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Public health informatics is an evolving domain in which practices constantly change to meet the demands of a highly complex
public health and healthcare delivery system. Given the emergence of various concepts, such as learning health systems, smart health
systems, and adaptive complex health systems, health informatics professionals would benefit from a common set of measures and
capabilities to inform our modeling, measuring, and managing of health system “smartness.” Here, we introduce the concepts of
organizational complexity, problem/issue complexity, and situational awareness as three codependent drivers of smart public health
systems characteristics. We also propose seven smart public health systems measures and capabilities that are important in a public

health informatics professional’s toolkit.

1. Introduction

Public health informatics is an evolving domain in which
practices constantly change to meet the demands of a highly
complex public health and healthcare delivery system. The
typical definition for a variety of domains of informatics (e.g.,
public health, population health, nursing, clinical, medical,
health, consumer, and biomedical) centers on the “application
of information science and information technology to [a
specific domain of] practice, research, and training” [I, 2].
This definition of informatics relies on a technical view of
the health system. A technical view of informatics largely
identifies more tangible products such as databases, decision-
support tools, information systems, web portals, and mobile
devices as the primary means of addressing complex health
issues, improving care, and reducing health disparities.
Public health informatics systems expressed as a func-
tion of intelligence can be understood in terms of two
codependent pathways of (1) generating health information

technology (HIT) policies that ensure our ability to Gov-
ern Intelligence as a byproduct and (2) allowing innova-
tions in HIT to shape and inform public health systems
policy and practice to ensure that we Govern Intelligently.
In the former case, public health informatics professionals
endeavor to generate HIT policy to guide national, state, and
local information architecture, information infrastructure,
and information integration efforts that ultimately guide
how public health meets the needs of stakeholder/agents
such as patients/families/health consumers, communities,
providers/healthcare organizations, researchers, policymak-
ers, and disease-centric communities of practice through
the meaningful supply of intelligence. Such intelligence
can inform stakeholder understanding about the burden
of disease, spread of an outbreak, health alerts and food
recalls, disease clusters, community needs assessments, and
health risk assessments. In the latter case, public health
informatics professionals seek to find innovative ways to
leverage HIT to improve the way we govern by seeking ways
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FIGURE 1: Public health informatics systems intelligence perspectives.

to streamline processes that positively impact cost, quality,
safety, and overall health outcomes. Figure 1 highlights these
relationships in the context of public health practice domains.

Although useful for fostering greater levels of adop-
tion and use of technical measures, this technical view of
public health informatics (1) does not highlight the changing
knowledge needs of these system agents over time, (2)
fails to capture the full array of interaction among agents
in a dynamic environment, and (3) cannot maintain pace
in adapting to an ever-increasing complex environment.
In other words, the purely technical approach does not
effectively highlight the full spectrum of knowledge, commu-
nication, and learning that is needed to keep all types of health
system stakeholders—including individuals, organizations,
or collections of individual and organizational networks (e.g.,
coalitions, collaborations, consortiums, and taskforces)—
informed and able to respond to environmental changes at
all stages of the healthcare continuum.

In this era of informatics where the emphasis is on less
tangible cognitive capacities (e.g., learning health systems,
intelligent and smart systems, and complex adaptive systems),
a new public health informatics analytics approach may be
required that is less information technology-driven and more
knowledge-driven and defines new ways of demonstrating
the added value of informatics in shaping health systems
performance [3]. Specifically, stakeholders (hereafter referred
to as individual- or organizational-level agents) need concise,
accurate, and objective analytic measurements of abstract

concepts, such as empowerment, which previously has been
described as a function of knowledge for the purposes of
achieving a quantifiable metric for computational analysis of
performance.

Such a view of public health informatics may focus on
abstract constructs like actionable intelligence as the primary
informatics-centric outcome [3]. Such a strategy should yield
objective operational measures and capabilities designed to
ensure that individual agents, organizations, and networks
have sufficient knowledge to mount an intelligent response
to solve complex public health problems. In other words,
the strategy should support development and maintenance
of smart health systems, that is, a system that “incorporates
functions of sensing, actuation, and control in order to
describe and analyze a situation, and make decisions based on
the available data in a predictive or adaptive manner, thereby
performing smart actions. In most cases the ‘smartness’ of
the system can be attributed to autonomous operation based
on closed loop control, energy efficiency, and networking
capabilities” [4].

The purpose of this paper is to propose a set of measures
for tracking the development and sustainability of smart
public health systems. Specifically, we introduce the concepts
of organizational complexity, problem/issue complexity, and
situational awareness as three codependent drivers of smart
health systems. We then describe seven smart health systems
measures. This discussion is important for public health
informatics professionals responsible for specifying metrics,
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overseeing information systems housing data for the metrics,
and evaluating the performance of smart public health
systems.

