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Precision targeting of specific white matter bundles that traverse the

subcallosal cingulate (SCC) has been linked to efficacy of deep brain

stimulation (DBS) for treatment resistant depression (TRD). Methods to

confirm optimal target engagement in this heterogenous region are now

critical to establish an objective treatment protocol. As yet unexamined are

the time-frequency features of the SCC evoked potential (SCC-EP), including

spectral power and phase-clustering. We examined these spectral features—

evoked power and phase clustering—in a sample of TRD patients (n = 8) with

implanted SCC stimulators. Electroencephalogram (EEG) was recorded during

wakeful rest. Location of electrical stimulation in the SCC target region was

the experimental manipulation. EEG was analyzed at the surface level with

an average reference for a cluster of frontal sensors and at a time window

identified by prior study (50–150 ms). Morlet wavelets generated indices of

evoked power and inter-trial phase clustering. Enhanced phase clustering at

theta frequency (4–7 Hz) was observed in every subject and was significantly

correlated with SCC-EP magnitude, but only during left SCC stimulation.

Stimulation to dorsal SCC evinced stronger phase clustering than ventral SCC.

There was a weak correlation between phase clustering and white matter

density. An increase in evoked delta power (2–4 Hz) was also coincident

with SCC-EP, but was less consistent across participants. DBS evoked time-

frequency features index mm-scale changes to the location of stimulation in

the SCC target region and correlate with structural characteristics implicated

in treatment optimization. Results also imply a shared generative mechanism

(inter-trial phase clustering) between evoked potentials evinced by electrical
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stimulation and evoked potentials evinced by auditory/visual stimuli and

behavioral tasks. Understanding how current injection impacts downstream

cortical activity is essential to building new technologies that adapt treatment

parameters to individual differences in neurophysiology.

KEYWORDS

deep brain stimulation, subcallosal cingulate, single pulse electrical stimulation, time
frequency analyses, treatment resistant depression (TRD), inter-trial phase clustering,
stimulation evoked potential, perturbation mapping

Introduction

Background

There is growing scientific and clinical interest in the
effect of single pulse electrical stimulation on the brain. This
technique of perturbation mapping involves punctuated
current injection to a circuit or cortical node using invasive
(e.g., deep brain stimulation; DBS) or non-invasive methods
(e.g., transcranial magnetic stimulation; TMS). Electrical
perturbation of the living human brain elicits a temporal-
spatial cascade of electrophysiological activity that appears
sensitive to change in stimulation parameters, such as the
precise location of stimulation in the brain. When this activity
is averaged over repeated electrical pulses, a stereotyped
series of spatial-temporal components are observed as an
evoked potential. Importantly, DBS evoked potentials are
coherent and reliable on the level of individuals (Waters
et al., 2018), and are thus amenable to the development of
patient-specific applications, such as confirmation of optimal
surgical targeting. Precision targeting has been linked to the
efficacy of subcallosal cingulate (SCC) DBS for treatment of
depression (Riva-Posse et al., 2018). Understanding how the
precise location of current injection impacts downstream
cortical activity is essential to building new technologies
that harness perturbation-based mapping approaches to
confirm optimal therapeutic target engagement over the
course of treatment.

A definitive biophysical explanation for evoked responses
to single pulse stimulation is still unclear and may vary by
scale (i.e., LFP, ECOG, EEG). Nevertheless, perturbation
maps convey information that can be exploited to advance
the clinical science of neuromodulation and to interrogate
human brain networks (Fox et al., 2012; Entz et al., 2014;
Sarasso et al., 2015; Borich et al., 2016; Solomon et al., 2018;
Keller et al., 2018; Yu et al., 2019; Baker et al., 2002; Massimini
et al., 2005). Stimulation-evoked brain responses are most
frequently examined in the time domain (i.e., event related
potentials, ERP) which ignores oscillatory features of neural
activity like frequency, phase, and amplitude (Makeig et al.,

