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Recent advances in understanding and treatment of Parkinson’s 
disease
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Abstract

Though primarily a sporadic condition, Parkinson’s disease is increasingly recognized to be a multifactorial disease with a strong 
genetic component. At a cellular level, disruptions of protein trafficking and recycling, particularly by misfolding, accumulation, 
and aggregation of α-synuclein, mitochondrial dysfunction, oxidative stress, and other etiopathogenic mechanisms, have been 
found to result in the death of vulnerable neuronal populations and appear to drive the neurodegeneration underlying Parkinson’s 
disease. The improved understanding of these mechanisms has led to the development of novel pathogenesis-targeted and 
potentially disease-modifying therapeutic approaches in Parkinson’s disease. Until these treatments are fully developed and 
approved, clinicians must rely on therapies designed to improve quality of life of patients by treating various motor and non-motor 
symptoms of the disease.
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Introduction
Parkinson’s disease (PD) is a neurodegenerative disorder clas-
sically characterized by a combination of rest tremor, slowness  
(bradykinesia), increased muscle tone (rigidity), and impairment  
of gait and balance. In addition to exhibiting these cardinal motor 
symptoms, patients with PD can exhibit a wide array of motor 
and non-motor symptoms, including changes in posture and 
other skeletal deformities (for example, “striatal hands”), loss 
of sense of smell and taste, autonomic dysfunction, mood dis-
turbances, cognitive impairment, sleep disturbances, and pain.  
Although the disorder has long been considered to be a prima-
rily sporadic disorder (despite frequent family history of PD), the 
identification of numerous PD-related genes since the late 1990s 
has changed this perception and definition of PD1. Indeed, many 
now view PD as a syndrome with different pathogenic mecha-
nisms producing characteristic or atypical symptoms. Genetic  
susceptibility coupled with environmental factors and aging  
seems to drive the development of PD2.

In line with this changing perception of PD to a syndrome, there 
has been increasing interest in identifying PD “subtypes” based 
on clinical phenotype, underlying genotype, and pathology3.  
Of course, the ultimate goals are to better understand that 
pathogenesis and develop disease-specific and progression 
biomarkers that will lead to individualized symptomatic and  
disease-modifying therapies4.

In this review, we briefly discuss the most common PD-related 
genes along with proposed mechanisms of etiopathogenesis  
based on affected pathways and the role of environmental 
exposure in the development of PD. We also highlight new  
findings related to the interaction between gut and brain. We  
then discuss recent advances in the development of potential  
disease-modifying therapies and more personalized treatment.

Genetics in Parkinson’s disease
About 5 to 10% of patients with PD have a monogenic form of 
the disease following classic Mendelian inheritance patterns,  
and the remaining cases are felt to be sporadic, although 
over 100 susceptibility genes and risk-associated gene  
variants have been identified5,6. Many of these gene variants 
are linked to pathways involved in autophagy and lysosomal 
biology and other cellular mechanisms that impair clearance  
of rogue proteins, such as α-synuclein.

After the 1997 discovery of the gene that codes for  
α-synuclein (SNCA) and subsequent identification of α-synuclein 
as the major component in Lewy bodies (the hallmark  
pathologic finding in PD), basic and clinical research shifted  
focus on this protein as one of the important factors in under-
standing the pathogenesis of neurodegeneration in PD2,7,8. Oli-
gomerization of α-synuclein as a result of mutant SNCA and 
accumulation of excess protein due to duplication or triplication 
of the SNCA gene have been postulated as mechanisms of PD 
in these rare patients with SNCA mutations or multiplications, 
although this concept of α-synuclein as a toxic protein has been  
extended to other forms of PD, including “idiopathic”2. As  
oligomeric α-synuclein continues to aggregate, it becomes 

insoluble and forms β sheet–rich amyloid aggregates that impair 
cell function9. This α-synuclein pathology spreads and propa-
gates in a prion-like fashion. Indeed, prion-like spread has been 
postulated as a mechanism of progression in many neurode-
generative diseases besides PD (synucleinopathies and other  
proteinopathies)10–12.