2. Factors Shaping Smart
Agents and Organizations

The underlying objective of any agent or actor within
a given public health system is to maximize the use of
data, information, and knowledge as strategic resources. An
informatics-biased view of a public health system focuses on
the sum of data, information, knowledge systems, people,
practices, policies, and cultural factors that operates to
support some predefined intelligence strategy, organizational
mission, or other event [5]. In these terms, the public
health system can be understood as a functional knowledge
culture. We have also used related terms such as knowledge
environments, information or knowledge ecosystems, and
information or knowledge ecologies to represent this idea.
Here, we use knowledge culture and knowledge environ-
ment interchangeably. We argue that any defined system
boundary that contains the formal or informal governance
of critical strategic and shared knowledge resources can be
called a knowledge environment. The primary purpose of
any knowledge environment is best understood in terms
of the essential need to leverage data, information, and
knowledge in managing individual or collective uncertainty
[6-8].

The way in which we engage in information and knowl-
edge seeking, organize ourselves into collectives of varying
unit configurations (e.g., workgroups, project teams, task-
forces, departments, divisions, networks of organizational
coalitions, and consortiums), and/or apply the use of tools
or technology indicates the basic need to manage any and all
forms of uncertainty [9]. We organize ourselves in response
to external and internal drivers/stressors and increasing envi-
ronmental complexity as a means of reducing or removing
any impediments toward fast, reliable, and pertinent data,
information, and knowledge resources [10]. This impera-
tive to organize for the sake of becoming smarter is best
observed in our introduction of three primary drivers that
we argue are interdependent in any knowledge environment.
By describing these factors as interdependent, we are stating
that as one type of driver category increases or decreases by
some set of circumstances or events, corresponding changes
can occur in one or both of the other areas. These areas
include organizational complexity, problem/issue complexity,
and situational awareness (see Figure 2). Essentially, each of
these three primary driver categories shapes our overall data,
information, and knowledge strategy within any knowledge
environment. The primary objective of an informatician in
designing and maintaining a smart public health knowledge
environment is then to understand the basic predictors
of change in any or all of these categories, as well as to
account for the corresponding mediation/moderation factors
that can shape continued data, information, and knowledge
maximization for agents within any public health knowledge
environment.

Organizational
complexity

Problem/issue
complexity

Situational
awareness

FIGURE 2: Knowledge environment factors of influence.

2.1. Organizational Complexity Factors Shaping Public Health
Knowledge Environments. We use a variety of organizational
structures to facilitate interaction, communication, and
knowledge representation in our quest to manage changes in
our environment. Generally, the levels of organization may
vary from a micro- to macrocontinuum that starts with orga-
nizational agents/individuals, components/subunits, a single
entity/facility, and a multiunit of systems/collaborations/
coalitions/networks/taskforces

/consortiums [11, 12]. Typically, the level of complexity
inherent in the public health challenge or crisis event deter-
mines the corresponding level of organizational complexity
required in the response [7, 13]. Challenges or crisis events
that are short-term or relatively minor may only require
minimal, ad hoc, or temporary organizational responses.
Within the modern healthcare environment, these can repre-
sent informal partnerships or formal structures appearing as
short-term project teams or workgroups. More involved and
long-term problems may require increasing levels of com-
plexity within the organizational response. These long-term
or complex organizational responses may be represented in
the form of permanent departments or divisions within an
organization, or they may even extend beyond organizational
boundaries to include coalitions, collaborations, taskforces,
and interagency network arrangements.

One common public health system problem-solving
strategy used throughout the US and worldwide involves
formulating networks of individuals and organizations to co-
ordinate global-, national-, state-, regional-, county-, city-, or
even community-level responses to health threats to indi-
viduals or populations. Such networks (e.g., coalitions, col-
laborations, consortiums, and taskforces) present oppor-
tunities to define common goals, shape strategy, achieve
economies-of-scale through the sharing of resources and faci-
litate the centralized monitoring and measuring of progress
toward stated objectives. However, one challenge for the
public health informatics professional involves ensuring that
the data, information, and knowledge needs of networks
of stakeholders—ranging from patient advocates, health
organizations, providers, community groups, public health
departments, policy makers, and researchers—are all met
with efficiency and effectiveness. The issues surrounding



timely intelligence were on full display during the recent
Ebola virus and Zika virus outbreaks.

Currently, there are no consistent measures or metrics
to evaluate the efficiency and effectiveness of the ability
of “smart” health networks—of any size or configuration—
to leverage data, information, and knowledge to produce
actionable intelligence from their efforts [3, 14]. In other
words, there is no quantifiable set of standardized measures or
standard operational definitions of what a smart or learning
health network is now or what it should be in the future [15].
Within any public health knowledge environment, a wide
variety of network structures can be assumed. The organi-
zation is viewed as a dynamic, complex, and adaptive entity
whose size, structure, and other organizational determinants
must be constantly evaluated to promote its ability to respond
to internal and external challenges, threats, and opportunities
that will impact individuals and/or the collective leveraging
of actionable intelligence to ensure success in health system
management [16-18].

