionoregulation, though the energetic trade-offs. The 
ramifications of this strategy, particularly with respect to suboptimal 
food conditions, are still not well understood (Gledhill et al., 2015; 
Wernberg et al., 2012; Whitely, 2011). For postlarval lobster, we 
found a clear effect of elevated pCO2 on gene expression regula-
tion that is enhanced when paired with elevated temperature. These 
results suggest that crustaceans have molecular mechanisms to re-
spond to these stressors in the postlarval stage. These results com-
plement studies on whole-organism physiological changes observed 
in lobster larvae and postlarvae under similar laboratory conditions, 
and suggest an explanation for why similar studies have found little 
whole-organism response to pCO2 elevated environments. Within 
early stages, homeostatic compensatory mechanisms could conceal 
responses in other measured physiological, behavioral, or morpho-
metric end points. However, with added stressors such as low food 
concentrations, disease, or other immune challenges, the compen-
satory mechanisms that are apparent with gene expression analysis 
may exceed metabolic capacity, and manifest in decreased growth, 
development, or survival.

Understanding the physiological and genetic responses to envi-
ronmental change is critical to anticipate the effect of warming and 
acidification on lobster, and the information is needed to improve 
our ability to predict economic repercussions of climate change 
on the most valuable single-species fishery in North America. 
Characterizing the gene regulatory responses, in particular, can pro-
vide a mechanistic understanding of how the vulnerable stages of 
this species adapt to a rapidly changing environment. Pairing these 
techniques with whole-organism physiological and ecological stud-
ies will deepen our understanding and ability to anticipate response 
to environmental changes. As the Gulf of Maine continues to be one 
of the most rapidly warming coastal areas of the world, the American 
lobster stands as an icon for the urgency to understand how ocean 
change is impacting our living marine resources.

This study exposed the larval and postlarval American lob-
ster stages to a future climate scenario during the entirety of their 

planktonic development, and measured gene regulatory response 
within its final stage. The design of this study is similar in rearing 
methodology, treatment conditions, and exposure time to earlier 
studies that looked at the physiological response of the whole ani-
mal (e.g., growth rates, respiration rates, and swimming speed; Small 
et al., 2015; Waller et al., 2017). The results of those studies gener-
ally found little effect of OA relative to responses to temperature. 
In contrast, the results of this experiment investigated response 
on gene expression, and found a greater differential expression of 
genes under OA stress than temperature stress, alone, and an in-
teractive effect when both stressors were present. The results of 
this experiment provide compelling evidence that compensatory 
mechanisms at the cellular level minimize the physiological and mor-
phological changes measured in other studies to pCO2 effects (Small 
et al., 2015; Waller et al., 2017) and suggests that postlarvae are 
more responsive to predicted end-century levels of elevated pCO2 
than previously assumed. The metabolic cost of these compensatory 
mechanisms is unknown. Experiments using limiting food conditions 
or sensitive physiological measurements to determine metabolic 
cost are warranted.

Lacking, though, is a broader understanding of how rapidly pop-
ulations may be able to adapt to changing conditions. Comparisons 
of gene regulation among subpopulations along geographic environ-
mental gradients may reveal population-level differences that could 
provide new insight into the process of local adaptation. In addition, 
multigenerational studies would provide a better understanding of 
the long-term effects, compensatory ability, and potential for adap-
tation to warming and acidification.
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