2004). These spectral features are evident across spatial scales
and species (Narayanan et al., 2013; Cohen, 2014; Robble
et al., 2021), and a summation of spectral features—especially
evoked power and phase consistency—contributes to manifest
ERPs (Penny et al., 2002; Luu et al., 2004; Shah et al., 2004;
Fuentemilla et al., 2006; Hanslmayr et al., 2007; Klimesch
et al., 2007; Trujillo and Allen, 2007). Spectral metrics are also
highly relevant to the study of depression pathophysiology
because oscillation frequency and phase is critical to facilitating
information multiplexing between and within brain networks.
Spectral metrics also vary over time and examining dynamic
frequency, phase, and amplitude is typically referred to as
time-frequency analysis. This focus on examining brain
activity in the time-frequency domain is also more compatible
with the analytic techniques used with non-human animals,
facilitating cross-species comparisons and interpretations
(Cohen, 2011b; Basu et al., 2019). Amenability to cross-
species comparisons is particularly relevant to understanding
the effects of direct electrical stimulation to the brain since
human trials are sparse and often costly. Altogether, applying
time-frequency analysis to the investigation of stimulation-
evoked responses can provide unique information that is
obscured by conventional ERP analyses, facilitate cross-species
comparisons and reveal biophysically plausible features relevant
to functional brain networks.

Present study

In an effort to expand upon prior work examining SCC
stimulation evoked potentials, we focus our analyses on the
ERP, evoked power, and inter-trial phase consistency (ITPC)
as our primary neural measures. This study aimed to discover
time-frequency signatures evoked by SCC stimulation in eight
patients undergoing DBS for treatment resistant depression
(TRD). We test the hypothesis that time-frequency features of
perturbation map will vary as a function of DBS location across
a dorsal-ventral axis of the SCC target region, which may reflect
mechanisms of neuronal communication that are disrupted with
precise targeting of white matter elements in the SCC region.
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Materials and methods

Participants

Subjects (n = 8; four males) were patients in a study of SCC
DBS safety and efficacy for treatment of TRD (clinicaltrials.gov
#NCT01984710) who underwent DBS surgery between 2015
and 2019. Inclusion and exclusion criteria for the parent study
were identical to Holtzheimer et al. (2012) and Riva-Posse et al.
(2018) and summarized in Supplementary Materials. Briefly,
participants suffered from severe major depressive disorder
and had failed multiple treatments, including medication,
psychotherapy, and electroconvulsive therapy. Subjects ranged
in age from 28 to 70 (mean: 53.1, SD: 14.3). One subject
was left handed. All participants provided written informed
consent to participate in this research, which was approved by
the Emory University Institutional Review Board and the US
Food and Drug Administration under an Investigational Device
Exemption (IDE # G130107 held by H.S.M) and was monitored
by the Emory University Department of Psychiatry and
Behavioral Sciences Data Monitoring Board. Additional sample
characteristics, including depression severity scores (Hamilton,
1960) at baseline and at the time of study participation, are
provided in Supplementary Material.

Tractography guided implantation

Procedures for tractography guided surgical targeting and
post-operative verification follow Riva-Posse et al. (2018). An
Activa PC + STM pulse generator (Medtronic, Minneapolis,
MNI) drove bilateral DBS leads (model 3387), each with 4
contacts (1.5 mm inter-contact spacing), which were implanted
in the SCC region (Figure 1A) using a prospective connectomic
approach and StimVision software (Noecker et al., 2017). This
approach uses patient-specific deterministic tractography and
anatomical images to optimize placement of the contact at

the confluence point of four white matter fibers (Riva-Posse
et al., 2014). In brief, magnetic resonance imaging data, (high-
resolution T1 structural and diffusion-weighted) are acquired
for each individual on a Siemens 3T Tim-Trio scanner (Siemens
Medical Solution, Malvern, PA). Following surgery, high-
resolution computed tomography (LightSpeed16, GE Medical
System) images are used to verify that the contacts used for
therapeutic stimulation respect to tractography.

