
nanomaterials

Article

Coating of Magnetite Nanoparticles with Fucoidan to Enhance
Magnetic Hyperthermia Efficiency

Joana Gonçalves 1 , Cláudia Nunes 1,* , Liliana Ferreira 2,3, Maria Margarida Cruz 3, Helena Oliveira 4,
Verónica Bastos 4 , Álvaro Mayoral 5,6,7 , Qing Zhang 7 and Paula Ferreira 1,*

����������
�������

Citation: Gonçalves, J.; Nunes, C.;

Ferreira, L.; Cruz, M.M.; Oliveira, H.;

Bastos, V.; Mayoral, Á.; Zhang, Q.;

Ferreira, P. Coating of Magnetite

Nanoparticles with Fucoidan to

Enhance Magnetic Hyperthermia

Efficiency. Nanomaterials 2021, 11,

2939. https://doi.org/10.3390/

nano11112939

Academic Editor: Victor Kuncser

Received: 20 September 2021

Accepted: 28 October 2021

Published: 2 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 CICECO-Aveiro Institute of Materials, Department of Materials and Ceramic Engineering,
University of Aveiro, 3810-193 Aveiro, Portugal; joanadfgoncalves@ua.pt

2 Physics Department, University of Coimbra, 3004-516 Coimbra, Portugal; lmferreira@fc.ul.pt
3 Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa,

1749-016 Lisboa, Portugal; mmcruz@fc.ul.pt
4 CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; holiveira@ua.pt (H.O.);

veronicabastos@ua.pt (V.B.)
5 Instituto de Nanociencia y Materiales de Aragon (INMA), Spanish National Research Council (CSIC),

University of Zaragoza 12, Calle de Pedro Cerbuna, 50009 Zaragoza, Spain; amayoral@unizar.es
6 Advanced Microscopy Laboratory (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
7 Center for High-Resolution Electron Microscopy (CèEM), School of Physical Science and Technology (SPST),

ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China;
zhangqing1@shanghaitech.edu.cn

* Correspondence: claudianunes@ua.pt (C.N.); pcferreira@ua.pt (P.F.)

Abstract: Magnetic nanoparticles (NP), such as magnetite, have been the subject of research for ap-
plication in the biomedical field, especially in Magnetic Hyperthermia Therapy (MHT), a promising
technique for cancer therapy. NP are often coated with different compounds such as natural or
synthetic polymers to protect them from oxidation and enhance their colloidal electrostatic stabil-
ity while maintaining their thermal efficiency. In this work, the synthesis and characterization of
magnetite nanoparticles coated with fucoidan, a biopolymer with recognized biocompatibility and
antitumoral activity, is reported. The potential application of NP in MHT was evaluated through the
assessment of Specific Loss Power (SLP) under an electromagnetic field amplitude of 14.7 kA m−1

and at 276 kHz. For fucoidan-coated NP, it was obtained SLP values of 100 and 156 W/g, corre-
sponding to an Intrinsic Loss Power (ILP) of 1.7 and 2.6 nHm2kg−1, respectively. These values are,
in general, higher than the ones reported in the literature for non-coated magnetite NP or coated
with other polymers. Furthermore, in vitro assays showed that fucoidan and fucoidan-coated NP are
biocompatible. The particle size (between ca. 6 to 12 nm), heating efficiency, and biocompatibility of
fucoidan-coated magnetite NP meet the required criteria for MHT application.

Keywords: magnetic nanoparticles; magnetite; fucoidan; magnetic hyperthermia therapy; biocompatibility

1. Introduction

Regardless of efforts to find new therapies and the considerable progress in medical
research, cancer is still one of the biggest causes of death in the world [1,2] with an
estimation of 18.1 million new cancer cases and 9.6 million deaths in 2018 [3]. Furthermore,
an increase to 27.5 million of new cancer cases by 2040 is expected [4]. Conventional
treatments, such as chemotherapy (CT), radiotherapy (RT), and surgery, originate side
effects (hair loss, bleeding, edema, and fatigue) [5,6], and as such it is extremely urgent
that to develop new treatments to overcome these drawbacks with similar or improved
efficiency against cancer [1,2].

Hyperthermia appears as an adjuvant alternative in the treatment of cancer [7]. The
use of hyperthermia arises from the existence of a distinct response and tolerance to heat
between healthy and tumor cells. In normal tissues, the heat induces a fast response, which
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includes an increase of blood flow, accompanied by vessel dilatation and an increase of
vascular wall permeability, while in the tumor tissues, the vascular network is less efficient,
namely in exchanging heat, and, consequently, it is more likely to be damaged when treated
by hyperthermia therapy. The cytotoxic effect is mainly associated with the fact that an
increase in temperature leads to a denaturation of cytoplasmic proteins, influencing the
cell growth and differentiation which in turn can induce apoptosis [5,8,9].

The currently available regional or local hyperthermia modalities have the difficulty
of heating the tumor homogeneously, since a temperature gradient is generated between
the tumor surface and its inner core, reducing the treatment’s efficiency [8]. Additionally,
conventional hyperthermia may also affect healthy cells due to non-selective heating [1,7].
Magnetic nanoparticle-mediated hyperthermia, also known as Magnetic Hyperthermia
Therapy (MHT), has the potential to overcome this limitation using superparamagnetic
nanoparticles (NP) such as magnetite (Fe3O4) and maghemite (γ-Fe2O3) to produce ho-
mogenous therapeutic heating (in the range of 41 to 46 ◦C), confined to the tumor tis-
sue [2,7,10], reducing the negative side effect common in conventional cancer therapies
such as CT and RT [9]. For Fe3O4 and γ-Fe2O3, superparamagnetic behavior is typical of
NP with sizes below 30 nm and is highly required to avoid embolization [2].

MHT has already shown its therapeutic efficacy in clinical trials, mostly as a combi-
natorial approach with other conventional therapies such as radiotherapy or chemother-
apy [10–12]. However, an inevitable issue associated with the use of particles in this size
range (less than 20 nm) [13] is their intrinsic instability [14,15], since NP tend to aggregate
over long periods of time due to their large surface area-to-volume ratio [5,15,16] and
also due to the magnetic dipolar attraction between the NP [17]. In addition, iron oxide
nanoparticles are easily oxidized in air [14]. Both these issues undermine their heating
efficiency [15], characterized by the Specific Loss Power (SLP). For MHT applications, NP
with high SLP are needed to achieve the clinical desired temperature without requiring a
high NP dose to be administered to the patient [18].