Mutation in the LRRK2 gene, encoding for leucine-rich repeat 
kinase 2 protein, first mapped in 200213, is much more com-
monly implicated than SNCA, accounting for 4% of familial  
and 1% of sporadic cases of PD, but in certain populations 
may account for up to 10% of all “sporadic” PD and 42% 
of familial cases in Europe and North Africa, particularly in  
North African Berbers, Iberian populations, and Ashkenazi 
Jews (13% sporadic and 30% familial)14,15. It is worth noting 
that LRRK2 mutations show a great degree of phenotypic and 
pathologic heterogeneity as well as variable penetrance, rang-
ing from 20 to 100%. This variability is not readily explained  
by the specific mutations.

Several genes, when mutated, can affect mitochondrial function 
and result in a PD phenotype. The Parkin gene mutations 
are associated with younger-onset recessively inherited PD,  
accounting for 10 to 50% of cases of PD with onset before 
50 years of age16,17. A notable pathologic feature includes the 
paucity of Lewy bodies as compared with idiopathic PD18.  
Mechanistically, the Parkin protein is involved in ubiquiti-
nation and protein recycling and plays an important role in  
mitochondrial homeostasis19. The PINK1 gene encodes for  
phospatin and tensin (PTEN) homolog-induced kinase 1, a 
protein that localizes to mitochondria and associates with the 
ubiquitinating Parkin protein to regulate mitophagy19,20. The  
DJ-1 gene encodes a peptidase that protects against oxida-
tion, and mutations in the gene are associated with altered  
mitochondrial morphology5,21. Both PINK1 and DJ-1 mutations 
result in a recessively inherited young-onset PD clinically 
similar to the Parkin phenotype1. The growing understanding  
of the role of mitochondria, highly concentrated in striatal 
nerve terminals, has led to an evolving concept that PD  
represents an axonopathy with initial axonal arborization and 
mitochondrial dysfunction in the striatum with subsequent  
striatal-nigral degeneration22–24.

The VPS35 gene encoding vacuolar sorting protein 35 is 
associated with an autosomal dominant form of PD show-
ing reduced penetrance and late onset of disease5,25,26. VPS35 
is a subunit of a protein complex known as the retromer, 
which is involved in recycling of membrane proteins through  
association with endosomes and facilitation of transport to the  
trans-Golgi network or plasma membrane. VPS35 dysfunc-
tion results in enhanced accumulation of insoluble α-synuclein  
and disruption in mitochondrial function and turnover26.

Mutations in GBA, the gene encoding glucocerebrosidase, 
have been associated with the recessively inherited lysosomal 
storage disorder Gaucher’s disease. This gene has been  
garnering increasing attention because of growing recognition of  
a high prevalence in certain PD populations; as much as 10 
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to 15% of sporadic cases and over 40% of familial cases in the 
Ashkenazi Jewish population carry the GBA gene mutation27. 
Several other genes have been implicated in lysosomal storage  
disorders and have been associated with risk of developing PD28,29.

Genome-wide association studies have expanded the number 
of loci associated with increased genetic risk of PD and 
have explained 11 to 15% of the heritable risk of PD6,30. It is 
likely that additional genes will be identified in the future and  
will provide further evidence of heritability of PD, but the  
challenge will be to explain how these genetic risks translate  
into clinical and pathological phenotypes31.

Extrinsic factors in Parkinson’s disease
A causal role of an environmental factor in PD is often dif-
ficult to prove. This is because, as with other neurodegen-
erative disorders, inciting events in the disease process may  
predate clinical symptoms by years or even decades. Sev-
eral environmental factors, including pesticide exposure, rural  
living, and heavy metal exposure, have been associated with  
an increased risk of developing PD32. Furthermore, consump-
tion of dairy products, exposure to methamphetamine, and  
co-morbid medical conditions such as type 2 diabetes mellitus,  
autoimmune disorders, traumatic brain injury, or melanoma 
have been associated with increased risk of developing of 
PD32,33. In contrast, cigarette smoking, caffeine consumption, 
and green and black tea consumption appear to confer a 
reduced risk of PD development32. Beta blockers have been  
proposed to increase the risk of developing PD, whereas beta 
agonists have been suggested as protective, possibly through 
proposed up- and down-regulation of SNCA expression, 
respectively34,35, although some population-based studies have  
failed to show this correlation36. Low uric acid levels have 
also been associated with an increased risk of PD across many  
studies37,38, although recent biomarker studies have challenged  
this observation39.

