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Fatigue, including cognitive fatigue, is one of the most debilitating symptoms reported

by persons with multiple sclerosis (pwMS). Cognitive fatigue has been associated with

disruptions in striato-thalamo-cortical and frontal networks, but what remains unknown

is how the rate at which pwMS become fatigued over time relates to microstructural

properties within the brain. The current study aims to fill this gap in knowledge by

investigating how cognitive fatigue rate relates to white matter and basal ganglia

microstructure in a sample of 62 persons with relapsing-remitting MS. Participants rated

their level of cognitive fatigue at baseline and after each block (x7) of a within-scanner

cognitive fatigue inducing task. The slope of the regression line of all eight fatigue

ratings was designated as “cognitive fatigue rate.” Diffusional kurtosis imaging maps

were processed using tract-based spatial statistics and regional analyses (i.e., basal

ganglia) and associated with cognitive fatigue rate. Results showed cognitive fatigue rate

to be related to several white matter tracts, with many having been associated with basal

ganglia connectivity or the previously proposed “fatigue network.” In addition, cognitive

fatigue rate was associated with the microstructure within the putamen, though this did

not survive multiple comparisons correction. Our approach of using cognitive fatigue

rate, rather than trait fatigue, brings us closer to understanding how brain pathology may

be impacting the experience of fatigue in the moment, which is crucial for developing

interventions. These results hold promise for continuing to unpack the complex construct

that is cognitive fatigue.

Keywords:multiple sclerosis (MS), cognitive fatigue, diffusional kurtosis imaging (DKI), whitematter, basal ganglia,

microstructure

INTRODUCTION

Fatigue, including cognitive fatigue (i.e., lack of mental energy), is one of the most widely reported
symptoms in multiple sclerosis (MS), impacting more than 70–90% of individuals with the
disease (1, 2). The presence and severity of fatigue negatively impacts employment, quality of life,
psychological status, and ability to complete basic and complex activities of daily living (3–5). What
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we know about cognitive fatigue to date, however, has largely
stemmed from subjective self-report inventories, which rely
on retrospective ratings and carry several limitations. There is
evidence that measuring fatigue in themoment (i.e., state fatigue)
may provide a more accurate measure, as it is less contaminated
by outside factors such as bias, memory, and mood state (6).

Adding to the complexity and nuance of measuring cognitive
fatigue is the absence of a metric that tracks change over time,
or how quickly a person with MS becomes fatigued during
a cognitively demanding task (i.e., rate of cognitive fatigue).
Studies examining cognitive fatigue rate in MS are limited, but
we can deduce the importance of considering rate through the
temporal fatigue hypothesis. The temporal fatigue hypothesis posits
that there is a positive relationship between mental effort and
subjective cognitive fatigue, regardless of cognitive load, such
that as length of time engaged in a mentally demanding task
increases, so does level of reported subjective cognitive fatigue
(7–9). Several studies have found increases in subjective cognitive
fatigue in relation to time spent engaging in a cognitively
demanding task, with little or no association found between
subjective cognitive fatigue and performance (10–12). No studies
have directly investigated the rate at which persons with MS
fatigue while engaging in a fatigue inducing task. The current
study aims to fill this gap by examining the rate of cognitive
fatigue over time during a fatigue inducing task.

Investigations of cognitive fatigue and white matter
microstructure using diffusion weighted imaging (DWI) have
produced potential white matter correlates of cognitive fatigue
that appear to be consistent with the striato-thalamo-cortical
network proposed by multiple investigators [see (13–16)]. In
separate studies examining persons with MS, fibers connecting
the posterior hypothalamus and mesencephalon, external
capsule, internal capsule, frontal and occipital juxtacortical
fibers, uncinate fasciculus, forceps minor, superior longitudinal
fasciculus, and cingulum have all been associated with trait
fatigue (17–19). Reduced striato-thalamo-cortical and frontal
network integrity have also been associated with cognitive fatigue
in veterans with a history of mild to moderate traumatic brain
injury and older adults (20, 21).

In addition to the contribution of white matter damage to
cognitive fatigue in neurological (i.e., MS) and non-neurological
populations, brain structures, particularly the basal ganglia,
have also shown associations. Chaudhuri and Behan (13) were
among the first to propose that the basal ganglia are implicated
in cognitive fatigue due to interruptions of basal ganglia
circuitry (i.e., striato-thalamo-cortical loop). Subsequent work
using neuroimaging has supported this hypothesis by linking the
structure and function of the basal ganglia to both cognitive and
general fatigue in MS [e.g., (22, 23)]. Additional studies in MS
(14, 24–28) and non-MS populations (29–32) further support
the basal ganglia as a primary pathophysiological contributor
to fatigue.