Surface coating is one of the strategies used to overcome these drawbacks, allowing protec-
tion from oxidation, improving biocompatibility, and enhancing their colloidal stability [13,19].

NP are often coated with different materials including organic (e.g., dextran, starch,
and chitosan) and inorganic coatings (e.g., gold, silver, carbon, and silica) [13,20] during
(in situ) or after their synthesis (post-synthesis) [13,21].

Furthermore, the search for new sources of raw compounds to be used in the biomedi-
cal field has led to the use of sulfated polysaccharides from marine algae, namely fucoidan
due to its biocompatibility [22] and antitumor properties [23–27]. The use of fucoidan as
coating agent prevented NP agglomeration, increasing NP magnetization [28]. Fucoidan
has been revealed to possess anticancer activity playing a role in the reduction of the tumor
size [29]. A synergetic effect with other cancer therapies such as photothermal therapy
has been also demonstrated [30]. The use of fucoidan to control drug delivery from the
pores of a mesoporous silica shell around a magnetite core has also been described. It was
verified that fucoidan was responsive to pH and temperature, allowing the release of the
drug. According to the authors, the particles could be used for magnetic hyperthermia [31].

It is known that tumors can destabilize our immune system by stimulation of a variety
of immune suppression mechanisms in the tumor and microenvironment. Furthermore,
cancer therapy-based CT may also have side effects related to drugs that induce im-
munosuppression. Immunomodulators can be used as immunostimulants by stimulating
immune cells to enhance antitumor effects [32]. Fucoidan has been reported to present im-
munostimulatory activity [33–35] and to suppress cancer growth by increasing the body’s
immunity [35,36]. The conjugation of fucoidan-dextran with magnetic particles to achieve
an immunosuppressive tumor microenvironment has also been reported [37]. The magnetic
particles allow for conducting the fucoidan to the tumor, for localized immunosuppressive
activity, avoiding, in this way, off-target effects.

A few reports can be found in literate of the use of fucoidan associated to NP as coating
agent, aiming to improve the NP stabilization, or taking advantage of their anticancer
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biological property. For instance, Silva et al. [28] used fucoidan to coat magnetite NP
to study its influence on NP stabilization and magnetic properties. The same group also
investigated the anticancer property of fucoidan [29]. However, only the resulting magnetic
properties and the anticancer activity of fucoidan were investigated. The authors did not
address the application of these particles on MHT. The biological activity of fucoidan makes
it an agent with great potential in the treatment of cancer. The coating of magnetite NP with
fucoidan is an opportunity to achieve multifunctional nanoparticles, combining the thermal
hyperthermia efficiency of magnetite with the intrinsic anticancer property of fucoidan.
In this work, it is described the development of magnetite NP coated with fucoidan for
cancer therapy. These NP were synthesized by co-precipitation which is a relatively easy
way to produce superparamagnetic magnetite NP without using hazardous reagents and
offering a low-temperature alternative to the other conventional methods [13]. The coating
was performed using two approaches: (i) after their synthesis (post-synthesis coating), and
(ii) simultaneously with the synthesis (in situ coating). To evaluate the NP potential for
MHT, the heating efficiency under an alternating magnetic field was determined and
assays were performed to assess cell viability in contact with fucoidan, pristine NP and
fucoidan-coated magnetite NP.

2. Materials and Methods

Materials: Ferrous (II) sulfate heptahydrate (FeSO4·7H2O, purity 99.5%) and iron
(III) chloride (FeCl3, purity 97%) were purchased from Merck. Ammonium hydroxide
(NH4OH, 25 vol%) was purchased from Sigma Aldrich. Fucoidan powder was obtained
from Shandong Jiejing group (batcher no. 131023). All the reagents were used without any
further purification.

Synthesis of pristine Nanoparticles: The protocol employed in the magnetite nanoparti-
cles synthesis was reported in the literature through the addition of a precipitating agent
to a stoichiometric aqueous solution of Fe2+ and Fe3+ in a molar ratio of 1:2 under an
oxygen-free environment [38]. An aqueous solution was prepared by dissolving 0.0038 mol
of FeSO4·7H2O and 0.0076 mol of FeCl3 at room temperature under a nitrogen atmosphere
to avoid oxidation of the ferrous ions. Thereafter, 3.33 mL of NH4OH was added and
magnetic stirring was maintained for 15 min, producing the black suspension of Fe3O4
NP. The particles were aged at room temperature for 1 h and then magnetically separated
and washed several times with distilled water to remove the excess of NH3 until pH 7 was
attained. The NP were kept in this solution until they were used.

Post-synthesis coating of Fe3O4 nanoparticles with fucoidan: The post-synthesis coating
was accomplished by the adsorption method based on a study reported by Silva et al. [28].
A 2 mg mL−1 fucoidan solution was filtered using a syringe with a disposable filter
(hydrophilized polytetrafluoroethylene membrane with a pore size of 0.2 µm) and added to
the previously obtained Fe3O4 NP. This suspension was maintained at room temperature
under magnetic stirring for 16 h. Then, the NP were washed with distilled water and kept
in the solution until they were used.

Simultaneous synthesis of Fe3O4 nanoparticles and coating with fucoidan: To produce an in
situ coating of magnetite NP, an adaptation of the methodology described by Yew et al. [39]
was performed. Stoichiometric quantities of the irons Fe2+ (0.0038 mol of FeSO4·7H2O)
and Fe3+ (0.0076 mol of FeCl3) were added to the solution of fucoidan (2 mg mL−1) under a
nitrogen atmosphere at room temperature under magnetic stirring. Afterwards, 3.33 mL of
NH4OH was added and magnetic stirring was maintained for 1 h to complete the reaction.
Then, the supernatant was removed from the solution using a permanent magnet and the
NP were washed with distilled water until pH 7 was reached.

