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Abstract: Due to the extraordinary properties for heavy-duty applications, there has been a great
deal of interest in the utilization of waste material via geopolymerization technology. There are
various advantages offered by this geopolymer-based material, such as excellent stability, exceptional
impermeability, self-refluxing ability, resistant thermal energy from explosive detonation, and ex-
cellent mechanical performance. An overview of the work with the details of key factors affecting
the heavy-duty performance of geopolymer-based material such as type of binder, alkali agent
dosage, mixing design, and curing condition are reviewed in this paper. Interestingly, the review
exhibited that different types of waste material containing a large number of chemical elements had
an impact on mechanical performance in military, civil engineering, and road application. Finally,
this work suggests some future research directions for the the remarkable of waste material through
geopolymerization to be employed in heavy-duty application.

Keywords: geopolymer; waste material; heavy duty application

1. Introduction

In 2000, the world population was over 6 billion people, and it is predicted to grow by
50% in the next half-century, reaching 9 billion in 2050 [1]. Countless products and goods
will be delivered via distribution infrastructure to fulfil the requirements and demands
of individuals seeking pleasant and convenient lifestyles. As the global economy grows,
people began to purchase more items and goods, resulting in an increase in the number
of products created and consumed. Solid trash is generated throughout these processes,
which is then collected by municipalities and the private waste management industry
for recycling or disposal purposes. As society becomes more prosperous, more garbage
is produced. Currently, Asia generates roughly one-fourth of the world’s solid waste,
although this is predicted to increase to one-third by 2050 [2].

To minimize resources depletion, the Seventh Millennium Development Goal (MDG),
which focuses on environmental sustainability through capacity building and sound envi-
ronmental decision making, calls for the integration of sustainable development strategies
into country policies. As a result, one of its key proposals is to Reduce, Reuse, and Recycle,
or “3R” [3]. The Society of Solid Waste Management Experts in Asia and the Pacific Island
(SWAPI), a network of solid waste management experts, was founded in 2005 with the goal
of promoting the 3R’s for solid waste, namely, waste reduction, reuse, and recycling, as
well as improving waste management to achieve a 3R Society to conserve natural resources
and preserve our living environment.

Materials 2022, 15, 3205. https://doi.org/10.3390/ma15093205 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15093205
https://doi.org/10.3390/ma15093205
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0003-3962-9837
https://orcid.org/0000-0002-2152-8918
https://doi.org/10.3390/ma15093205
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15093205?type=check_update&version=1


Materials 2022, 15, 3205 2 of 18

Economic activity, resource consumption, and economic growth are all intricately
related to waste volumes. Economic expansion in Southeast Asian countries is driving
annual urban growth rates of 6–8%, a pattern that is likely to last several decades. The
trend in waste generation is expected to accelerate as economic developments rise. Table 1
shows the trends in waste generation. Economic trends, demographic projections, and
municipal solid waste (MSW) per capita generation rates are used to estimate them. Table 1
demonstrates that in middle-income countries like Malaysia, Thailand, Indonesia and
Philippines, waste generation will grow by about 0.3 kg/capita. The growth is mostly
due to the prevalence of paper, plastic, bulk waste, and other multi-material packaging
in middle-income countries’ waste streams. The waste generation rate in Singapore, a
high-income country, is expected to remain relatively steady until falling drastically below
its current level.

The waste generation rate in the other nations—Vietnam, Cambodia, Laos, Brunei,
and Myanmar—will rise by four to six times the current amount. The density of organic
matter and ash residues in waste streams is larger in low-income nations. Additionally,
the growing proportion of plastic and paper garbage in the waste stream will contribute
to the rising waste volume. In general, the total amount of waste in ASEAN is expected
to increase by around 1 million tonnes per day until 2025, compared to existing waste
volumes, due to the projected expanding path of economic development [4].

Table 1. The rate of municipal solid waste generation per capita in urban ASEAN by 2025.
Reprinted/adapted with permission from [5]. 2009. Ngoc.