Previous studies have linked cognitive fatigue and changes to
white matter and/or basal ganglia structure, but limitations exist.
First, most studies have relied on trait fatigue as the primary
independent/dependent variable, which has limited accuracy due
to retrospective self-report biases. Second, no previous studies

have taken rate of fatigue into account, thereby missing a
crucial aspect of cognitive fatigue. Lastly, while basal ganglia
activation/connectivity and overall volume have been examined,
no previous studies have utilized advanced DWI to examine the
microstructure of the basal ganglia. The current study aims to fill
these gaps in the current literature by examining the relationship
between cognitive fatigue rate (i.e., how quickly or slowly an
individual becomes cognitively fatigued during a fatigue inducing
task) and white matter and basal ganglia microstructure using
advanced DWI.

METHODS

Participants
The current study represents secondary analyses on a previously
collected prospective dataset. Seventy-three participants with
clinically definite relapsing-remitting MS (RRMS) according to
McDonald criteria (33) were recruited for the study. Eleven
participants were not included due to incomplete study sessions
or substantially missing behavioral data (i.e., did not come in
for scheduled session, etc.), leaving 62 participants enrolled
in the study. Of the 62 participants, six were missing or had
unusable neuroimaging data and were thus excluded from the
neuroimaging portion of the study. There were no demographic
or neuropsychological differences between the participants
included and excluded from neuroimaging analyses, aside from
years of education completed. The participants included in
neuroimaging analyses had more years of education (M = 16.13,
SD= 1.71) than those who were excluded (M= 14.50, SD= 2.51,
p = 0.038). Table 1 provides demographic characteristics for the
study sample.

RRMS participants were recruited from local universities
and MS clinics, flyers posted throughout the community and
on MS-related websites, ads placed within local MS chapter
newsletters, and from a database of over 500MS participants
who have participated in research at our institution in the
past. Inclusion criteria for the MS group were as follows:
between 30–65 years of age; RRMS subtype (verified by each
participant’s neurologist); free of exacerbations for at least 1
month prior to the screening; and able to ambulate without
an assistive device. Exclusion criteria were as follows: history
of head injury, stroke, seizures, or any other neurological
history outside of MS; current treatment/use of steroids,
benzodiazepines, antipsychotics, and/or neuroleptics (i.e., at
the time of the phone screen or study session); unable or
unwilling to consent; and contraindications for MRI. All
prospective participants underwent a telephone screen to
determine eligibility, and eligible participants were scheduled
for an in-person study session which included consenting,
completion of questionnaires, neurocognitive testing, and MRI.
All participants were compensated for their time ($100 USD).
All study procedures were conducted in English and were
approved by the Kessler Foundation Institutional Review Board.
Each participant received the same battery and administration
was standardized such that the order of the battery was kept
consistent across participants.
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TABLE 1 | Descriptive characteristics of demographic and behavioral data.

Sample (N = 62) n (%)

Age 52.2 ± 8.5, 54 (30–66)

Female 50 (80.6%)

Race/ethnicity

Latinx/hispanic 7 (11.3%)

Afro-Latinx 1 (1.6%)

Non-Latinx Black 4 (6.5%)

White 39 (62.9%)

Asian 1 (1.6%)

Other 9 (14.5%)

Not reported 1 (1.6%)

Years of education 16.0 ± 1.8, 16.0 (12–20)

Disease Duration* 19.1 ± 10.8, 17.5 (2–43)

Lesion Volume (mL) 6.4 ± 7.6, 3.1 (0–40.1)

MFIS Cognitive 18.8 ± 8.9, 17.0 (0–39)

MFIS Psychological 3.39 ± 2.16, 3.0 (0–8)

MFIS Physical 17.73 ± 8.0, 19.0 (0–35)

MFIS Total 37.9 ± 16.1, 38.0 (4–75)

CMDI Mood 8.08 ± 3.68, 6.0 (6–25)

CMDI Evaluative 14.02 ± 6.10, 13.0 (1–42)

CMDI Vegetative 25.53 ± 6.64, 24.50 (11–40)

CMDI Total 77.2 ± 23.8, 70.1 (45–181)

STAI State 31.8 ± 10.5, 28.0 (20–63)

STAI Tait 36.2 ± 11.6, 34.0 (21–61)

SDMT Raw 50.9 ± 12.8, 52.0 (17–74)

*Missing data for four participants; MFIS, Modified Fatigue Impact Scale; CMDI, Chicago

Multiscale Depression Inventory; STAI, State Trait Anxiety Inventory; SDMT, Symbol Digit

Modalities Test.