Analysis of chemical composition of fucoidan: The alditol acetates method was performed,
following the procedure already reported [40], to determine the content in monosaccharides
of fucoidan. This was achieved through the polysaccharide hydrolysis to monosaccharides
followed by a reduction and acetylation into alditol acetates and analysis by gas chromatog-
raphy with a flame ionization detector (GC-FID). The sugars were identified by retention
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time in comparison with standards. Uronic acids were determined by the m-phenylphenol
colorimetric method and following the procedure described by Selvendran el al. [41]. The
content of uronic acids was calculated by comparison with a calibration curve of galactur-
onic acid. To complement the fucoidan composition characterization, in terms of sulfate
content, elemental analyses was also carried out and accomplished by combustion analy-
sis. For this, Truspec Micro 630-200-200 equipment was used with a combustion furnace
temperature and afterburner temperature of 1075 ◦C and 850 ◦C, respectively.

Nanoparticles characterization: In order to evaluate the functionalization of the pristine
NP with fucoidan Fourier transform infrared (FTIR) spectra was performed over the range
of 4000–500 cm−1 with Perkin Elmer Spectrum BX with a resolution of 4 cm−1 and 64 scans
per sample.

The analysis of C (carbon), H (hydrogen), N (nitrogen), and S (sulfur) content was
also carried out using Truspec Micro 630-200-200 equipment with the same conditions
mentioned above for fucoidan analysis.

To all NP synthetized, pristine and fucoidan-coated, X-ray diffraction (XRD) analysis
was performed to evaluate the crystal structure and crystallite size of NP. The X-ray
diffractograms were obtained in a diffractometer (Philips Analytical PW 3050/60 X’ Pert
PRO (θ/2θ)) with Cu-Kα radiation (λ = 1.54060 Å). The diffractograms were obtained by
scanning in the 2θ range from 20 to 70◦ with a step of 0.02◦ at room temperature. Through
the broadening of the X-ray diffraction peaks, considering the instrumental correction and
assuming a spherical shape, the crystallite size was determined using the Debye–Scherrer
Equation [42].

Transmission Electron Microscopy (TEM) and high-resolution TEM (HRTEM) analy-
sis were performed to evaluate the NP morphology, shape, and size. TEM images were
obtained using the equipment JEOL 2200FS with an acceleration potential of 200 kV.
Spherical aberration corrected (Cs-corrected) HR(scanning, S)TEM HAADF & ABF (high
angle annular dark field & annular bright field) images were carried out in a double
aberration-corrected equipment JEOL JEM-ARM300F GRAND ARM with cold FEG which
was operated at 300 kV. The column was equipped with JEOL spherical aberration cor-
rectors which were tuned before every observation assuring a point resolution of 0.7 Å at
300 kV. The microscope was also equipped with a JEOL EDX spectrometer and a Gatan
Quantum Energy Filter. The ImageJ® program [43] was used to estimate the mean size of
the NP and also the particle-size distributions (a minimum of 100 particles was used for
each sample). The histograms were fitted assuming a Log-Normal distribution of the NP
diameters and the particle size distribution of the samples was determined statistically.

Brunauer-Emmett-Teller (BET) was used to determine the specific surface area (SSA)
of all the synthetized NP [44]. The equipment used was a Micromeritics ®—Gemini 2380
V2.00. The samples were degassed overnight at 150 ◦C to remove physically adsorbed
water, which would interfere with the surface area results. Before analysis, the samples
were cooled down to −196 ◦C using liquid nitrogen. The specific surface area of the
materials was determined from nitrogen gas adsorption–desorption.

The colloidal stability was accessed through measurements of the zeta potential in
MilliQ water and following the procedure used by Bini et al. [45]. Water was used since it is
a fluid that can be administrated to the human body. The zeta potential was determined as a
function of pH at room temperature using a Zetasizer Nano ZS from Malvern Instruments.

Using a SQUID magnetometer (QD-MPMS), magnetization measurements on the
frozen emulsions of nanoparticles were carried out as a function of temperature between 10
and 250 K, after cooling from room temperature in zero magnetic field (zero field cooled—
ZFC) and after cooling under the measurement field (field cooled—FC). Hysteresis cycles
were obtained at 250 K for applied magnetic fields up to 2 mT. Minor cycles up to 16 kA m−1

were also acquired.
The assessment of the nanoparticles’ Specific Loss Power (SLP) under an electromag-

netic field was carried out using an Easy Heat 0224 device (Ambrell) based system, using a
two-turn Helmholtz solenoid of around 6 cm diameter and working at 276 kHz frequency
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with an AC field amplitude of 14.7 kA m−1. Heat losses and the influence of coil heating
were reduced by a layer of thermal insulation placed between the coils and the sample.

In order to avoid harmful heating in the patients related to the electromagnetic ra-
diation exposure, it was reported that for a safe MHT, the H0f factor should not exceed
a limit equal to 5 × 109 Am−1 s−1 known as “Brezovich limit” [20]. Accordingly, in this
work the SLP measurements were carried out below threshold (4.057 × 109 Am−1 s−1).
The experimental setup was non-adiabatic and the protocol used to determine the SLP of
the samples was previously reported [2].

In vitro cytotoxicity assays: Highly pigmented human melanoma MNT-1 cell line was
kindly provided by Dr. Manuela Gaspar (iMed. ULisboa, Portugal). Different concentra-
tions of fucoidan (0.25, 0.5, 1, and 2 mg mL−1), pristine NP, and fucoidan-coated NP (0.0125,
0.025, 0.05, 0.1, and 0.2 mg mL−1) were added to the cell line to study the dose-dependent
effect. Cells were incubated at 37 ◦C for 24 and 48 h to evaluate the time-dependent
effect. Cell viability upon exposure to fucoidan, pristine NP, and fucoidan-coated NP
was determined by the colorimetric 3-(4,5dimethyl-2-thiazolyl)-2,5-diphenyl tetrazolium
bromide assay (MTT) [46]. The absorbance was measured at 570 nm using a Synergy HT
Multi-mode Microplate Reader (BioTek Instruments). According to the literature, NP may
interfere in the optical measurement and/or a side reaction with the assay components
may happen [47–49]. Thus, to avoid or reduce this, an additional step was introduced
which included washing with PBS befo38re introducing the MTT solution.