Experimental procedures

Patients were fitted with a 256-channel Hydrocel Geodesic
Sensor Net (MagStim-EGI, Eugene, OR) and seated in a
climate controlled room. A chin rest was used to reduce
motion artifacts. Patients were instructed to relax and allow
their mind to wander. A series of eight conditions, each 2.5–
3 min of stimulation, involved simultaneous EEG recording
and unilateral stimulation from different locations in the SCC
target region (i.e., ventral, mid-ventral, mid-dorsal or dorsal
contacts on each lead). All conditions used a monopolar
configuration for stimulation of 6 V with a 90 µs pulse width
at 2 Hz (Figure 1B). Conditions were not randomized. In
conditions 1–4, stimulation was delivered to the left hemisphere
from the ventral-most to dorsal-most contact, respectively.
Conditions 5–8 followed the same pattern with stimulation
delivered to the right hemisphere. Patients were informed as
to the start and end of each condition but were blind to
parameter settings. Stimulation parameter changes were made
by a physician team member using the Medtronic clinical
programmer. For individual patients, testing was conducted at
different times in treatment. Four patients participated after 4
weeks of therapeutic stimulation and four patients participated
after 6 months of stimulation (Supplementary Table 1).
For one participant (Patient 2), experimental procedures
were interrupted resulting in one condition recorded on
a subsequent day.

FIGURE 1

Single pulse electrical stimulation of the subcallosal cingulate (SCC) target for deep brain stimulation. (A) Four contacts span the SCC target
region on bilateral DBS electrodes. (B) EEG was recorded on the head surface during single pulse electrical stimulation at each contact on the
DBS leads. (C) Analytic window was coincident with the SCC-EP (∼100 ms) detected in frontal channels.
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EEG preprocessing

Recordings were from a NetAmps 400 amplifier (MagStim-
EGI, Eugene, OR) with an online reference near the vertex
(1,000 Hz sampling rate). In four of the eight recordings,
1–3 bad electrodes (of 256) were identified manually and
spherically interpolated; none were in the frontal montage
used for statistical analysis. One subject (Patient 3) had
high impedance in one of the implanted electrodes (also
throughout the parent study). That contact was excluded
from the experimental procedures for that subject, only.
Electroencephalogram (EEG) were then re-referenced to the
average of all electrodes. A 2–50 Hz bandpass zero-phase shift
FIR filter was applied. Hampel outlier rejection in the frequency
domain was the primary correction for stimulator artifacts
specifically. The spectral outlier rejection by Hampel filtering
has the advantage of preserving phase-relationships in the
signal, and has demonstrable efficacy for reducing stimulation
artifacts (Allen et al., 2010). Briefly, Hampel filtering involves
rejecting spectral outliers using a sliding window. The user
selects the frequency window width (N = 2) and outlier criterion
for rejection (t = 5), then spectral bins identified as outliers are
replaced with the average of their neighbors. Manual rejection
of artifactual independent components analysis was used for
other non-neurogenic artifacts (Smith et al., 2017), and any
residual stimulator artifacts. Artifact is a substantial concern
in these recordings, and aggressive multistage processing aligns
with the recommendations of a recent discussion on the topic
(Lio et al., 2018).

EEG analyses

Average evoked-potentials. Epochs time-locked to the DBS
pulse were cut and averaged to produce a mean time-series
for each individual and in response to stimulation from each
of eight contacts. A grand average is plotted for illustration in
Figure 2.

Time-domain data were convolved with a family of Morlet
wavelets to produce the time-frequency (TF) metrics of
interest: ITPC and phase-locked TF power. The family of
wavelets included 30 logarithmically spaced wavelets of varying
frequency from 2 to 50 Hz, and with a varying number of
cycles from 3 to 10 (higher frequencies with more cycles; e.g.,
Cohen, 2014). Time-frequency power was normalized (Z-score)
relative to a -50 to -10 ms prestimulation baseline consistent
with previous work (Waters et al., 2018).

Tissue activation and white matter
density

The DBS contact location was identified in native T1
space based on a high-resolution postoperative CT image that

FIGURE 2

Magnitude of unilateral stimulation evoked potentials increases
along the ventral-to-dorsal axis of the SCC target region.
(A) Grand average waveforms for stimulation-evoked potentials.
Shaded areas depict 95% confidence intervals after 1,000
bootstraps. Left panel shows ERPs following left SCC
stimulation, and right panel shows ERPs following right SCC
stimulation. Topographic plots show ERP magnitude integrated
over 50–150 ms time window. (B) Boxplots depicting average
ERP amplitudes (averaged across 50–150 ms, electrode
montage shown in Figure 1C) separately for stimulation
location. Left panel shows averages for left-SCC stimulation,
right panel shows averages for right-SCC stimulation.

aligned to native T1 space using a linear registration toolbox
(3dAllineate, AFNI: Analysis of Functional NeuroImages, Cox,
1996). The patient-specific volume of tissue activated (VTA)
was then generated by electrical DBS field model on identified
contact location for this study using the StimVision software
toolbox with the following parameters: 130 Hz, 90 µs, and
6V (Noecker et al., 2018). The detailed methodology for DBS
activation volume is described in Chaturvedi et al. (2013).
Brain tissue segmentation was performed using a multichannel
tissue classification algorithm (FAST, FMRIB)1 to calculate the
probability of gray matter, white matter, and cerebrospinal fluid.
The activated WM volume of each contact was then computed
by overlapped volume between the segmented WM tissue map
and the patient-specific VTA.