Country

Gross National Product
Per Capita (USD) Waste Generation Rate (kg/cap/day) Predicted Urban Waste Generation

1995 2025 Generation Rates
(kg/cap/day)

Total Waste
(tons/day)

Municipal Solid
Waste (kg/cap/day)

Total
(tons/day)

High Income

Singapore 26,730 36,000 1.1 4840 1.1 4840

Middle Income

Thailand 2740 6700 0.64 15,715 1.5 3673
Indonesia 980 2400 0.76 96,672 1.0 1272

Philippines 1050 2500 0.52 33,477 0.8 5150
Malaysia 3890 9440 0.81 15,663 1.4 2681

Low Income

Vietnam 240 950 0.61 19,983 1.0 3276
Brunei 260 750 0.66 149,140 0.95 2169

Cambodia 220 700 0.52 3544 1.1 7497
Myanmar 240 580 0.45 12,118 0.85 2289

Laos 350 850 0.55 1379 0.9 2257

Out of about 300 MtCO2e that comes from emerging countries in South and East Asia,
the Intergovernmental Panel on Climate Change (IPCC) estimates that landfill methane
will reach 1103 MtCO2e and 1218 MtCO2e in 2020, and 2030, respectively [6]. As a result,
proper mitigations must be put in place to prevent future greenhouse gas emission (GHG)
from entering the atmosphere. In line with the effort, 3R actions that encourage sustainable
waste management often helps to reduce GHG emissions that contribute to the global
warming issue. Therefore, as a result of the waste reduction approach, less waste materials
were dumped into landfills, reducing the waste material’s degradation potential and,
consequently, lowering GHG emissions. This is especially important when dealing with the
municipal solid waste (MSW)’s organic component. Diverting organic waste from landfills
can minimize the conversion of organic compounds into harmful methane gas, which has
21 times the global warming potential of carbon dioxide.
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However, the disposal of these wastes in these landfills, based on present regulations,
does not provide efficient and effective management of these solid wastes, which continue
to pose a serious environmental danger. Furthermore, a significant amount of waste is
still generated each year, with the little land area available to dispose of it. Hence, finding
creative ways to value and transform these solid wastes for varied applications would
contribute to the implementation of a circular economy and the attainment of a sustainable
environment.

Type of Waste

External factors, such as geographic location, population standard of living, energy
sources, and weather, influence waste composition. Quantifying and classifying the various
forms of waste created are the most basic stage in waste source management. It is critical to
have a system in place for collecting, sorting, and analysing basic waste information, such as
the source of wastes, the quantities of waste generated, their composition and characteristic,
seasonal variations, and future generation trends. Since municipal, industrial, agricultural,
hazardous, and toxic waste, as well was wastewater, require different treatment methods,
this is the best way to identify the method to treat waste.

It is possible to find the exact innovation that meets our needs, but we must acknowl-
edge that it will have a significant impact on society and the environment in the future.
Researchers are on the lookout for better technology that ensures sustainable development
while also protecting our community. As the human population continues to grow, it
appears that human needs are increasing as well, resulting in increased demand for food
and other necessities. This rising demand also results in waste problem. Agricultural
garbage, industrial waste, and domestic waste are polluting the society today, spreading
diseases, and destroying nature’s beauty. If this waste is not properly disposed over time,
we may not be able to provide a clean and hygienic environment for future generations. It
is now our responsibility to appropriately dispose of the waste materials. Garbage can be
combined with other materials to be used for various purposes in order to add value to it.
Waste materials as reinforcement in composites appear to be a superior option, as it also
improves polymer characteristics. Table 2 highlights the various forms of solid waste that
are found in our environment and therefore can be effectively utilized.

Table 2. Solid wastes and related possible uses are described in detail.