2.2. Problem/Issue Complexity Factors Shaping Knowledge
Environments. An analogy for problem/issue identification
and response within any public health knowledge envi-
ronment is the human immune response in which the
human immune system assesses threats on a constant basis
and determines if a foreign agent is a “friend” or “foe.”
Once identified in a healthy immune system, the proper
immune response is triggered. For a friend response, facili-
tation/proliferation strategies ensue, and, for a foe response,
elimination/mitigation strategies ensue. Two critical compo-
nents in the overall immune response system are the ability
to retain a memory of this encounter and to demonstrate
system learning to prepare for future encounters of a relatively
similar nature. The same sort of dynamic occurs within a pub-
lic health system network among its various organizational
components, actors/agents, and events. Once a phenomenon
(i.e., circumstance/event/activity/occurrence) is identified as
a potential problem, either threatening or nonthreatening,
system or collective memory is vetted for familiarity [18]. If
sufficient memory of the phenomenon or something similar
is found, the ideal response algorithm(s) (set of instructions)
is/are identified, outlining the appropriate response mecha-
nism. If no memory exists, a response must be determined
on an ad hoc basis. Clinical or public health events/activities
that allow favorable health outcomes (e.g., diffusion of best
practices, strategic summits, introduction of new technology,
disease screening and awareness campaigns, and new fund-
ing announcements) may be considered targets for facilita-
tion/proliferation, whereas unfavorable events/activities (e.g.,
disease outbreaks, health or food recalls, medical errors, devi-
ations from guideline concordant care, risk behaviors linked
to disease spread, budget shortfalls, and staff layoffs) may be
targets for elimination/mitigation. In either case, sufficient
memory must be generated of the response algorithms (pro-
cess/workflows, policies/procedures) that contributed to the
event(s), pathways toward emergence, and/or remediation
strategy to eliminate the threat. Learning in this context
presents the ability to circumnavigate potentially harmful
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events that have the potential for reoccurrence or the ability
to repeat/reinforce positive events that are beneficial [19].
Hence, the ability to extract actionable intelligence from
stored memory is essential to overall public health system
performance and an effective knowledge environment [3].
Two factors that shape this dynamic of event, memory
evaluation, and learning within a knowledge environment
are familiarity and preparedness, borrowed from the field of
emergency preparedness [20].

Within any knowledge environment, issues/problem
complexity and relative familiarity (stored memory) largely
shape the level of “shock” or environmental stress to the
public health system, which creates what Burton termed
an organizational design misfit [16]. In the presence of an
organizational design misfit, the goal is to seek to restore
some measure of equilibrium [17]. The level of shock brought
by the introduction of a problem/issue into any public health
knowledge environment and its corresponding impact on the
public health system can be thought of in terms of two factors:
(1) the degree to which the event was expected to occur and
(2) the degree to which the environment was prepared for its
occurrence. Figure 3 highlights the relationships of these two
factors, where the green represents a highly desirable state of
system and organizational readiness (operationally defined
here as the agents—within the public health knowledge
environment—ability to process the event and determine
an appropriate response), yellow represents less desirable
states of organizational readiness, and red represents the least
desirable state of organizational readiness and the highest
level of vulnerability from both internal and external threats.

Although most public health systems are prepared to
deal with any event; some noticeable changes can occur in
the face of uncovered vulnerabilities introduced by shock
events. Such adjustments on the organizational side may
present as unexpected leadership shifts, sudden changes in
organizational command structures, abrupt shifts in policy
and procedures, new stratums of research funding to inves-
tigate and solve problems, or the addition or elimination of
staff and key personnel [16]. On the public health knowledge
environment side, such adjustments can take the form of
wide-scale data integration or health information exchange
efforts, the formation of new database solutions, the demand
for new technology to monitor and track the problem,
surveillance protocols, information systems, knowledge por-
tals, decision-support systems, and changes in information
resource-management protocols [12]. The level of complexity
in both the problem/issue and the capability of the public
health knowledge environment to process the event and
mount an appropriate response heavily shapes the level of
organization (or in some cases reorganization) required to
mediate the threat or exploit the opportunity. Additionally,
these changes—and more importantly the rate of changes in
the organization in particular and the public health knowl-
edge environment in general—may serve as proxy indicators
for overall public health knowledge environment maturity
in managing uncertainty. In other words, a health system or
public health agency that has undergone frequent leadership
changes, high staff turnover, frequent redrafting of strategic
plans, and reorganizations in a relatively short span of time
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FIGURE 3: Problem/issue complexity factors.

serves as a strong indicator of the lack of overall public health
knowledge environment maturity [12]. Such a public health
knowledge environment characteristically remains in a loop
moving from crisis-to-solution to a new or remerging crisis-
to-solution. In contrast, a mature public health knowledge
environment will seek to identify and understand the patterns
of organizational complexity and problem/issue complexity
emergence and response. Properly stored, organized, and
readily accessible system memory can greatly aid in achieving
a more mature public health knowledge environment.

2.3. Situational Awareness Factors Shaping Information Envi-
ronments. Previously, we stated that organizational complex-
ity is shaped by external or internal factors in a given public
health knowledge environment, requiring different levels of
formal or informal organizational structures to manage their
environmental challenges. We also mentioned that the level of
complexity inherent in problems/issues and the correspond-
ing system memory and preparedness will shape system-level
responses to control and mitigate any perceived threats. Here,
we formally define the term situational awareness (SA) as “the
ability to make sense of an ambiguous situation. It is the pro-
cess of creating [situational awareness] and understanding
to support decision-making under uncertainty—an effort to
understand connections among people, places, and events in
order to anticipate their trajectories and act effectively” [21].
Endsley elaborated the definition for situational awareness
(SA), stating that SA is comprised of three subdomains that
shape individual understanding of some phenomena. These
include (1) Situation Perception (defining the current public
health condition), (2) Situation Comprehension (defining
the relative public health threat or opportunity), and (3)
Situation Projection (forecasting the public health outcomes
of hypothesized trajectories) [22].