Cell viability was calculated as a percentage of control cells (without fucoidan/NP)
as: (Abssample − AbsDMSO)/(Abscontrol − AbsDMSO) × 100. Data were expressed as the
mean ± standard deviation (SD) of at least three independent experiments with three
technical replicates each.

3. Results and Discussion

In this work, fucoidan-coated magnetite NP were synthetized and the effect of the
fucoidan coating on NP stabilization and on the hyperthermia response was investigated.
These NP were synthesized by the standard precipitation method. The fucoidan was coated
after their synthesis (post-synthesis coating) or simultaneously with the synthesis (in situ
coating). The pristine NP (M), post-synthesis (MF) and in situ coated NP (MF−IS) samples
were studied.

As fucoidan presents a complex structure due to the existence of different monosac-
charides and their linkages, as well as the distribution of the sulfate groups, the fucoidan
used in this study was characterized [50]. The obtained results can be observed in Table 1.

Table 1. Fucoidan monosaccharide composition and sulfate groups content (µg/mg fucoidan).

Monosaccharide Composition Sulfate
Content Total

Fuc Glc Man Xyl Gal Rha Uronic Acids

418.1 24.8 51.1 17.6 229.6 21.5 75.9 104.5 943.2

Fucoidan is mainly constituted by fucose (418 µg/mgfucoidan), galactose (230 µg/mgfucoidan)
and mannose (51 µg/mgfucoidan). The fucose content is within the range reported for
fucoidan (34–44% w/w), [51] but is a galactose-rich one. The fucoidans extracted from
brown algae are heteropolymers with diverse backbones constituted by neutral sugars
and/or uronic acid residues [27]. For example, fucoidans from the Sargassum stenophyllum
and Sargassum siliquosum were described to be constituted by fucose and galactose as major
components, being described as a galactofucoidan [52,53].

The sulfate groups are considered a key factor on fucoidan bioactivity because of their
role in the inhibition of the growth of cancer cells [54]. The number of sulfate groups in
the fucoidan contributes to the effectiveness of its anti-angiogenic and antitumor activi-
ties [51,55,56]. Therefore, the content of this element has an important influence on fucoidan
composition. By the elemental analysis results, the sulfate content was 104.5 µg/mgfucoidan
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(~11%) which is within the range reported for fucoidan extracted from Ascophyllum no-
dosum, Sargassum kjellmanianum, Sargassum thunbergii, presenting a percentage of sulfate
content between 8 and 25% [26]. In addition, fucoidan has also traces of nitrogen (0.4%)
which may be associated with the existence of some compounds containing amino groups
(e.g., protein or amino sugars) [57].

3.1. Structural and Morphological Analysis of NP

Different characterization techniques were used to evaluate and study NP properties
such as size, morphology and stability of the non-coated NP (M) and their post-synthesis
coating with fucoidan (MF), and NP coated with fucoidan in situ (MF−IS).

Fourier-transform infrared spectroscopy (FTIR) spectra of the synthetized samples
(M, MF, and MF−IS), as well as the fucoidan (Fuc) for comparison purposes, is depicted in
Figure 1.

Figure 1. Normalized FTIR spectra of fucoidan (Fuc), magnetite (M), post-synthesis fucoidan-coated
magnetite (MF), and in situ fucoidan-coated magnetite (MF−IS) samples.

The magnetite (M) spectrum has a characteristic peak around 570 cm−1, which corre-
sponds to the stretching vibrations of metal at the tetrahedral site of Fe-O, confirming the
existence of the Fe3O4 NP core [58]. This peak can be also observed in the spectra of both
coated Fe3O4 NP. The spectra relative to the magnetite coated with fucoidan after synthesis
and coated in situ exhibit peaks around 1030 and 1224 cm−1. The peak at 1030 cm−1 corre-
sponds to symmetric C-O vibration associated with C-O-SO3 and the peak at 1224 cm−1

is assigned as S=O stretching vibration, which indicates the presence of esterified sulfate.
The expression of these peaks comes from the fucoidan [59]. A higher expression of the
peak can also be seen around 1628 cm−1 (stretching vibration of the carbonyl group in
carboxylic acid groups (C=O) in the spectra of the samples with fucoidan (MF, MF−IS)
than bare magnetite (M). These results allow the confirmation of the presence of fucoidan
on the NP’ surface [59].

The existence of the biopolymer on the NP’ surface is also corroborated by the presence
of sulfur determined in the elemental analysis. The post-synthesis fucoidan-coated mag-
netite sample (MF) showed 11.5% of sulfate content, whereas the in situ coated magnetite
sample (MF−IS) had a lower value, 2.2%. This difference agrees with a lower expression
exhibition of the fucoidan groups in the MF−IS FTIR spectrum when compared with MF
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sample (Figure 1). The higher content of fucoidan in the post-synthesis coating may be due
to the higher coating time (16 h) than for the NP’ coating in situ which was only 1 h.

X-ray diffraction (XRD) patterns of the synthesized samples are shown in Figure 2.
For all samples, the peaks corresponding to the diffraction planes (220), (311), (400), (422),
(511), and (440) can be observed and matched with the standard magnetite XRD patterns
(S.G. Fd-3m, JCPDS file No. 04-002-3668). Moreover, the presence of magnetite peaks in
the fucoidan-coated samples demonstrates that the coating did not affect the NP core, as
already reported [28,29].

Figure 2. Normalized XRD diffractograms of magnetite (M), post-synthesis fucoidan-coated mag-
netite (MF), and in situ fucoidan-coated magnetite (MF−IS) samples. The red lines represent the
peaks of the Fe3O4 phase.