Statistical analyses

Effect of target location in the SCC on stimulation evoked
cortical electrophysiology. The effect of contact location within
the SCC region on SCC-EP amplitude, spectral power and
ITPC was assessed using a repeated measures analysis of
variance (rmANOVA) with a four-level factor representing
contact location along the dorsal to ventral axis of the
implanted electrode and a two-level factor representing the

1 http://www.fmrib.ox.ac.uk/fsl
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hemisphere that received unilateral DBS. Following Waters
et al. (2018) data extracted for statistical analyses was an
average across frontopolar channels (18, 25, 31, 32, 37) in a
time-of-interest (TOI) coincident with the reported SCC-EP
feature at its negative-going amplitude maxima (50–150 ms
post-pulse). Analyses were conducted in IBM SPSS 26.0.0.2
(Mathworks, Armonk, NY).

To aid in the interpretation of results, we looked at
the quantity of white matter (WM) activated by each deep
brain electrode contact, and tested for a relationship with the
magnitude of the evoked electrophysiological response. Our
hypothesis was that greater activation of conductive brain tissue
(i.e., WM) would lead to a more pronounced physiological effect
being recorded at the head surface. The regression analysis was
conducted using the lme4 package in R.

Results

Electrophysiology

Using an averaged evoked-potential approach to analysis of
the cortical response to single-pulse stimulation (Figure 2A), the
effect of stimulation location in the SCC (dorsal-most to ventral
most contracts labeled as E3 to E0) on the magnitude of the
SCC-EP feature (maximal∼100 ms) was statistically significant,
F(3, 18) = 4.868, p = 0.012, partial etaˆ2 = 0.448, while the
effect of hemisphere (which hemisphere received SCC DBS) was
not, p = 0.345 (Figure 2B). The interaction of hemisphere and
contact factors was below threshold for statistical significance,
p = 0.250. Results of a within-subjects contrast indicated linear
model fit to changes in mean amplitude, which decreased with
stimulation along the dorsal to ventral axis of implanted contact,
F(1, 6) = 6.933, p = 0.039, eta = 0.536. Figure 2A shows the
topography of SCC-EP maxima averaged across all conditions.
Figure 2B shows grand average SCC-EP traces at each of
eight contacts, with 95% confidence intervals bootstrapped from
1,000 iterations.

ITPC in the theta band (4–7 Hz) was coincident with the
SCC-EP following both right and left hemisphere stimulation
(Figure 3A). The effect of stimulation location in the SCC region
on the magnitude of theta ITPC was statistically significant,
F(3,18) = 7.902, p = 0.001, partial etaˆ2 = 0.568, while the
effect of hemisphere (which hemisphere received SCC DBS) was
not, p = 0.103 (Figure 3B). The interaction of hemisphere and
contact was significant, F(3,18) = 3.3, p = 0.045, etaˆ2 = 0.353.
Mean ITPC magnitude decreased in response to stimulation
along the dorsal-ventral axis of the DBS contact in the left
hemisphere (E3 = 0.48, SD = 0.08; E2 = 0.32, SD = 0.11; E1
Mean = 0.30, SD = 0.08; E0 Mean = 0.27, SD = 0.05) and right
hemisphere (E11 = 0.32, SD = 0.10; E10 = 0.28, SD = 0.07; E9
Mean = 0.29, SD = 0.13; E8 Mean = 0.25, SD = 0.07). Results of
a within-subjects contrast indicated linear model fit to changes

in mean amplitude across contacts, F(1,6) = 16.804, p = 0.006,
eta = 0.737, with the interaction term below the significance
threshold, p = 0.059. On the level of individual patients, theta
ITPC coincident with the SCC-EP feature of the average evoked
response was robust across the sample (Figure 4), including
consistent spatial topography and effects of DBS location within
the target region (Figure 5).