Gut–brain relationship
The gastrointestinal system has been known to be involved 
in PD, as evidenced by the frequent occurrence of consti-
pation even during the prodromal phase, but its role in the  
pathogenesis of PD was not recognized until quite recently. One 
of the leading hypotheses behind the progression of PD is the  
transmission of synuclein pathology from the periphery through 
olfactory neurons and from the enteric nervous system via the 
vagus nerve, followed by centripetal spread to the substan-
tia nigra; this is the so-called dual-hit hypothesis proposed 
by Braak and colleagues40. The finding of α-synuclein aggre-
gates in the gastrointestinal tract supports the notion of spread 
of synuclein pathology from the gut via the vagus nerve to  
the caudal brainstem and then rostrally to the substantia nigra, 
diencephalon, and neocortex24,40–42. Further support for the  
involvement of the gut and the vagus nerve in the pathogenesis 
and progression of PD are studies that demonstrate a modest 
protective effect of vagotomy in the development of PD43,44. The  
make-up of gut microbiota has been shown to differ in PD  
patients relative to healthy controls and may even correlate  

with disease severity and symptoms44–46, raising the possibility 
that different gut microbiota contribute to the etiopathogenesis  
of the disease47.

Although α-synuclein has been at the center stage as a key  
protein implicated in the pathogenesis of PD, it is worth noting 
that its pivotal role and the hypothesis of Braak and col-
leagues have been challenged48. For example, it is important to 
note that the staging of Braak and colleagues is based on Lewy  
body pathology rather than neuronal loss and that up to a 
third of patients do not show Lewy body pathology in the 
enteric system. Finally, some have suggested that protein 
aggregation represents a compensatory response to cellular  
stress (epiphenomenon)49.

Pathogenesis-targeted treatment strategies in 
Parkinson’s disease
One of the outcomes of improved understanding of pathogenic  
mechanisms underlying PD is the development of more tar-
geted treatments toward these mechanisms8. For example, 
there has been a great deal of interest in antibodies targeting  
α-synuclein50,51, given its prevalence and presumed patho-
genic role in a majority of cases of PD. Other potential  
disease-modifying treatments being investigated in PD include 
glucagon-like peptide-1 receptor agonists (currently used in 
treatment of diabetes), nilotinib (a chemotherapeutic agent) 
and its analogs, and numerous gut dysbiosis trials aiming to  
“normalize” gut microbiota of patients with PD (Table 1)2,52–55.

Though not pathogenesis-targeted treatments per se, a number 
of new dopamine replacement strategies, including adeno- 
associated virus-mediated gene therapy to boost dopamine  
production in surviving neurons, exogenously induced 
dopaminergic neuron precursor cells, or even the conversion of  
astrocytes into neuronal cell populations, represent exciting 
new prospects for the field of PD therapeutics56–59. Also, cell-
based therapies, including autologous-induced pluripotent stem 
cells, are being intensely investigated as potential therapies in  
PD60.