Behavioral Measures
Each participant completed a set of questionnaires measuring
depression, state and trait anxiety, and trait fatigue. These
variables were examined to better understand the variance of
cognitive fatigue rate.

Chicago Multiscale Depression Inventory
The Chicago Multiscale Depression inventory [CMDI; (34)] is
a 50-item inventory consisting of four subscales: mood (14
items), evaluative (14 items), vegetative (14 items), and positive
affect (eight items). These subscales can be used separately or
in combination with one another. Participants rate themselves
on a 5-point Likert scale (1- “Not at all” to 5-“Extremely”) the
extent to which each word/phrase (e.g., sad, joyful, unworthy,
gloomy) describes them “during the past week, including
today.” The CMDI was designed specifically for use in medical
populations, including MS. Raw scores for the mood, evaluative,
and vegetative subscales and the total score were used in
statistical analyses.

State-Trait Anxiety Inventory
The State-Trait Anxiety Inventory [STAI; (35)] is a 40-item
measure divided into two, 20-item scales to assess current
(“state”; e.g., “I am tense,” “I am worried”) and longstanding

(“trait”; e.g., “I am content,” “I am a steady person”) anxiety.
Participants rate themselves on a 4-point Likert scale (state: 1-
“Not at all” to 4- “Very much so”; trait: 1- “Almost never” to 4-
“Almost always”) based on how they feel in the moment (“state”)
and how they generally feel in their lives (“trait”). Raw scores for
state and trait anxiety were used in statistical analyses.

Modified Fatigue Impact Scale
The Modified Fatigue Impact Scale (MFIS) is a 21-item self-
report questionnaire based on Fisk et al.’s (36) Fatigue Impact
Scale. Items makeup three subscales that measure the effects of
fatigue on cognitive (10 items; e.g., “I have been less alert”),
physical (9 items; e.g., “I have had to pace myself in my
physical activities”), and psychosocial (2 items; e.g., “I have been
less motivated to participate in social activities”) functioning.
Participants rate themselves on a 5-point Likert scale (0- “Never”
to 4- “Almost always”) the extent to which fatigue has impacted
them in the stated way during the previous 4 weeks. Raw scores
for cognitive, physical, and psychosocial subscales were used in
statistical analyses.

Fatigue Induction Task
We used the same fatigue induction task that we have used in
previous research (18, 37). On every trial, subjects were presented
with a rotating, colored rectangle. The rectangle was rotating
either quickly or slowly and was colored either red or blue.
The stimulus on each trial therefore afforded two tasks: a color
categorization task in which subjects pressed one button on an
MR-compatible button box if the rectangle was colored red and
another if it was colored blue; and a speed categorization task in
which subjects pressed one button if the stimulus was rotating
quickly and another if it was rotating slowly. The color and
speed trials were optimized for deconvolution and were pseudo-
randomly mixed such that on some trials subjects switched from
one task to the other while on others they repeatedly performed
each task. E-Prime software was used to present the stimuli and
to record responses. Subjects worked through seven blocks of the
task-switching paradigm to induce fatigue.

Visual Analog Scale-Fatigue
Participants’ cognitive fatigue was assessed with a visual analog
scale (VAS) at baseline and after each block of the fatigue
induction task for a total of eight ratings. Participants were asked:
“How tired are you right now?” and were asked to indicate
their level of fatigue on a scale from 0 to 100, with 0 being
minimally fatigued and 100 being maximally fatigued. To mask
the purpose of the study, three additional VAS ratings were
also administered (in randomized order) before and after each
task block: happiness, sadness, and frustration. The slope of the
regression line for each participant’s eight VAS-F ratings was
operationalized as “cognitive fatigue rate.”

Neuroimaging Acquisition
Neuroimaging data collection was completed on a 3-Tesla
Siemens Skyra scanner. Data were collected using 20- and 32-
channel head coils. Diffusion weighted imaging (DWI) data
were collected A>>P using two separate sequences which were
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optimized to produce comparable data (sequence 1: b = 1,000,
2,000 s/mm,2 TR= 5,600ms, TE= 97ms, FOV= 220mm, voxel
size = 2.3 × 2.3 × 3.0 mm3, multi-band acceleration factor =
none, TA= 6min 50 s; sequence 2: b= 1,000, 2,000 s/mm,2 TR=

3,000ms, TE = 95ms, FOV = 220mm, voxel size = 2.3 × 2.3 ×
3.0mm3, multi-band acceleration factor= 2, TA= 3min 46 s). In
addition, high-resolution magnetization prepared rapid gradient
echo (MPRAGE) and T2 fluid attenuated inversion recovery (T2
FLAIR) images were acquired for each participant to quantify
lesion volume (MPRAGE: TE = 3.43ms; TR = 2,100ms, FOV
= 256mm; flip angle = 9◦; slice thickness = 1mm, voxel =
1 × 1 ×1mm3, matrix = 256 × 256, in-plane resolution = 1
mm3 isoptropic; T2 FLAIR: TE = 91ms; TR = 9,000ms, FOV
= 256mm; flip angle = 150◦; slice thickness = 3mm, voxel = 1
× 1 × 3mm3, matrix = 256 × 216, in-plane resolution = 1 × 1
× 3 mm3).