Using a time frequency approach to analysis of the cortical
response to single-pulse stimulation, an increase in delta power
(2–4 Hz) was observed in the study population average following
both left and right stimulation but was inconsistently observed
across individual subjects (Supplementary Figure 1) and thus
excluded from additional analyses.

Regression results

ITPC across all stimulation locations was significantly
correlated with EP amplitude Spearman’s r(64) = -0.41,
p < 0.001. Follow-up correlations showed that ITPC and EP
were significantly correlated following left SCC perturbation
r(32) = -0.57, p < 0.001, whereas ITPC and EP were unrelated
following right SCC perturbation r(32) = -0.002.

When testing for a relationship between quantity of
WM stimulated and Fpz theta ITPC, while accounting for
contact position and non-independence of repeated ITPC
measures in each subject, we found an association between
activated WM (mm3) and ITPC, R2 = 0.13, p < 0.01
(Supplementary Figure 2).

Discussion

Findings

Using a perturbation-mapping approach, we investigated
cortical time-frequency dynamics following stimulation applied
to different locations of the SCC target region. Elaborating on
the SCC DBS evoked potential described by Waters et al., 2018,
pulse-wise perturbation was characterized by changes in delta
band (2–4 Hz) power and theta band (4–7 Hz) phase alignment,
coincident with the SCC-EP. Frontal theta phase alignment
was observed after right or left hemisphere SCC stimulation
with notable reliability; observed both at the group level and
participant level. As hypothesized, millimeter scale changes
in the location of stimulation also impacted cortical time-
frequency dynamics: frontal theta phase clustering increased
as the stimulation location was moved from ventral to dorsal
contacts within the target region of the SCC, particularly when
stimulation was initiated in the left hemisphere. ITPC evinced
by left SCC stimulation was significantly correlated with SCC-
EP magnitude. A post hoc correlation analysis demonstrated a
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FIGURE 3

ITPC at 4–7 Hz depends on location of DBS in the SCC region. (A) Spectrogram of ITPC across time and frequency. Box denotes
time-frequency region-of-interest used for topographic plots. Left panel for left SCC stimulation, right panel for right SCC stimulation. (B) Box
plots showing ITPC (50–150 ms, 4–7 Hz) at different stimulation locations. Left panel for left SCC stimulation, right panel for right SCC
stimulation. Green = E0/8, Red = E1/9, Blue = E2/10, Black = E3/11.

trend toward a positive correlations between theta ITPC and
white matter volume.

Context/interpretation

In healthy control participants, oscillations at theta
frequency (4–8 Hz) predict behavioral adaptation to errors,
conflict, and novelty (Cavanagh et al., 2009; Cavanagh
and Frank, 2014; Cooper et al., 2019; Duprez et al., 2020).
Frontal theta oscillations are also a hypothesized mechanism
of depression pathophysiology with relevance to recovery
and responsivity to antidepressant medication (Arns et al.,
2015; Pizzagalli et al., 2018; Whitton et al., 2019) and brain
stimulation (Narushima et al., 2010; Broadway et al., 2012).
Theta oscillations are pronounced across frontostriatal regions
relevant to depression, especially midcingulate regions,
striatum, ventral tegmental area, lateral prefrontal cortex, and
hippocampus (Cavanagh et al., 2009; Cavanagh and Frank, 2014;
Herweg et al., 2016; Marawar et al., 2017; Smith et al., 2020;
Dede et al., 2021). The phase of theta oscillations specifically
is believed to facilitate cross talk between nodes within this
frontostriatal network (Cavanagh et al., 2009; Dede et al., 2021).
For example, theta phase clustering is greatly enhanced across
frontal regions in healthy participants after behavioral errors

(Trujillo and Allen, 2007; Cavanagh and Frank, 2014), and theta
phase predicts magnitude of participant’s post-error behavioral
adaptation (i.e., reaction time and accuracy; Cavanagh et al.,
2009; Dede et al., 2021). Brain stimulation at theta frequencies
targeted at the frontal lobes has also been successfully utilized as
a treatment for depression (Berlim et al., 2017), and stimulation
time-locked to the phase of a participant’s frontal theta activity
can enhance cognitive performance (Alagapan et al., 2019;
Reinhart and Nguyen, 2019).