Within situational awareness, the two elements of orga-
nizational complexity and problem/issue complexity are
combined and serve as contributing factors that determine

the degree to which organizational structure and function
are properly suited to facilitate unencumbered information
processing. Previous organizational theories have described
the organization, functioning within a given environment,
as an information-processing entity (IPE) [16]. From this
perspective, organizations are seen as sophisticated infor-
mation processing and decision-making machines that act
as if they have preprogrammed subroutines in managing
the loop stages of information flow and organizational
processes (model — input — transformation — output
— feedback) [4]. Within the IPE view of an organization,
we must understand information processing as a means of
shaping organizational and individual decisions, behaviors,
and communication patterns [18]. The flow of information
and knowledge is codependent on our constant need to
learn and share knowledge, largely shaping the structure of
our social and organizational network arrangements [23].
Therefore, the need to know or cognitive demand of both
individuals and organizations becomes a primary driver of
IPE activity [18, 23]. Information processing for the sake
of storing mountains of data, information, and knowledge
resources as an end itself is meaningless in the context of
efficiency, effectiveness, and viability in meeting public health
system organizational missions, goals, and objectives. More
precisely, the primary function of any level of IPE—from
simple department units to complex multiorganizational
networks or health information exchanges—is to respond
to what agents/actors need to know, when they need to
know it, and to support the choices/decisions that must be
made as shareholders navigate through the health system,
defined here as actionable knowledge or intelligence [3]. The
public health organizational IPE will seek to leverage SA
to maximize readiness to meet public health threats from
the environment and to maximize public health knowledge
environment agent/actor individual and/or collective intel-
ligence in the performance of core public health tasks and
functions. Therefore, public health-centric SA serves as a
comprehensive measure of public health system smartness
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and is essential for any standardized assessment of public
health system performance from a public health informatics
perspective.

3. Smart Systems Vulnerability Index

In this section, we propose seven smart health system
measures and capabilities appropriate for helping to man-
age public health organizational complexity, problem/issue/
complexity, and situational awareness for public health sys-
tems networks and public health knowledge environments.
Figure 4 lists these seven measures and provides a brief
description of a smart public health system and our rationale
for its use. Although other measures may be available in
the literature, we believe these seven effectively capture
the key concepts discussed above. Of course, public health
informatics professionals may need to use discretion when
applying measures based on the context, the purpose of
measurement, and any constraints hindering measurement.

3.1. Knowledge Discovery Rate (KDR). Thomas Davenport
described knowledge as data and information imbued with
meaning and relevance. In this way, knowledge is seen as
a continued aggregation and refinement that begins with
raw data elements. For example, a set of 10 numerical digits
constitutes raw and meaningless data. At the stage of infor-
mation, it can be recognized as a telephone number.

These same digits can be viewed as knowledge when that
number is contextualized as a conduit to satisfy some indi-
vidual or organizational cognitive demand to support health
decision-making or address some issue or problem. This
telephone number can be viewed as a source of knowledge
when, for example, it represents a nurse hotline for patient
navigation. The informatics professional managing/building
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a mature public health knowledge environment works with
stakeholders to develop a comprehensive knowledge inven-
tory (formerly referred to as an ontology) of all products used
to inform public health stakeholder decision-making [23].

The knowledge discovery rate (KDR) represents the rate
at which knowledge is generated from new or existing
data and information resources. In other words, the KDR
shows how long it may take someone to (1) realize these
10 digits represent a telephone number, (2) process that
this telephone number is connected to a patient navigating
service, and (3) realize the nursing navigation service has
additional resources to maximize the care experience. In
public health, KDR may be expressed as the time it takes
health officials to recognize a pattern in seemingly unrelated
health events (e.g., ER traffic, school/work absence, provider
case reporting, news reports, food plant inspection reports,
and grocery store sales), indicating a disease threat in the
form of a potential food-borne illness. It should be noted
that display or interface is an essential component as well.
Endsley explores how the interface and display of information
can greatly deter the uptake of knowledge and consequently
impair overall situational awareness [22]. For example, will
everyone read these representations in the same manner—
“1234567890” and “123.456.7890” and “(123) 456-7890”—in
their communication exchange?

A key component in shaping the rate of knowledge dis-
covery involves comprehensively assessing the presentation
and display of data, information, and knowledge throughout
key stages of any healthcare delivery (e.g., clinical pathway) or
public health process. To that end, KDR involves understand-
ing how knowledge is packaged for consumption in the form
or paper or electronic tangible (explicit) knowledge products
or as less tangible (tacit) knowledge products to inform
decision-making. This measure examines the production
curve of knowledge from generation, presentation, selection,
and consumption, as well as the qualitative assessment of
knowledge’s relevance to agent-specific choice.