Lesion Quantification
White matter lesions were quantified using the Lesion
Segmentation Toolbox v3.0.0 (LST) in Statistical Parametric
Mapping 12 (SPM12), developed by Schmidt et al. (38). Prior
to implementing the Lesion Segmentation Toolbox, each
participant’s T1-weighted and T2 FLAIR-weighted scans were
visually inspected for artifacts and distortions. Six participants’
data were poor quality and unusable. Missing data for these
participants was imputed using Multiple Imputation by Chained
Equations (MICE), which uses an iterative series of predictive
models to ‘fill in’ missing data (39).

The lesion growth algorithm (LGA) option within the LST
was used to quantify lesions. In brief, T1-weighted images
were segmented into three different tissue classification maps:
gray matter (GM), white matter (WM), and cerebrospinal fluid
(CSF). The T2 FLAIR-weighted images were bias-corrected and
coregistered to the T1-weighted image. Next, the FLAIR intensity
distribution for each tissue classification map was obtained and
FLAIR-hyperintense outliers, representing sclerotic lesions, were
added together to create a combined conservative lesion belief
map. The conservative lesion belief map of each participant
underwent an iterative process using a lesion growth model.
During this process, each voxel within the neighborhood of a
conservatively identified lesion was labeled as “lesion” or “other”
depending on whether voxels share a common border or not; the
lesion growth algorithm assumes that voxels that are completely
surrounded by lesion voxels are more likely to represent lesions.
The program then moves from conservative assumptions about
the lesion map to more liberal assumptions by weighting the
likelihood of a voxel belonging to gray or white matter vs. lesions.
This process is enhanced by a hidden MRF segmentation model
and a priori knowledge of the location of white matter (38). The
final outputted lesion maps were used to quantify whole brain
lesion volume in milliliters (mL) for each participant.

Diffusion Weighted Imaging
All diffusion weighted imaging data was visually inspected
for gross artifacts. As noted above, six participants were
missing or had unusable imaging data and were thus excluded
from the diffusion weighted imaging portion of the study.

Diffusion data was preprocessed using PyDesigner’s standard
pipeline which integrates packages from FMRIB Software
Library (FSL), MRtrix3, and Python (40–49). Preprocessing steps
included denoising, Gibb’s ringing correction, EPI distortion
correction, eddy current correction, co-registration, brain mask
computation (0.20 threshold), smoothing (FWHM = 1.25), and
Rician bias correction. A Diffusional Kurtosis Imaging (DKI)
model was applied to the data to produce DKI maps for mean
kurtosis (MK), axial kurtosis (AK), and radial kurtosis (RK). A
map for fractional anisotropy (FA) was also created and used as
a reference when need. All DKI maps were checked for artifacts,
intensity range problems, and general data quality. These maps
were used to conduct tract-based spatial statistics [TBSS; (50)]
analyses within FMRIB Software Library [FSL; (51)].

For TBSS, all participants’ FA maps were put into a
higher-resolution standard space using FSL’s Non-linear Image
Registration Tool [FNIRT; (64)]. First, a study-specific “target
image” was created by aligning every FA image to every other
one and then identifying the “most representative” image. The
target image was then aligned into 1 × 1 × 1mm MNI152 space
using a combined non-linear transform and affine transform.
Each participant’s FA image was then aligned to this target. The
mean of all FA images was calculated and thinned to create
an FA skeleton, which encompasses the centers of all the white
matter tracts common to the sample. The threshold for the FA
skeleton was set to 0.2. This threshold value was chosen because
it has been established as an appropriate threshold for segmenting
white matter and gray matter (52). Prior to running the voxel
wise cross-subject statistics, all aligned FA images were quality
checked to ensure that there were no errors in registration, the FA
skeleton was appropriately thresholded, and that each threshold
within the FA skeleton could be matched to a white matter tract
for each participant. Individual FA maps were then projected
onto the mean FA skeleton. Once the reference FA skeleton was
created, the “non-FA images” pipeline was used to apply TBSS to
DKI maps (i.e., MK, AK, and RK).