Figure 3 shows the Transmission Electron Microscopy (TEM) images and size distri-
butions of the samples. The pristine magnetite NP are quasi-spherical and present some
polydispersity and agglomeration due to the high surface-to-volume ratio [16] and the
dipole-dipole magnetic interactions between NP [17,60]. The atomic structure can be di-
rectly visualized through Cs-corrected STEM. As an example, by looking at the non-coated
NP, top images, the good crystallinity along the [110] orientation is evidenced. The Cs-
corrected STEM-HAADF micrograph depicts an elongated NP (particle size ≈ 15 nm),
where the Fe columns are clearly resolved (see model superimposed, where Fe is repre-
sented by green spheres and O in red). In this mode, the contrast is dependent on the
atomic number (Z) of the elements and on the number of atoms per column, observing a
strong central signal attributed to a Fe column that contains more Fe per unit cell than the
surrounding ones that are also formed by Fe. As it is Z dependent, oxygen is not visible
in this mode. ABF data was also recorded (see inset in Figure 3) where the contrast is
reversed in comparison to the HAADF, allowing the visualization of all atoms (including
oxygen) of the structure, for better understanding the model has been also superimposed.
Due to the agglomeration of the uncoated NP, the coating in agglomerated zones is more
around groups of particles instead of in individualized NP, as can be seen in MF NP. This
agglomeration effect on the coating was also already reported in the literature [61]. In this
case, a closer look of an individual NP of 12 nm situated on the edge of a group formed
by few more was observed along the [001] orientation. Through these images it is not



Nanomaterials 2021, 11, 2939 8 of 20

perceptible if the coating provided higher NP dispersion according to their stabilizing
effect reported in the literature, where a higher NP dispersion after coating with fucoidan
was observed [28,29]. Regarding the in situ coating synthesis with fucoidan (MF−IS), no
significant differences were observed except for the reduction in the average particle size
suggesting that the fucoidan prevented at some point the initial agglomeration of the NP.
Regarding the crystallinity no differences were found in comparison with the other two
samples and all crystallized as magnetite with cubic Fd3m symmetry. Concerning the
coating, it mostly includes groups of particles (clusters) than individual particles.

Figure 3. TEM images: low magnification TEM (left), Cs-corrected HRSTEM (center) and size distributions (right) of
magnetite (M), post-synthesis fucoidan-coated magnetite (MF), and in situ fucoidan-coated magnetite (MF−IS) samples.

The mean NP size values, estimated through Debye-Scherrer equation, are presented
in Table 2. In addition, the mean particle size obtained through TEM images and specific
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surface area of all the samples are also displayed. In general, the sizes obtained from
Debye-Scherrer equation are in agreement with the results obtained from TEM images.
The mean NP size of pristine magnetite (10.2 nm) is in accordance with the reported value
for particles prepared by the precipitation method [28,38,62–64]. Furthermore, this size
is in the proposed range (8 and 20 nm) for application on MHT [2,65–67]. Coating the
sample M with fucoidan (sample MF) corresponds to a slight increase of their medium
size to 11.7 nm. Regarding NP coated in situ (MF−IS), they exhibit a smaller size than the
M and MF samples, with an average diameter of 6.4 nm, which corresponds to a higher
surface-to-volume ratio, that can explain their greater agglomeration [5].

Furthermore, in situ coated NP have a narrower size dispersion, than NP coated
post-synthesis, due to their smaller size [68]. These results are consistent with the Brunauer-
Emmett-Teller (BET) measurements since we obtained a specific surface area (total surface
area of a material per unit of mass) of 96.3, 91.3, and 111.8 m2g−1 for M, MF, and MF−IS
samples, respectively (Table 2).

Table 2. Average crystal sizes measured in TEM image (DTEM), average crystallite sizes obtained via
X-ray diffraction (DXRD) and specific surface area (ABET) of magnetite (M), post-synthesis fucoidan-
coated magnetite (MF), and in situ fucoidan-coated magnetite (MF−IS) samples.

Sample DTEM (nm) DXRD (nm) ABET (m2g−1)

M 10.2 ± 3.3 10.8 96.3

MF 11.7 ± 3.1 12.5 91.3

MF−IS 6.4 ± 1.6 8.8 111.8

Zeta potential curves obtained through the measurement of zeta potential at different
pH values are exhibited in Figure 4.

Figure 4. Zeta potential curves as a function of pH of magnetite (M), post-synthesis fucoidan-coated
magnetite (MF), and in situ fucoidan-coated magnetite (MF−IS).

In all the curves for the pH biological range (7.35–7.45) the zeta potential values are all
negative which means that the particles’ surface is negatively charged. Observing the curve
of the sample M verifies that the isoelectric point is approximately 4.6 which is lower than
that reported for synthetic magnetite (~7) [69], which may be due to a possible oxidation
of the NP’ surface [69,70]. However, different values have been obtained from different
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authors (e.g., 3.0–4.0, [71], 4.5 [70], 4.9 [72], 5.0 [73], 5.2 [74], 7.30 [45], 8.0 [47,75]). Based
on this value, synthetized NP have a positive charge at pH below 4.7 and negative charge
above 4.7, with the predomination of FeOH+2 and FeO− groups on magnetite surface
respectively. In this work, the adsorption of fucoidan was carried out near pH 7 according
to Toi et al. [76].

Considering the isoelectric point mentioned above, this pH was not suitable for
obtaining the maximum chemisorption of the fucoidan. This condition does not favor the
adsorption of the sulfate groups of fucoidan because of the electrostatic repulsion between
negative charged magnetite (FeO−) and negative charged sulfate groups. However, pH 7
is the required pH to be applied in the biological environment [2].

Regarding the coating of M sample (MF) the NP charge is always negative due to the
complexes formed by the NP surface and fucoidan groups and the absence of an isoelectric
point can be explained as a consequence of the coating. It is noteworthy that there was
an increase of zeta potential value from −19 to −28 mV with the coating producing a
higher electrostatic repulsion between the particles which in turn enhance NP stabilization.
This can be explained by the presence of fucoidan sulfate groups on the NP surface,
since fucoidan is an anionic (negative charge) sulfated polysaccharide [77]. Additionally,
negative zeta potential values are in accordance with other reports for NP coated with
fucoidan [37,78,79].

MF−IS sample have zeta potential values lower than those obtained for NP coated
with the post-synthesis method, which may be due to their high surface-to-volume ratio
and the tendency to reduce free surface energy. It presented an isoelectric point at 5.5 and
−16.7 mV at pH 7. These results confirm the existence of a greater agglomeration of the NP,
as already observed in the TEM images. In addition, these results are in accordance with
the FTIR and elemental results exhibiting a much lower expression of fucoidan groups in
comparison with sample coated post-synthesis.