KDR may be particularly pertinent in settings in which
pattern recognition depends on a coordination of data,
information, and knowledge from a highly heterogeneous
network of sources and stakeholders. KDR becomes essen-
tial in public health situations where intelligence has to
be collated across multiple agencies (e.g., school, hospital,
retail, and corporate), wide geographic boundaries (e.g.,
multiple regional metropolitan area health departments), or
multiple categories of stakeholders (e.g., patients, providers,
and health administrators). In such cases, KDR represents
a measures of timeliness and operates as a key indicator of
public health outcomes.

3.2. Organizational (Agent- or Systems-Level) Memory. Ear-
lier we described the matrix of system shock as a function
of preparedness and expectedness in response to internal
and external stimuli (events). Organizational or systems-
level memory can be described as the degree to which the
history of these encounters, responses, and the relative degree
of success or failure of those responses are catalogued and
stored for future use by other agents/actors in the future. This
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can be operationally understood as the “repeatability” level,
commonly referred to as level two of five in the capability
maturity model (CMM) [24]. Systems memory simply asks
to what degree are phenomena captured and labeled as
favorable or unfavorable and response algorithms developed
and made available for expedient consumption by the same
and/or other agents within the knowledge environment. A
lack of repeatability represents a high level of unnecessary “ad
hoc” or CMM level-one responses [24] and may result in an
inordinately high level of shock to the system for events that
if properly catalogued could have been relegated to the realm
of routine with minimal system-shock value.

Here, the primary measure is to determine the level
of completeness, sophistication, and use of knowledge-
bases that represent the sum of public health knowl-
edge stored for current and future public health decision-
making. This can be expressed as basic knowledge inven-
tories, resource guides, policy and procedure manuals, and
intranet/Internet lessons or best practices. It can also be
expressed as highly sophisticated knowledge ontologies that
capture and display public health knowledge, tasks, events,
and procedures in complex electronic tools to support
network modeling, information flows, and critical com-
munication pathways. Public health knowledge portals can
be constructed to identify public health stakeholder query
demand more easily, as well as access, retrieve, display,
and analyze knowledge use in any public health knowl-
edge environment. This capability is essential to the proper
use and maximization of organizational memory. In the
absence of standardized knowledge memory management,
a public health organization remains in a perpetual ad hoc
response mode to each new or reoccurring public health
crisis.

3.3. Agent-Specific and System Learning. There is a growing
body of literature of the evolution of a “learning health
system” [25]. Our study contributes to this concept by
providing a conceptual definition of both agent-specific and
system-level learning from the perspective of a public health
informatics professional managing/building a public health
knowledge environment. Here, learning is understood as the
wisdom level of the informatics continuum [26]. We have
refrained from using this concept throughout this discussion,
but at this point it is appropriate to recognize that some infor-
matics literature describes the informatics continuum (earlier
referred to as the data progression) as data to information
to knowledge to wisdom [26]. Typically, finding objective
measures of wisdom is not easy or universally accepted.
However, we have chosen to substitute wisdom for decision
and outcomes. As a result, our data progression extends to
the following sequence: data to information to knowledge to
decisions to outcomes. The difference is that choices, when
properly linked to specific outcomes and their corresponding
consequences, provide opportunities for learning. As a result
of this substitution, we are now able to define the concept
of wisdom operationally as the degree to which choice—
informed by relevant knowledge products—can lead to more
highly desirable decisions, beneficial outcomes, and positive

consequences for the overall health and wellbeing of agents
and the system.

We extend our definition of wisdom to incorporate
intelligence, simply understood as the display of wisdom over
time. In our model, learning acts as a measure of differential
wisdom and intelligence over time (the difference measured
at two distinct points in time). In other words, this equation
involves individual or organizational wisdom displayed or
measured at some endpoint (t2) minus the individual or orga-
nizational wisdom displayed at some starting point (¢1). The
organizational IQ in a learning health system is then under-
stood as the measure of differential wisdom displayed over
time toward some set of decisions/choices, actions/tasks, or
other health phenomena. Learning represents a measurement
of agent-specific or system-level discernment (the ability to
leverage situational awareness in comprehending threat level,
as well as leveraging stored or new knowledge in choosing
between differing options). To this end, learning is construed
as the means of refinement in the art of discernment or
wisdom acquisition.

In public health terms, the operational construct of this
measure of learning is still evolving, and little literature exists
on applying this construct in public health practice. We
suggest that measures of learning—presented here as a means
of leveraging knowledge resources in a wise manner—are
largely dependent on the previous measures of organizational
memory. In the absence of a well-designed public health
knowledge-base that captures history or practice, learning
from such experience becomes extremely episodic and anec-
dotal in nature. For example, we can only speculate on
how much stored memory has been gathered with respect
to the Ebola crisis that may more easily mitigate another
outbreak or similar outbreaks of other diseases in related
conditions. The emergence of rapid learning health networks
deals with some aspects of this challenge by streamlining the
processing of research evidence into practice and gathering
knowledge stores of what works best in achieving better
health outcomes. However, global implementations of these
research-to-practice and comparative effectiveness networks
are still in the early stages of development.