Basal Ganglia Microstructure
The Harvard-Oxford subcortical atlas (53–56) was used to
create masks for basal ganglia structures, including the right/left
caudate, pallidum, and putamen. The structures were extracted
and binarized using FSL’s “fslmaths” function separately for
the right and left sides, resulting in six separate masks in
standard space (i.e., right caudate, left caudate, right pallidum,
left pallidum, right putamen, left putamen). To account for
partial volume effects, each mask was binarized using FSL and
eroded by one voxel (i.e., −1) using Analysis of Functional
NeuroImage’s [AFNI; (57)] “dilate” function. To create the
transformation matrices needed to transform the ROIs into
each participant’s native diffusion (i.e., MK, RK, AK) space,
each participant’s FA map underwent linear, followed by non-
linear transformations using FMRIB’s Linear Image Registration
Tool [FLIRT; (58, 59)] and FNIRT. Then, FSL’s “invwarp” was
used to create an inverse warped coefficient using the warp
coefficient image generated by FNIRT. Finally, FSL’s “applywarp”
was run to put each participant’s basal ganglia ROI mask into
their native diffusion space. Quality checking occurred after each
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step within the pipeline to ensure all data were of good quality
and without egregious artifacts/errors. Left and right caudate,
pallidum, and putamen ROIs were combined to create single
caudate, pallidum, and putamenmasks for each participant. Each
participant’s binary caudate, pallidum, and putamen masks were
then multiplied against each of their DKI maps (i.e., MK, AK,
RK). Mean MK, AK, and RK values were then pulled from each
of these basal ganglia structure x DKI maps using FSL’s “fslstats”
function. These mean MK, AK, and RK values were used in
all analyses.

Statistical Analyses
Demographics
For the analysis of demographic variables, SPSS Statistics
(v28) was used to conduct basic descriptive and frequency
analyses on age, sex, disease duration, lesion load, race/ethnicity,
and education. Expanded Disability Status Scale (EDSS) and
current disease modifying treatment status were unavailable. All
covariates for subsequent analyses were chosen apriori based on
previous studies and availability, as such covariates vary based on
the dependent variable of interest to ensure we accounted for the
most pertinent confounds.

Fatigue Induction Task and Cognitive Fatigue Rate
Behavioral data from the fatigue induction task (i.e., RT,
accuracy) and cognitive fatigue rate were inspected for normality.
Only RT and accuracy were found to be skewed, and they
were transformed using the Box-Cox method to ensure that
assumptions of normality were not violated (60). Linear
regression analyses were conducted with cognitive fatigue rate as
the independent variable and RT and accuracy as the dependent
variable (in separate analyses). Sex, age, disease duration, and
education were included in the model as covariates. Cognitive
fatigue rate was used as the primary independent variable in
subsequent analyses.

Neuropsychological Measures
Neuropsychological data were inspected for normality and
skewed scores were transformed using the Box-Cox method
(60). Two scores required this transformation- CMDI Total and
STAI State Total. Linear regression analyses were conducted with
cognitive fatigue rate as the independent variable and behavioral
score as the dependent variable. Sex, education, age, and disease
duration were included in the model as covariates. Though MFIS
Cognitive and CMDI Total are the primary variables of interest
for our paper, additional subscales for these measures have been
included for reference.

Whole Brain Lesion Volume
Whole brain lesion volumes were normally distributed. Linear
regression analyses were conducted with cognitive fatigue
rate as the independent variable and lesion volume as the
dependent variable. Sex, age, and disease duration were included
as covariates.

White Matter
To examine the relationship between white matter and cognitive
fatigue rate in our MS sample, multiple regression analyses

were conducted using FSL’s General Linear Model (GLM)
Setup utility and TBSS. First, a GLM script was created using
the GLM Setup GUI by designating the variable of interest
(i.e., cognitive fatigue rate) and covariates of no interest (age,
sex, lesion volume, and disease duration). Missing disease
duration scores (n = 4) were inputted while accounting
for age. Two contrasts were included in each design matrix
designating 1 or −1 to the variable of interest. This was done
to help determine the direction of the relationship between
the variable of interest and white matter skeleton. Voxel-
wise regression analyses were run on MK, AK, and RK maps
using the aforementioned statistical design matrix and FSL’s
Randomize tool. For the latter, a permutation-based inference
(5,000 permutations) correction for multiple comparisons with a
Threshold-Free Cluster Enhancement was implemented (Smith
and Nichols, 2009). The demean option in Randomize (i.e., -D)
was used to demean the data and model in all analyses. Lastly,
a family-wise error (FWE) correction was used to correct for
multiple comparisons.

The John Hopkins University DTI-based white matter atlases
[i.e., ICBM-DTI-81 white matter atlas labels; (61–63)] were used
to confirm the location of significant white matter tracts. All
results were visualized using FSLeyes.