There is a growing body of evidence that PD is not a single 
clinical-pathological entity but a syndrome consisting of mul-
tiple disease states with different underlying mechanisms of  
neurodegeneration, hence requiring a specific (personalized) 
therapeutic approach61. Furthermore, even within PD, there 
may be subtypes, such as the tremor dominant subtype, postural 
instability and gait difficulty (PIGD) subtype, and other  
subtypes3,62. Beyond these subtypes, different genetic forms 
of PD also demonstrate unique or characteristic phenotypes, 
including age at onset, presence of dystonia and other move-
ment disorders, development of complications to levodopa ther-
apy, deep brain stimulation (DBS) responsiveness, and a degree 
of associated cognitive impairment1. Better understanding of 
underlying disease mechanisms as well as identification of dif-
ferent phenotypes by genetic analysis opens the door to incor-
porating subtype-specific, personalized treatments in PD3,31,49. 
Research into such experimental therapies, such as LRRK2  
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inhibitors and treatments targeting enhancement of glu-
cocerebrosidase activity or facilitating substrate clearance in 
GBA-associated PD, has already reached planning and trial  
phases28.

One of many challenges in the development of disease- 
modifying therapies has been marked paucity of clinical,  
biochemical, or imaging markers that reliably track the progres-
sion of the disease63. The clinical gold standard for assessing 
severity of PD symptoms and signs, the UPDRS or the MDS-
UPDRS, used in nearly all clinical trials as a primary outcome 
measure, has many limitations, including marked within-subject  
variability64. Technology has also started to play an increasing 
role in PD diagnosis and treatment with the hope of finding 
digital biomarkers that may allow earlier detection of PD or 
further discrimination among subtypes. However, difficulty  
in interpretation of gathered data and lack of standardization 

across device platforms are current barriers to widespread  
reliable usage65,66.

Conclusions
Recent years have witnessed a dramatic increase in our  
understanding of genetics in PD and consequently an improved 
understanding of pathogenic and pathophysiologic mechanisms 
of the disease. These include discoveries about α-synuclein  
and its role as a “rogue protein”, reduced protein clearance,  
mitochondrial dysfunction, and oxidative stress. We are enter-
ing an exciting era during which the improved knowledge about  
cellular and molecular mechanisms underlying neurode-
generation in PD is translated into pathogenesis-specific,  
disease-modifying treatments in PD and a more person-
alized approach designed to slow or prevent progression 
of the disease and improve quality of life of patients with  
PD.

Table 1. Emerging pathogenesis-targeted treatments in Parkinson’s disease.

Category Treatment 
agent(s)

ClinicalTrials.gov 
Identifiers

Trial 
phase

Proposed mechanism of action

Alpha-synuclein 
immunotherapy

PRX002 
BIIB054 
 

ABBV-0805

NCT03100149 
NCT03318523 
NCT03716570 
NCT04127695

Phase 2 
Phase 2 
Phase 1 
Phase 1

Passive immunization via infused alpha-
synuclein antibodies

PD01A 
 

PD03A

NCT01568099 
NCT02618941 
NCT02267434

Phase 1 
Phase 1 
Phase 1 

Active immunization via administration of 
synthetic peptide sequences

Tyrosine kinase inhibitor Nilotinib 
 

K0706

NCT03205488 
NCT02954978 
NCT03655236

Phase 2 
Phase 2 
Phase 2

Inhibition of Abelson tyrosine kinase 
(which inhibits Parkin)

Glucagon-like peptide 1 
agonist 

Exenatide 
 
 
 

Semaglutide 
Liraglutide

NCT04269642 
NCT04305002 
NCT04154072 
NCT04232969 
NCT03659682 
NCT02953665

Phase 2 
Phase 2 
Phase 2 
Phase 3 
Phase 2 
Phase 2

Acts on MAP kinase and PI3 kinase to 
decrease neuroinflammation

Gut dysbiosis Fecal transplant NCT03671785 
NCT03876327 
NCT03808389

Phase 1 
Phase 2/3 
--

Microbiota transfer via fecal 
transplantation from healthy donor

Resistant 
maltodextrin

NCT03667404 Phase 2 Prebiotic treatment to regulate gut 
microbiome

Glucocerebrosidase-targeted 
therapy

Ambroxol NCT02914366 Phase 2 Increase levels of beta-
glucocerebrosidase to lower alpha-
synuclein levels

PR001A NCT04127578 Phase 1/2a GBA gene delivered to neurons via viral 
vector
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