3.4. Knowledge Absorption Rate (KAR). Carley et al. des-
cribed how the sum of knowledge within a given system
boundary can be quantified in terms of knowledge bits [27-
29]. According to this concept, knowledge represented in its
various forms can be deconstructed into quantifiable units
[29, 30]. The number of knowledge units or bits that may
comprise a discreet package of knowledge is determined
by the level of complexity of the decisions or tasks this
knowledge is designed to inform [29, 30]. As such, a direct
relationship exists between the number of knowledge bits and
the level of the complexity in related decisions and tasks. The
greater the level of task or decision complexity/criticality or
decision, the larger the knowledge complement (or number
of knowledge bits) associated with the management, storage,
display/representation, diffusion, use, and comprehension of
knowledge [29, 30]. This perspective assumes more knowl-
edge bits are needed to saturate or carry out a complex



task or make a critical choice than to implement a more
simplified/less complex task or choice.

In essence, this concept of knowledge bits suggests that
throughout the knowledge environment, agents/actors can
have either 0% saturation of knowledge (or 0 bits) up to 100%
saturation of knowledge (or all bits available in the knowledge
environment). The consumption rate or absorption of these
knowledge bits over time, in the performance of core task
performance, can then be evaluated using a variety of sta-
tistical and computational modeling methods. To carry this
out, a value or weight is assigned to every piece of knowledge
represented within a knowledge inventory (also referred to
as ontology). The weight given to a knowledge product
represents both the degree of value assigned by consumers
of that knowledge product (elasticity-of-demand) and the
magnitude of importance of the respective decision(s) it is
intended to inform (criticality). The curve of a knowledge
product’s elasticity-of-demand and criticality of decisions is
evaluated in the context of a core set of tasks to be performed
at the agent or system level.

In public health settings, KAR represents a concrete way
of measuring overall application of knowledge to perfor-
mance. In previous studies, we examined the knowledge
absorption rate of community health clinical staff with regard
to breast, cervical, and colorectal cancer screening policies,
guidelines, and protocols as derived from the use of electronic
clinical decision-support (CDS) [31]. We examined the extent
to which CDS use and corresponding knowledge absorption
rates would be correlated to organizational performance for
cancer screening [31]. We demonstrated that KAR was, in
fact, a predictor of organizational performance in meeting
process-of-care outcomes in cancer care [31]. Hence, we
suggest that KAR can serve as an effective measure of HIT
impact on performance by focusing on end-users’ ability
to access key knowledge by interacting with HIT tools and
applying this knowledge to healthcare delivery and public
health practice.

3.5. Agent-Specific and System-Level Cognitive Demand.
Within any given knowledge environment, agents/actors at
many levels perform key tasks, make decisions, and engage in
a series of activities that can be described by a set of process
algorithms [28]. The constant factor governing this activity
is the principle of a cognitive demand for information. The
principle of supply and demand borrowed from the field
of economics applies somewhat to the field of informat-
ics with respect to agents’/actors’ need for information to
support decision-making and task performance. Here, we
focus on the metric as a measure of the relative demand for
data, information, and knowledge resources by agents/actors
operating at all levels of the multilevel model, as well as
the corresponding supply of data, information, and knowl-
edge resources available for consumption. We refer to main
driver of the interplay between the supply and demand of
data, information, and knowledge resources as the cognitive
demand or simply the “need to know.”

This “need to know” or cognitive demand shapes
information-seeking behaviors of the agents/actors within
the system and may govern the amount effort they are
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FIGURE 5: Criticality (elasticity-of-demand) and the supply of
knowledge.

willing to expend in acquiring the data, information, or
knowledge resources. The level of importance or criticality
of information to the agent is measured by the elasticity-of-
demand (a borrowed term) for that information. The measure
of elasticity coupled with the relative supply of information
can be used to measure relative states of “informedness” of
the agents/actors within the system. According to the formal
definition of elasticity, in an elastic demand, the change in
quantity demanded due to a change in price is large [32].
In contrast, an inelastic demand is one in which the change
in quantity demanded due to a change in price is small
[32]. Cognitive demand can serve as a core measure in
identifying knowledge-related vulnerabilities within a system
or the relative degree to which the cost of the knowledge
required is acceptable or not acceptable.

We understand that in the context of health systems, the
concept of price with respect to knowledge can be measured
in terms of access, affordability (time and effort), overall
opportunity-cost (ease-of-use, processing, comprehension,
and understanding), and relevancy. Figure 5 lists that four
distinct states agents/actors can assume within any public
health knowledge environment based on the level of criti-
cality (elasticity-of-demand) and the supply of knowledge.
When the cognitive demand for knowledge is highly critical
and the relative supply is limited, knowledge gaps emerge.
Such knowledge gaps may result from a variety of scenarios,
including (1) the information or knowledge product does not
exist, resulting in a need for innovation; (2) the resource
exists, but access is in some way limited or encumbered;
(3) the resource exists with abundant access but is not
easily processed or consumed because of literacy challenges,
content presentation, or other reasons; and (4) the supply is
challenged by other competing priorities and is intentionally
undeveloped or underdeveloped. The two states we refer to as
parity conditions represent areas where the level of criticality
is adequately met by the level of knowledge supply. In such
cases, the main strategy is to employ continuous monitoring
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to ensure balances remain within desired ranges of accept-
ability in conjunction with the need for balance in the overall
public knowledge environment. A state of knowledge surplus
results when the level of information or knowledge product
supply exceeds the relative level of importance placed on
the information or knowledge products (also understood
as relevancy). This state represents an opportunity for the
elimination of outmoded or underused knowledge resources,
information system redesign/upgrade, or other information
technology strategic efforts to ensure long-term relevance of
information resources, information systems, and knowledge
products.