For biological applications, stable suspensions at pH around 7.35–7.45 (respective to
human blood) are required to avoid NP aggregation and consequently a possible emboliza-
tion of blood vessels. For this, it is necessary that the zeta potential value (indirect indicator
of NP stability) of the NP suspension is usually greater than 25 mV in module [13,38] so that
there is a sufficient electrostatic repulsion force to compensate the attraction forces, such as
the Van Der Waals forces and magnetic dipole interactions between the NP, avoiding their
agglomeration when dispersed into high ionic strength solvents such as biological media.
Thus, magnetite post-synthesis coated with fucoidan (MF) exhibits the required stability
for biomedical applications.

3.2. Hyperthermia Measurements

To assess the NP potential for MHT, the heating efficiency was evaluated by Specific
Loss Power (SLP).

The magnetic hysteresis curves show no coercivity (see Supplementary Materials
Figures S1–S3), in agreement with superparamagnetic behavior. Figure 5 shows the mag-
netization curves (M(H)) of the frozen liquid samples. In this measurements, the sponta-
neous magnetization values, Ms, correspond to the magnetic NP existing in the measured
emulsion volume. Assuming that the saturation magnetization of the bulk magnetite is
92 Am2 kg−1, the magnetite mass was obtained from the experimental value Ms, and was
used to calculate the magnetite concentration in each sample. From the values shown
in Figure 5, the magnetite concentrations 8.1 mg mL−1, 0.97 mg mL−1 and 20 mg mL−1,
were obtained for emulsions M, MF and MF−IS respectively, indicating that the highest
magnetite concentration is obtained for MF−IS, more than twice the one of M, and one
order of magnitude above the one of MF.



Nanomaterials 2021, 11, 2939 11 of 20

Figure 5. Magnetisation curves M(H) of magnetite (M), post-synthesis fucoidan-coated magnetite
(MF), and in situ fucoidan-coated magnetite (MF−IS).

This concentration was them used to determine the magnetic mass used in the hy-
perthermia measurements, allowing to normalize the measurements and to obtain the
corresponding SLP.

From the temperature evolution curves illustrated in Figure 6, the mean specific loss
power was determined. Three measurements were performed for each sample for time
intervals below or equal to 100 s, avoiding major deposition of the NP during measurement.
Overall, a gradual increase in temperature with time can be observed. Although a constant
NP heat dissipation is expected, a slightly curvature correlated with heat losses can be
noted. The results were fitted taking into consideration a constant magnetic heating power
released from the NP, assuming linear exchanges (conduction and convection processes)
between the environment and the sample and considering a linear variation between the
initial and final recorded temperatures of the surrounded environment. The applied fitting
expression was [2]:

T = T0 e−B(t−t0) +

(
Text

0 +
h − α

B

)(
1 − e−B(t−t0)

)
+ α(t − t0), (1)

where h and B represent, respectively, the magnetic heating power and linear losses coeffi-
cient, both divided by the system heat capacity, T is the sample temperature at instant t,
T0 and Text

0 are the initial sample and environment temperatures at t0, and α is the linear
coefficient for the environment temperature variation.

From this fitting, the parameter h was used to determine the specific loss power
according to the following expression [2]:

SLPfit = Cc+wh
1

mNP
(2)

where Cc+w is the heat capacity of the container and water, h is the magnetic heating power
normalized by the system heat capacity and mNP is the mass of the magnetic nanoparticles.
Various approaches exist for calculating the SLP from heating/cooling curves. Since
the Corrected Slope Method (CSM) [80] is reported to analyze and compensate for the
environmental heat losses in non-adiabatic systems, the expression (1) used in this work,
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deduced for our system, has been previously compared with CSM results for the same
samples, showing excellent agreement in the determination of the magnetic heating power.

Figure 6. Temperature variation over time (first 100 s) for M, MF and MF−IS NP dispersed in distilled
water under the alternating magnetic field.

In the Supplementary Materials are also displayed the temperature dependence of
the magnetization (Figure S1), and the hysteresis (Figure S2) and minor hysteresis curve
(Figure S3) at 250 K for MF−IS sample. The SLP values obtained for the different samples
are summarized in Table 3.

Table 3. Hyperthermia values obtained for all the samples. The SLP measurements were carried out
using an AC field amplitude of 14.7 kA m−1 at 276 kHz.

Sample SLP (W g−1) ILP (nHm2kg−1)

Pristine (M) 30 0.5

Post-synthesis coating (MF) 156 2.6

In situ coating (MF−IS) 100 1.7

The thermal performance of magnetic NP increases as a function of frequency (f ) and
field amplitude (H) [1]. Thus, to compare the obtained results with the ones reported in
the literature, performed at different experimental conditions of amplitude and frequency,
the corresponding intrinsic loss power (ILP) values are also included on Table 3 and were
calculated by ILP = SLP/H2f [4,81]. However, this parameter may be applied to compare
the outcomes of heating efficiency only when relatively low field strengths (few kA/m) and
frequencies (several hundred kHz) are used [4,82], in which the magnetic susceptibility is
assumed to be independent of the magnetic field. Since for clinical magnetic hyperthermia
applications it is recommendable to respect the acceptable limits regarding the AMF
field and frequency, and NP should be superparamagnetic, this is considered a good
approximation [2,81].

The pristine magnetite NP with a medium size of 10.2 nm originated a SLP value
of 30 Wg−1 corresponding to an ILP of 0.5 nHm2kg−1. This value is higher than some
reported values for pristine NP using the co-precipitation method (Table 4). For instance,
Giri et al. [83], synthetized magnetite NP with similar sizes of 10–12 nm and obtained a
lower ILP value (0.22 nHm2kg−1). Likewise, Senturk and co-workers produced magnetite
NP with 8.3 ± 1.6 nm and an ILP of 0.23 was obtained [84]. This value is also higher than
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the value obtained by Shete et al. [85] even for a higher magnetite NP size (21.8 ± 5 nm,
0.42 nHm2kg−1). More recently, Younis et al. [86] attained 0.22 nHm2kg−1 for NP with
13 nm ± 1 nm.