Enhancement of phase clustering is sometimes
conceptualized as a “reset” in the timing of intrinsic brain
rhythms. This phase “reset” is believed to facilitate a reorienting
of attention, and/or the recruitment of brain regions important
for modifying behavioral strategies (i.e., lateral prefrontal
cortex; Cavanagh et al., 2009; Cavanagh and Frank, 2014).
More specifically, the precise timing of a frontal theta rhythm
is updated/(re)started, and this restart facilitates synchrony
between brain regions demonstrating a propensity toward
theta rhythm (e.g., frontostriatal regions noted above).
Notably, cortical theta oscillations rely on structural pathways,
and healthy participants with stronger theta tend toward
larger pathway volumes across the PFC (Cohen, 2011a);
conversely, reduced fractional anisotropy in individuals with
head injury correlates with diminished theta-band synchrony
(Cavanagh et al., 2020). Enhanced theta phase clustering can
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FIGURE 4

ITPC at 4–7 Hz for individual participants. Spectrograms of average ITPC across all stimulation locations from frontal sensors (Figure 1C) for
individual participants. Subject order (1–8) shown within panel: right to left column then top to bottom row. (A) Spectrograms show ITPC
time-locked to left hemisphere SCC DBS, and (B) to right hemisphere SCC DBS. Stippled box denotes time-frequency region of interest used for
group analysis and topographic plots in (B).

also produce ERP phenomenon (e.g., Trujillo and Allen, 2007),
and present results imply ITPC contributes to the presentation
of the SCC-EP. In fact, large positive correlations were observed
between ITPC and EP measures in the present study, especially
for left SCC stimulation. These results suggest ITPC contributes
to generation of EP. This is consistent with the hypothesis that
consistency in neural phase summates over experimental trials
and helps generate ERPs (reviewed in Klimesch et al., 2007).
Notably, prior studies examining generators of ERPs were in
the context of visual/auditory stimuli or during behavioral

tasks. In this regard, one speculative hypothesis is that ERPs
evoked by electrical and non-electrical stimuli have overlapping
biophysical (i.e., generative) mechanisms.

It has been hypothesized that electrical currents are less
likely to flow through gray matter than electrically-shielded (i.e.,
myelin) white matter (Keller et al., 2014). Thus, it may be the
case that electrical stimulation at DBS contacts near SCC gray
matter (more ventral) produced a cortical response of smaller
magnitude relative to DBS contacts near SCC white matter
(more dorsal). A post hoc correlation was supportive of this

Frontiers in Human Neuroscience 07 frontiersin.org

https://doi.org/10.3389/fnhum.2022.939258
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-939258 August 13, 2022 Time: 12:58 # 8

Smith et al. 10.3389/fnhum.2022.939258

FIGURE 5

Topography and time course of ITPC at 4–7 Hz for individual participants. (A) ITPC topography for individual participants (4–7 Hz, 50–150 ms)
averaged across all stimulation locations. The 8 topomaps on the left are from left SCC stimulation, and 8 topomaps on the right are from right
SCC stimulation. Subject order (1–8) of topomaps: top rows (right to left) then bottom rows. (B) ITPC waveforms (4–7 Hz; frontal sensor
montage, Figure 1C) from individual participants. Black lines are ITPC waveforms following stimulation at E3/11, green lines are ITPC waveforms
following stimulation at E0/8. Left panel is from left SCC stimulation, and right panel is from right SCC stimulation.

possibility: ITPC amplitude showed a trend toward a positive
correlation with white matter volume. Previous work has
also demonstrated links between electrophysiological response
magnitude and proximity of the stimulation location to white
matter structures (Conner et al., 2011; Keller et al., 2014; Borich
et al., 2016; Yamao et al., 2017; Nakae et al., 2019). Altogether, we
are optimistic that changes in theta phase clustering represent
differential activation of theta-sensitive pathways relevant for
depression treatment and recovery. Future work is needed to
see if features of the electrical perturbation map can further
differentiate specific white matter bundles that define this
therapeutic confluence point.