Basal Ganglia Microstructure
Basal ganglia microstructural data was inspected for normality
and skewed scores were transformed using the Box-Cox method
(60). Linear regression analyses were conducted with cognitive
fatigue rate as the independent variable and mean caudate,
pallidum, and putamen microstructural value (i.e., mean MK,
AK, RK) as the dependent variable. Sex, age, and disease duration
were included as covariates.

RESULTS

Fatigue Inducing Task Performance and
Cognitive Fatigue Rate
Overall, the sample’s (n = 62) mean total accuracy rate across
seven runs of a fatigue inducing task was 87.4% (SD =

15.44, Median = 94.23, Range = 37.14–100). Mean reaction
time was 885.3ms (SD = 235, Median = 844.27, Range =

518.95–1,696.80). After accounting for disease duration, age,
and education, results of linear regression analyses showed no
significant relationships between cognitive fatigue rate and task
accuracy or reaction time.

Behavioral and Cognitive Measures and
Cognitive Fatigue Rate
Descriptive statistics of behavioral and cognitive measures can be
found in Table 1 (n = 62). Results of a multiple linear regression
showed that there was a collective significant effect between sex,
age, education, disease duration, and cognitive fatigue rate on
MFIS Cognitive score [F(5,52) = 4.02, p = 0.004, R2 = 0.28],
with cognitive fatigue rate being the only significant predictor
in the model (t = 3.20, p = 0.002), meaning as trait cognitive
fatigue increased, cognitive state fatigue rate also increased. In
addition, multiple linear regression results showed that there was
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a collective significant effect between sex, age, education, disease
duration, and cognitive fatigue rate on SDMT performance
[F(5,50) = 6.39, p < 0.001, R2 = 0.39], with sex (t = 3.92,
p < 0.001) and years of education (t = 2.83, p = 0.007) as
the significant predictors in the model. Another multiple linear
regression showed that there was a collective significant effect
between sex, age, education, disease duration, and cognitive
fatigue rate on the CMDI Evaluative subscale [F(5,52) = 3.22,
p = 0.013, R2 = 0.24], with disease duration (t = −2.329,
p = 0.024) and education (t = −3.10, p = 0.003) serving as
the significant predictors in the model. Models including sex,
age, education, disease duration, and cognitive fatigue rate did
not significantly predict MFIS Physical, MFIS Psychological,
MFIS Total, CMDI Mood, CMDI Vegetative, CMDI Total, STAI
State, or STAI Trait. After the p-value was adjusted for multiple
comparisons, the model predicting MFIS Cognitive and SDMT
remained significant.

Whole Brain Lesion Volume and Cognitive
Fatigue Rate
After accounting for age, sex, and disease duration in our
sample with usable neuroimaging data (n= 56), cognitive fatigue
rate was not found to be significantly related to whole brain
lesion volume.

White Matter Microstructure and Cognitive
Fatigue Rate
Significant relationships between cognitive fatigue rate and white
matter were found only for RK (n = 56). RK is a measurement
of diffusivity radial to axonal fibers (i.e., perpendicular to
the major axis of an axon), with increases in RK suggesting
more compromised white matter microstructure. It has been
proposed that increases in RK are related to dysmyelination
and/or demyelination (65). After accounting for age, sex,
lesion volume, and disease duration, results from multiple
regression analyses showed cognitive fatigue rate to be positively
correlated (p < 0.05) with RK in the corpus callosum (genu,
body, splenium), anterior corona radiata (left, right), superior
longitudinal fasciculus (right), external capsule (left, right),
anterior limb of internal capsule (left, right), posterior limb of
internal capsule (left, right), superior corona radiata (left, right),
posterior thalamic radiation (right), and posterior corona radiata
(right). The analyses were run with and without an apparent
outlier without differences in results. Thus, presented results
include the apparent outlier. Cluster details, including affected
white matter tracts and total voxels of significant clusters within
these tracts can be found inTable 2. Significant clusters and tracts
demonstrating the linear association between RK and cognitive
fatigue rate are presented in Figure 1. Plots demonstrating the
linear association between RK and cognitive fatigue rate in
the six tracts with the greatest volume of significant clusters
can be found in Figure 2. Plots for remaining significant tracts
(not pictured) show the same graphical pattern as the plots
in Figure 2.

TABLE 2 | Number of voxels for significant clusters of RK × slope.