Concerning the post-synthesis coating with fucoidan (sample MF, mean size of
11.7 nm ± 3.1), the highest SLP value was obtained (156 W g−1) corresponding to an
ILP value of 2.6 nHm2kg−1. This thermal efficiency is superior in comparison with other re-
ported coated magnetite particles (Table 4), including polyethylene glycol (PEG), [61,87] chi-
tosan, [85] polycaprolactone (PCL), [88] dextran, [16] dimercaptosuccinic acid (DMSA) [89],
silica, [90] poly-L-lysine, [91] oleic acid, [84] and folic acid [92]. Ghosh et al. [87], through a
co-precipitation method, obtained magnetite NP post-synthesis coated with polyethylene
glycol (PEG) with a medium size of 10 nm and an ILP value of 0.1 nHm2kg−1, which
is much lower than the value resulted from MF. Dabbagh et al. [61] produced porous
magnetite NP and coated them with the same polymer, for hyperthermia and chemother-
apy applications, and obtained a smaller ILP value (0.38 nHm2kg−1). Shaterabadi and
collaborators coated magnetite NP with sizes around 18.9 nm with dextran and even
after a hydrothermal process, they reached a similar ILP (0.58 nHm2kg−1) [16]. More-
over, Moorthy et al. [31] synthetized magnetite NP through a solvothermal reaction with
a posterior hydrothermal treatment at 200 ◦C for 12 h and coated them with silica and
fucoidan, obtaining NP with sizes around 365 nm and, even with this lower size, a ILP of
1.4 nHm2kg−1 was obtained. Liu et al. [90] also coated magnetite NP with silica targeting a
combined thermotherapy and chemotherapy, achieving NP with 55 ± 10 nm and an ILP of
0.49 nHm2kg−1.

Table 4. Summarizes reported ILP values for pristine and coated magnetite NP with different
coating materials.

Literature Report

Coating Medium Size (nm) ILP (nHm2kg−1) Reference

- 10-12 0.22 [83]

- 8.3 0.23 [84]

- 13 0.22 [86]

- 21.8 0.42 [85]

Polyethylene glycol (PEG) 10 0.1 [87]

PEG 179 0.38 [61]

Dextran 18.9 0.58 [16]

Chitosan 15.1 0.63 [85]

Dimercaptosuccinic acid (DMSA) 11.4 1.01 [89]

Silica and Fucoidan 365 1.4 [31]

Silica 55 0.49 [90]

Polycaprolactone (PCL) 21 1.22 [88]

Poly-L-lysine 10 1.23 [91]

Oleic acid 10 0.27 [84]

Folic acid 21.1 2.52 [92]

According to the literature, the application of coatings in situ is more complex, but
provide greater stabilization and better magnetic properties [93]. However, the sample
MF−IS exhibited a SLP value of 100.26 Wg−1 (ILP = 1.7 nHm2kg−1), lower than the
obtained by post-synthesis coating. The reduction of the particle size enhances the surface
to volume ratio and the relative contribution of the different aligned magnetic moments
at the surface layer leading to a reduction of the Ms value. The reduction of the Ms
value may have a negative impact on the thermal efficiency of NP. Furthermore, it is
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reported in the literature that there is a decrease in the Ms value for sizes below 10 nm [93].
However, according to ILP values reported in the literature even for NP with higher sizes,
we achieved NP with better thermal properties and with potential for MHT (see Table 4).

In general, a reduction on SLP value with the fucoidan coating was expected when
compared with the bare NP, since a non-magnetic coating could reduce the Ms [93]. How-
ever, in this work an increase in the SLP value was observed for the fucoidan coated NP,
being the ILP values obtained suitable for MHT for both synthesis methods. This can be
explained on light of the better solution dispersion of the NP due to the fucoidan coating as
observed through Zeta Potential measurements due to the decrease of interparticle interac-
tions [1]. For instance, Iglesias et al. [94] evaluated the effect of electrostatic and polymeric
stabilization of polyethylene oxide (PEO)- coated magnetite NP. It was highlighted a higher
hyperthermia performance due to the PEO- coating stabilization effect. Hedayatnasab
and co-workers likewise reported this enhanced effect on thermal efficiency, through the
coating of magnetite NP (18 ± 2 nm) with PCL, obtaining a final ILP of 1.22 nHm2kg−1 [88].

3.3. In Vitro Cytotoxicity Assay

MTT assay was performed to evaluate the potential cytotoxicity of fucoidan, pristine
magnetite NP (M) and fucoidan-coated magnetite NP after synthesis (MF) and in situ
(MF−IS) on highly pigmented human melanoma cells (MNT-1 cell line). Thus, the concen-
trations of 0.25, 0.5, 1 and 2 mg mL−1 were used to evaluate the potential cytotoxicity of
fucoidan on MNT-1 cells after 24 and 48 h (Figure 7).

Figure 7. Relative viability (%) of MNT-1 cells, after 24 and 48 h exposure to different concentrations of
fucoidan (0.25, 0.5, 1 and 2 mg mL−1). Results were expressed as mean ± SD from three independent
experiments. Statistical differences between the samples and control are represented by * when
p < 0.05. The red dotted line at 70% is the toxicity limit, according to ISO 10993-5:2009(E).

The cytotoxic effects were evaluated according to the standard ISO 10993-5:2009(E), in
which a material is considered cytotoxic if cell viability is reduced by more than 30% [95]. It
can be seen through Figure 5 that fucoidan is biocompatible for all concentrations and both
exposure times with viability higher than 70%, even for the higher concentration (2 mg mL−1)
and after 48 h of exposure. These results are according with the literature [22], confirming the
biocompatibility of this material and their potential use in biomedical applications.