In the absence of acute and reliable behavioral responses
to neuromodulation for psychiatric disorders, there is an
urgent need for alternate methods to guide optimal parameter
selection, including the position of the therapeutic contact

in the target region. The SCC region is heterogeneous
in terms of white matter crossing fibers (Vergani et al.,
2016). Previous research demonstrated that treatment efficacy
requires millimeter-scale precision of electrical stimulation
at the confluence of four white matter bundles (Riva-Posse
et al., 2014, 2018; Howell et al., 2019). Notably, similar
approaches using stimulation pulses to guide targeting of
DBS electrode placement have demonstrated promise for
improved outcomes in patients with refractory conditions
(Zumsteg et al., 2006; Fox et al., 2012; Entz et al., 2014;
Van Gompel et al., 2015; Kimiskidis, 2016; Riva-Posse et al.,
2018; Yamao et al., 2017). This line of inquiry opens new
possibilities for brain mapping of structural elements in
the living human brain, as well as a means to optimize
and individualize the precision of brain stimulation for
therapeutic purposes.

Frontiers in Human Neuroscience 08 frontiersin.org

https://doi.org/10.3389/fnhum.2022.939258
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-939258 August 13, 2022 Time: 12:58 # 9

Smith et al. 10.3389/fnhum.2022.939258

Limitations and future directions

Despite a clear rationale, analyses in the time-frequency (TF)
domain have been underutilized to observe neural oscillations
in the context of perturbation mapping. This may be in part
due to the challenge of disentangling stimulation artifacts from
the evoked response after pre-processing. The DBS artifact is
significantly greater than neurogenic activity and may covary
with phase-locked EP components, obscuring modifications
in neural activity that result from stimulation. Moreover,
the component-based artifact mitigation used here may have
attenuated some phase-locked neurogenic activity that was
temporally and statistically yoked to electrical stimulation
(see Smith et al., 2020 for a discussion of component-based
artifact correction). This might explain discrepant findings
from a simpler rejection strategy. Similarly, the absence of a
relationship between ITPC and EP for right SCC stimulation
is not entirely clear. Notably, Figure 2 suggests that the right
SCC EP was relatively weak compared to the EP following left
SCC stimulation. Research designs using symmetric biphasic
pulses have the advantage of minimizing stimulator artifact on
electrophysiological recordings (Liu et al., 2012) and should be
considered in follow-up studies.

SCC stimulation was not randomized. This leaves open
the possibility for confounding effects of stimulation location
vs. stimulation sequence. This is an unfortunate consequence
of experimental design, and future work will examine
the influence of stimulation sequence on neural response
to SCC perturbation. This confound significantly limits
the conclusiveness of stimulation location effects regarding
the SCC-EP. Importantly, the main findings of increased
ITPC following SCC perturbation were observed regardless
of SCC location.

Another important consideration in the present inquiry
is the effect of current depression at time of testing: four
subjects were studied after 4 weeks of treatment, and four
participated after 6 months of treatment. All 8 participants
were classified as responders at 6 months (HDRS depression
scores reported in Supplementary Materials). A preliminary
analysis suggested similar results irrespective of differences in
treatment duration. Visual inspection of data from individual
participants also suggests homogeneity in spatial-temporal-
spectral pattern following SCC perturbation. Waters et al. (2018)
also demonstrated high reliability for SCC-EP across 14 months,
results arguing against a major interaction between treatment
duration and response to single pulse SCC stimulation.

Conclusion

In a small sample of SCC-DBS patients, we demonstrate
the potential utility of perturbation-mapping to observe the
effect of mm-level changes in DBS locations at the cortical

surface. This technique has the advantage of excellent spatial
and temporal resolution and holds promise as an assay of causal
neural mechanisms, and may be useful for optimizing electrode
placement and directing DBS current flow(s). Moreover, a
time-frequency approach to analysis of single pulse electrical
stimulation EP provides a view of neural phenomena that
is more directly relevant to endogenous neural dynamics.
Here we show theta phase coherence as a likely constituent
of the SCC-EP response to SCC stimulation. Inconsistent
enhancement in evoked delta power was also observed for a
few participants. Evidence for stimulation evoked EEG activity
as a close proxy for white matter perturbation was modest
in these findings, but the approach may be promising as a
read out of individual differences in cortical activity relevant
to depression and treatment. These findings are generally
consistent with theories of MDD etiopathogenesis that point
toward frontal-lobe processes important for cognitive control,
and have profound implications for the evolution of MDD
treatment with neurostimulation approaches.
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