The public health application of this measure of rela-
tive cognitive demand or the need to know is illustrated
by the recent Zika outbreak. It became evident that the
population at greatest risk for the disease was pregnant or
soon-to-be pregnant women. The demand for information
regarding protective measures, travel restrictions, the rate
of transmission, the relative threat to fetal health, and signs
and symptoms once infected created large pockets of health
consumer uncertainty, stress, and anxiety. Given the severe
level of risk to pregnant women and their developing babies,
the demand for knowledge of what to do for protection was
highly critical. The window of transmission of the Zika virus
from mother to fetus was highly uncertain, the effectiveness
of preventive measures was hard to measure, and travel deci-
sions to affected areas were rather unclear, resulting in condi-
tions of highly critical and low-resourced knowledge profiles
for many health consumers and stakeholders at all levels.
Rapid research was needed to identify proven measures
against the invading mosquito population. Public health
departments throughout the affected areas were scrambling
to model the spread of the disease, measure the impact of
the preventive measures, and manage the reports of news
cases. Meanwhile, the public was constantly demanding new
answers and updates on a daily basis. This was compounded
by the timing of the 2016 Summer Olympic games in Rio
that sparked highly publicized athletes refusing to travel to
the region to participate in the event. Highly critical/low
supply-resourced conditions are probably the most difficult
to manage. In any public health knowledge environment, a
continual assessment of stakeholder cognitive demand must
be done—relative to the capabilities of the existing or evolving
knowledge-base—as a means of satisfying current and/or
projecting anticipated demands.

3.6. Cognitive Mapping. Once the knowledge inventory and
relative measures of importance are assessed and the corre-
sponding process and information flows have been identified,
the public health informatics professional can now engage
in the process of creating cognitive maps or models of
both existing and emerging knowledge and communication
pathways. These pathways can be modeled for specific agents,
for the system as a whole, or any combination of the
two. Here, the public health informatics professional is not
simply asking who uses what information or examining
the use of computerized information resources; instead, the
goal involves trying to model the cycle of information and

knowledge within the public health knowledge environment.
This information cycle is best understood as starting with
raw materials, in this case raw and at times unformatted data
elements, which are assembled into chunks of information
(e.g., electronic databases or information systems). These
information chunks are either coordinated in the formation
of meaningful knowledge products or presented to users
of information to coordinate based on their specific needs
(structured queries), which can be thought of as off-the-
shelf knowledge products or ad hoc user-defined knowledge
products to support decision-making (ad hoc queries). We
refer to this cycle as knowledge refinery.

Analytic measures of knowledge refinement consist of
examining the pace of knowledge development and exploring
system responsiveness as expressed by the supply of and
demand for data, information, and knowledge resources
[33]. The basic elements of analysis consist of the total
knowledge in any given public health knowledge environ-
ment (knowledge entropy) relative to the amounts of used
kinetic knowledge and unused potential knowledge [33]. This
can also be expressed in terms of the amount of knowl-
edge/information gained or loss in an effort to maximize
performance [33]. Additionally, the public health informatics
professional could examine existing and emerging pathways
that are developed through the examination of patterns of
use, which is closely linked to the concept of plasticity
[34]. In the field of neuroscience, the term neuroplasticity
refers to the human brains ability to change in response
to behavioral, environmental, and neural processes [35]. In
the human brain, these pathways, after repeated stimulation
and reinforcement, are actually carved into the brain tissue
[35]. Like neural pathways are carved into the human brain,
IPEs, as described earlier, may examine how public health
knowledge environments respond to changes in behavior,
environmental conditions, or agent-specific or system-level
cognitive demands [34, 36].

Pathways of changes in public health knowledge environ-
ment cognition can be modeled using a variety of conceptual
and visualization techniques [37]. Such pathways, when
observed and modeled, can yield repeated patterns, which
may be canonized as permanent or semipermanent cognitive
pathways toward system-level knowledge and learning health
systems [37]. Within our model of public health knowledge
environments, highly intelligent health systems have the
ability to manage such cognitive pathways in response to
cognitive demands [37]. Where old or unused pathways
exist, data and information systems (and the corresponding
knowledge products) will likely be considered outdated or
not useful. Where current cognitive pathways are robust and
frequented, data and information systems are likely to be
considered essential to decision-making, and where new and
emerging cognitive pathways are observed or predicted, the
likelihood exists for innovation and systems development
to support emerging communities of practice, workgroups,
department/divisions, and other formal or informal organi-
zational structures [38].