Region name Number of voxels

Genu of corpus callosum 1,028

Right anterior corona radiata 855

Right superior longitudinal fasciculus 798

Left anterior corona radiata 707

Left external capsule 672

Left anterior limb of internal capsule 573

Splenium of corpus callosum 472

Right anterior limb of internal capsule 471

Body of corpus callosum 436

Left posterior limb of internal capsule 434

Right superior corona radiata 389

Right external capsule 379

Left superior corona radiata 305

Right posterior thalamic radiation 178

Right posterior corona radiata 166

Right posterior limb of internal capsule 125

Basal Ganglia Microstructure and
Cognitive Fatigue Rate
Results of multiple linear regression analyses (n = 56) showed
a collective significant effect between sex, age, disease duration,
and cognitive fatigue rate on putamen RK [F(4,47) = 2.67, p =

0.044, R2 = 0.19]. Individual predictors were examined further
and showed that cognitive fatigue rate (t = 2.50, p = 0.016) was
the sole significant predictor in the model. That is, as cognitive
fatigue rate increased, RK also increased (i.e., poorer white matter
integrity). There was a trend for cognitive fatigue rate being
associated with MK in the pallidum after accounting for sex, age,
and disease duration [F(4,47) = 2.51, p = 0.054, R2 = 0.18], with
cognitive fatigue rate (t = 2.08, p = 0.043) and disease duration
(t = −2.20, p = 0.033) driving the model. That is, as cognitive
fatigue rate increased, MK in the pallidum also increased (i.e.,
poorer white matter integrity). Nomodels were significant for the
caudate (MK, AK, RK) or aspects of the pallidum (AK, RK) and
MK or AK of the putamen. After the p-value was adjusted for
multiple comparisons, the models predicting putamen RK and
pallidumMK were no longer significant.

DISCUSSION

The current study examined the relationship between cognitive
fatigue rate and white matter and basal ganglia microstructure
using advanced diffusion imaging in a group of pwMS. Our
primary aim was to identify potential neural correlates that
relate to how quickly or slowly a pwMS becomes cognitively
fatigued. In addition, we investigated how cognitive fatigue rate
relates to whole brain lesion volume, performance during a
fatigue inducing task (i.e., RT, accuracy), and neuropsychological
measures. We found cognitive fatigue rate to be related to
several white matter tracts (i.e., corpus callosum, anterior
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FIGURE 1 | Significant clusters of RK in relation to cognitive fatigue rate. Significant clusters (red) showing where RK is positively related to cognitive fatigue rate (i.e.,

as RK increases, cognitive fatigue rate increases).

corona radiata, superior longitudinal fasciculus, external capsule,
anterior and posterior limb of the internal capsule, superior
and posterior corona radiata, posterior thalamic radiation), with
many having been associated with basal ganglia connectivity
or the previously proposed “fatigue network” (28). In addition,
cognitive fatigue rate was associated with the microstructure
within the putamen and pallidum (trend), though these did
not survive multiple comparisons correction. Lastly, cognitive
fatigue rate was found to be associated with trait cognitive fatigue,
but not depression, anxiety, whole brain lesion volume, SDMT
performance, or performance during a fatigue inducing task (i.e.,
RT, accuracy). The latter is consistent with previous examinations
showing that performance measures, such as reaction time
and accuracy, are weakly correlated with fatigue ratings
(66–68).

One important finding from the current study is lower
white matter integrity is associated with a faster onset of state
fatigue (i.e., steeper cognitive fatigue rate), such that when white
matter integrity is lower, pwMS show a faster onset of cognitive
fatigue. Many of the tracts identified in our study have diffuse
connections with brain areas that have been associated with
fatigue inMS, including the thalamus, basal ganglia (e.g., caudate,
putamen, ventral striatum), and frontal cortical areas. It has
been suggested that disruption in networks that connect the
cortex, particularly the frontal cortex, with deep gray matter
areas such as the basal ganglia and thalami is what drives
fatigue (13, 14, 69). Thus, our findings of compromised white
matter along tracts that are associated with fatigue networks,
such as the internal/external capsules and corona radiata, provide
initial evidence that these networks may also be involved in the
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FIGURE 2 | Scatterplots demonstrating the linear relationship between cognitive fatigue rate and radial kurtosis (RK) in tracts with the six greatest volumes of

significant clusters. Y-axes = RK in significant white matter tracts. X-axes = cognitive fatigue rate. Analyses were conducted with and without apparent outliers

without significant changes in results.

development and experience of fatigue over time (i.e., cognitive
fatigue rate).