The potential cytotoxicity of the synthetized NP (M, MF and MF−IS) was also evalu-
ated on MNT-1 cells for several concentrations (0.0125, 0.025, 0.05, 0.1 and 0.2 mg mL−1)
after 24 (Figure 8a) and 48 h (Figure 8b). As it can be observed in Figure 8, all the samples
were revealed to be biocompatible.
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Figure 8. Relative viability (%) of MNT-1 cells after 24 (a) and 48 h (b) exposure of a range of
concentrations (0.0125, 0.025, 0.05, 0.1 and 0.2 mg mL−1) of pristine magnetite NP (M), fucoidan-
coated magnetite NP post- synthesis (MF) and in situ (MF−IS). Results were expressed as mean ± SD
from three independent experiments. Statistical differences between the samples and control are
represented by * when p < 0.05. The red dotted line at 70% is the toxicity limit, according to ISO
10993-5:2009(E).

4. Conclusions

The NP post-synthesis coated with fucoidan (2 mg mL−1) revealed a great thermal
efficiency, colloidal stability, and a suitable size, allowing their use for MHT. The NP syn-
thetized and coated simultaneously (in situ preparation) presented a higher agglomeration,
which may be associated with their larger surface area when compared to the post-synthesis
coated samples, reducing their free surface area. The post-synthesis coated NP showed
a 50% higher thermal efficiency comparing to the in situ (SLP 100 Wg−1), which allows
the tailoring of the NP’ preparation according to the type of MHT treatment required for
different cancers.

Both coating methodologies with fucoidan allowed the achievement of SLP values
in general higher than the ones reported in the literature for other magnetite NP that
were non-coated or coated with other polymers. The coating with fucoidan contributes
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to a better colloidal stability, as well as avoids NP aggregation, enhancing their thermal
efficiency. Furthermore, in vitro assays showed the biocompatibility of these NP.

The fucoidan coated magnetite NP synthetized using a simple and environmentally
friendly methodology were shown to be thermally efficient and biocompatible and could
be potentially used in MHT.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano11112939/s1, Figure S1: Temperature dependence of the magnetization for MF−IS sample
measured at 2 mT, Figure S2: Hysteresis curve at 250 K for MF−IS sample. The inset shows the low
field region of the hysteresis curves, Figure S3: Minor hysteresis curves at 250 K for MF−IS sample.
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for enhanced phosphate removal: Effect of PEG addition in the synthesis process. Powder Technol. 2016, 301, 511–519. [CrossRef]

76. Van Toi, V.; Phuong, T.H.L. 5th International Conference on Biomedical Engineering in Vietnam; Springer: Berlin/Heidelberg, Germany,
2015; Volume 46, pp. 71–74. [CrossRef]

77. Venkatesan, J.; Anil, S.; Kim, S.K.; Shim, M.S. Seaweed polysaccharide-based nanoparticles: Preparation and applications for
drug delivery. Polymers 2016, 8, 30. [CrossRef] [PubMed]

78. Rocha Amorim, M.O.; Lopes Gomes, D.; Dantas, L.A.; Silva Viana, R.L.; Chiquetti, S.C.; Almeida-Lima, J.; Silva Costa, L.; Oliveira
Rocha, H.A. Fucan-coated silver nanoparticles synthesized by a green method induce human renal adenocarcinoma cell death.
Int. J. Biol. Macromol. 2016, 93, 57–65. [CrossRef] [PubMed]

79. Pinheiro, A.C.; Bourbon, A.I.; Cerqueira, M.A.; Maricato, É.; Nunes, C.; Coimbra, M.A.; Vicente, A.A. Chitosan/fucoidan
multilayer nanocapsules as a vehicle for controlled release of bioactive compounds. Carbohydr. Polym. 2015, 115, 1–9. [CrossRef]
[PubMed]

80. Wildeboer, R.R.; Southern, P.; Pankhurst, Q.A. On the reliable measurement of specific absorption rates and intrinsic loss
parameters in magnetic hyperthermia materials. J. Phys. D Appl. Phys. 2014, 47, 495003. [CrossRef]

81. Rajan, A.; Sahu, N.K. Review on magnetic nanoparticle-mediated hyperthermia for cancer therapy. J. Nanopart. Res. 2020, 22.
[CrossRef]

82. Ahrentorp, F.; Astalan, A.P.; Jonasson, C.; Blomgren, J.; Qi, B.; Mefford, O.T.; Yan, M.; Courtois, J.; Berret, J.F.; Fresnais, J.; et al.
Sensitive high frequency AC susceptometry in magnetic nanoparticle applications. AIP Conf. Proc. 2010, 1311, 213–223. [CrossRef]

83. Giri, J.; Pradhan, P.; Sriharsha, T.; Bahadur, D. Preparation and investigation of potentiality of different soft ferrites for hyperther-
mia applications. J. Appl. Phys. 2005, 97, 18–21. [CrossRef]

84. Senturk, F.; Cakmak, S.; Guler Ozturk, G. Synthesis and Characterization of Oleic Acid Coated Magnetic Nanoparticles for
Hyperthermia Applications. Nat. Appl. Sci. J. 2019, 2, 16–29. [CrossRef]

85. Shete, P.B.; Patil, R.M.; Thorat, N.D.; Prasad, A.; Ningthoujam, R.S.; Ghosh, S.J.; Pawar, S.H. Magnetic chitosan nanocomposite for
hyperthermia therapy application: Preparation, characterization and in vitro experiments. Appl. Surf. Sci. 2014, 288, 149–157.
[CrossRef]

86. Younis, S.A.; Serp, P.; Nassar, H.N. Iron-based magnetic nanoparticles for multimodal hyperthermia heating. J. Alloys Compd.
2021, 871, 124562. [CrossRef]

87. Ghosh, R.; Pradhan, L.; Devi, Y.P.; Meena, S.S.; Tewari, R.; Kumar, A.; Sharma, S.; Gajbhiye, N.S.; Vatsa, R.K.; Pandey, B.N.; et al.
Induction heating studies of Fe3O4 magnetic nanoparticles capped with oleic acid and polyethylene glycol for hyperthermia. J.
Mater. Chem. 2011, 21, 13388–13398. [CrossRef]

88. Hedayatnasab, Z.; Dabbagh, A.; Abnisa, F.; Wan Daud, W.M.A. Polycaprolactone-coated superparamagnetic iron oxide nanopar-
ticles for in vitro magnetic hyperthermia therapy of cancer. Eur. Polym. J. 2020, 133, 109789. [CrossRef]
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