The public health application lies in understanding the
public health system as an evolving complex network of
individuals, organizations, groups, and knowledge resources.
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Here, the public health informatics professional may find
knowledge, skills, and abilities in modeling social networks
and organizational networks that are essential in establishing
current state network diagrams (baseline) and future state
diagrams designed to guide the visualization of a public
health knowledge environment. In this context, a large
library of network measures can be employed to support
the analysis of a public health system and its respective
knowledge environment, like measures of network density
agents, closeness/connectedness of agents to each other or
to other knowledge resources, patterns of clustering and
cliques behaviors, knowledge-sharing practices, and more.
The application of social and organizational network analysis
in public health is growing at a rapid rate and is expected to
continue moving forward.

3.7 Aberrant Detection Analytics. Arguably the most impor-
tant analysis within this discussion involves being able to
detect subtle changes within the public health knowledge
environment that may pose a threat to one or more agents or
the system overall. Here, we discuss the ability of intelligent
analytics or telemetry as part of a Public Health Situation
Room that can be used to detect subtle changes within the
public health knowledge environment. The public health
informatics professional relies heavily on the use of probes
and sensors as part of any surveillance and monitoring
system to gather intelligence. Similarly, physicians and nurses
rely on telemetry to monitor patient vital signs, drivers
use dashboards to detect changes in automobile status, and
investors use tickers to track global investments. These forms
of monitoring and tracking systems have one feature in
common: they all make use of a grid system or network
of core indicators as validated predictors of overall system
health.

Any sensor network used to monitor and track activ-
ity within a given public health Public Health Situation
Room must recognize several information-specific concepts.
First, information does not always travel along predefined
organizational departmental or process pathways. Instead,
information exchange may occur along a multiplicity of
pathways, some predictable and others highly unpredictable.
While organizational constructs of departments and divi-
sions may account for some of communication and informa-
tion exchange, they do not account for all activity. Therefore,
the placement of public health data/event collecting sensors
within a given public health knowledge environment must be
a fluid network that is highly adaptive and capable of cap-
turing activity in different settings, wherever the information
channels may lead.

Second, the Public Health Situation Room sensor grid
must be able to identify and track activity by both inter-
nal agents and system components, as well as by external
agents and system components that may interact with the
environment. No public health knowledge environment is
completely closed. As a result, sensors must capture intel-
ligence from portals through which information travels in
and out of the system in all forms. Finally, the level of
completeness must be defined to determine what represents
an adequate level of coverage. A poorly designed or partial
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Public Health Situation Room sensor grid that allows large
levels of undetected activity would not be useful on long-
term. A sensor grid should be viewed as a living and growing
network of data/event collection activities that changes with
evolving needs and priorities, and the level of granularity
or specificity of detection must also be capable of changing
within the grid as strategic priorities shift. The full list of
indicators drawn from public health knowledge environment
factors, stakeholder-levels, and unique views will largely
shape the types of sensors, density of the network, and
level of sensitivity needed for meaningful aberrant detection
algorithms and monitoring system development.

Public Health Situation Rooms are used at all levels of the
public health system throughout national and international
health settings, the US Department of Health and Human
Services, various public health agencies, and healthcare
delivery settings across the globe. However, there is no
standardized model for this type of monitoring capability.
Public Health Situation Room needs and priorities vary
widely by organization and may include but not be limited
to disease management, outbreaks investigation, emergency
preparedness, disaster response, community health assess-
ments, and even healthcare access, equity, and quality. The
use of electronic performance, strategic, operational, and
clinical dashboards are typical of such Public Health Situation
Rooms. We argue the primary challenge of the public health
informatics professional in the design and execution of Public
Health Situation Rooms is to develop the underlying smart
infrastructure (knowledge-base) and array of analytic mea-
sures described in this discussion to ensure the maximum
impact on desired outcomes.

4. Conclusion

As we enter a public health informatics era with terms like
learning health systems, smart health systems, and adaptive
complex health systems, we must identify a common set of
analytic measures and capabilities to inform our modeling,
measuring, and managing of public health “smartness.” Such
a set of measures must take into account the full spectrum
of sociotechnical factors that make up a public health system
and shape performance, including technical, organizational,
and human contributions. It is essential that we understand
the basic drivers of smart systems, expressed in this dis-
cussion as simply the need to know or cognitive demand.
This basic need to know and our corresponding effort to
leverage data, information, and knowledge resources toward
some individual or collective set of goals and objectives
form the basic parameters of any smart system. In the
context of a public health system, public health informatics
professionals stand poised to redefine the benefit of smarter
healthcare delivery and public health practice. A common set
of analytic measures and capabilities that can drive efficiency
and viable models can demonstrate how incremental changes
in smartness generate corresponding changes in public health
performance. Here, we introduced the concepts of organiza-
tional complexity, problem/issue complexity, and situational
awareness as three codependent drivers of smart public
health systems characteristics. We also propose seven smart
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health systems measures and capabilities that are considered
essential in a public health informatics professional’s toolkit.
Because this area of research and practice is still in its
formative stages, the intent of this discussion is to build
on the developing body of literature seeking to establish
standardized measures for smart, learning, and adaptive
public health systems.
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