Many of the white matter tracts found to be significantly
associated with cognitive fatigue rate are consistent with other
investigations of fatigue in MS. However, it should be noted
that no other study to date has looked at cognitive fatigue
rate in relation to structural brain outcomes. Nonetheless, the
congruence of our findings with previous studies broadens our
understanding of the structural neural correlates underlying the
multifaceted characteristics of fatigue in MS. Tracts identified
in our study, including the internal capsule, external capsule,
corpus callosum, and corona radiata have all been linked to

fatigue in MS (17, 18, 70, 71) and non-MS populations (21, 72).
Other studies also identified additional tracts not significant in
our analysis, which may be due to differing methodologies or
our approach to quantifying fatigue (i.e., cognitive fatigue rate).
Given we focused on state cognitive fatigue rate, rather than trait
fatigue, the tracts identified in our analysis may be specific to the
temporal properties of the onset and progression of fatigue over
time, which offers a unique perspective to how we think about
and study fatigue in MS.

Given the role of the basal ganglia in previous investigations
of fatigue, we thought it important to also examine the
microstructure of basal ganglia structures in relation to cognitive
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fatigue rate. We did find relationships between putamen (RK)
and pallidum (MK; trend) and cognitive fatigue rate, but
they did not survive multiple comparison correction. This
may be due to the methodology used or the size of our
sample. Regardless, previous studies examining the structural
and functional properties of basal ganglia structures have
demonstrated a significant role of the basal ganglia to fatigue in
MS (22, 23, 25, 26, 28), and our results suggest that future studies
should investigate the relationship between the microstructure of
the basal ganglia and cognitive fatigue.

Additionally, we found a positive association between
cognitive fatigue rate and trait cognitive fatigue, as measured
by the MFIS. To date, studies examining the relationship
between state and trait fatigue have been mixed, with some
studies demonstrating no relationship, while others show a small
to medium relationship (12, 73, 74). Though we did find a
significant association, it is notable that the amount of variance
shared by the two variables was small (28%), suggesting that
while state and trait fatigue both measure aspects of fatigue, the
constructs they measure appear to differ considerably. The way
in which state and trait fatigue are measured is also important
to consider. In the current study, we took a novel approach by
not only examining state fatigue during a fatigue inducing task,
but we examined the rate at which pwMS became fatigued. Thus,
it is likely we are capturing an aspect of fatigue that is missed
by trait fatigue measures. Understanding these differentiations
will be crucial for delineating cognitive fatigue and how best to
measure it.

Our examination of microstructural neural correlates in
relation to cognitive fatigue rate fills a gap in the current
literature by showing how possible weakening of white matter
pathways impacts the development of fatigue over time. Though
investigations of trait fatigue measures have laid the foundation
for our understanding of fatigue in MS, they fall short in
their ability to adequately capture the in-the-moment experience
of fatigue. Our study aimed to remedy this shortcoming by
using a state fatigue measure that allowed us to calculate
fatigue over time. The identification of white matter tracts
related to cognitive fatigue rate has clinical implications,
since disruptions of white matter tracts may contribute to
dysregulation in previously established “fatigue networks.” Thus,
by understanding the structural connectivity underlying fatigue-
associated brain functioning, we can develop interventions that
modulate these fatigue networks.

LIMITATIONS AND FUTURE DIRECTIONS

Though our study produced important and novel results, several
limitations exist. First, our sample size was relatively small and
limited to individuals with a relapsing-remitting MS disease
course, thereby impacting our statistical power and ability to
generalize our results to more progressive subtypes. In addition,
we did not have access to certain disease-related variables
or pertinent comorbidities, such as EDSS, DMT, and sleep
disorders/sleepiness and therefore could not determine how these
variables may have played a role in our results. Our sample

was largely white and highly educated which does not represent
the diversity of individuals with MS and limits our ability to
generalize our results to the largerMS community. Future studies
should make it a priority to recruit more diverse samples to
better understand how fatigue impacts individuals from more
diverse backgrounds. Next, our analyses of brain metrics were
restricted to individual tracts and brain areas, meaning we did
not investigate neural network properties. Thus, future work
would benefit from not only replicating the results of the current
study with a larger, more diverse sample, but also incorporating
network-based analyses (e.g., graph theory) to better understand
the structural brain networks underlying rate of fatigue. Lastly,
while within group studies have many benefits, they also carry
limitations. As such, the current study is limited regarding the
conclusions that can be made from the results. Future directions
include the collection and inclusion of control data to conduct
group comparisons.

CONCLUSION

Our results show the relationship between cognitive fatigue
rate and microstructural properties in the white matter and
in the basal ganglia in MS. We identified white matter tracts
that connect brain areas that have been associated with fatigue
(e.g., frontal cortical areas, thalami, basal ganglia), showing
that specific white matter disruptions may be contributing to
the rate at which pwMS become fatigued. Our approach of
using cognitive fatigue rate, rather than trait fatigue, brings us
closer to understanding how brain pathology may be impacting
the experience of fatigue in the moment, which is crucial
for developing interventions. These results hold promise for
continuing to unpack the complex construct that is fatigue.
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