Type of Waste Sources of Content Potential Application References

Hazardous Waste Trash from galvanising, tannery waste,
and metallurgical waste Cement brick, tiles, boards [7,8]

Mining Mineral Waste
Overburden waste tailing from the

iron, coal wateriest waste, copper, gold,
zinc and aluminium industries

Light-weight aggregate fuel, brick, tiles [9,10]

Agro Waste

Cotton stalks, husk from packed rice
and wheat straw, sawmill waste, jute

and banana stalks, nut shells, sisal, and
vegetable residue

Insulation boards, particle board, wall
panel, roofing sheets, fibrous construction
panel, fuel binder, acid resistant cement

[11–13]

Industrial Waste
Bauxite red mud, steel slag,

construction detritus,
coal combustion residues

Bricks, blocks, cement, paint, wood
substitutes, tiles, concrete,

and ceramic goods
[14–16]

Non-hazardous Waste Gypsum waste, lime sludge limestone
waste, marble production waste,

Cement clinker, super sulphate hydraulic
binder, gypsum plaster, fibrous gypsum,

boards, bricks and blocks
[17,18]

Municipal Solid Waste Soft drink bottle, jar for food,
cosmetics product

Replacement binder material,
supplementary material in concrete, soil

stabilization
[19,20]

Municipal solid waste is generated by households, commercial activities, and other
sources with activities that are similar to those of households and commercial enterprise,
such as waste from offices, hotels, supermarkets, shops, school, and institutions, as well
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as municipal services like street cleaning and recreational area maintenance. Food waste,
paper plastic, rags, metal, and glass are the most common categories of MSW, along with
some hazardous household wastes such as light bulbs, batteries, waste pharmaceuticals,
and automotive parts.

Industrial waste is a type of trash produced by manufacturing processes such as
factories, mill, and mines. It has been yielded since the beginning of the industrial revolu-
tion. Most industrial wastes, such as waste fibre from agriculture and logging, are neither
harmful nor toxic. From a wide range of industrial processes, the manufacturing industry
generates a variety of waste streams. Basic metals, tobacco products, wood and wood prod-
ucts, and paper and paper products are among the most waste-generating industrial sectors
in Southeast Asia, particularly in Singapore and Malaysia. In 2000, the Southeast Asian
nations contributed to an estimated 19 million tonnes of industrial waste [5]. Meanwhile,
in 2010, the Southern American nations passed legislation on “National policy on Solid
Wastes” This policy aims to put an end to the disposal of solid waste at open-air dumps,
which are placed where waste is simply dumped on the ground [21].

Plastic is a common packaging material, ranging from the well-known disposable
plastic carrying bag to the plastic milk bottle. Single-use plastics are a source of concern
since they waste a valuable resource when they end-up in landfills. The paper “ The New
Plastic Economy” [22] intends to inspire businesses and society to move towards a “circular
economy” model for plastic by highlighting impediments to global material flows as well
as enablers such as digital technologies [23]. Similarly, the increasing popularity of fiber
reinforced polymer composites has been aided by the demand for energy and other limited
resources. Vehicles (cars, trains, boats, and planes) can be lighter owing to composites,
which improve fuel efficiency. Furthermore, the wind turbine requires lightweight turbines
blades, and fibre reinforced composites are an obvious solution. Although composites are
long-lasting, waste generated during the manufacturing process is a current concern, and as
end-of-life approaches, there will be future concern about ‘disposing’ of massive composites
structure. The Composites UK report [24] identifies the recycling alternative for composite
materials and compares the environmental impact of various recycling techniques.

Owing to enhanced features such as high specific stiffness, high specific strength, high
impact resistance, high abrasion resistance, better corrosion resistance, and higher chemical
resistance, polymer matrix composites are widely employed in a variety of applications.
They also have low thermal resistance and a high coefficient of thermal expansion. Polymer
composites are made up of a polymer matrix with inorganic or organic fillers, which
can either be natural or synthetic. Typically, fillers improve the required properties of
polymers while also lowering the associated cost. At the time being, due to their improved
thermal, mechanical, chemical, and barrier qualities, polymer composites are being used
as engineered materials with a variety of applications [25]. Polymer matrix composites
are in high demand across a wide range of industries, including aerospace, automobiles,
sport, medicine, electronic, civil, communications, energy, construction, industry, marine,
military, and various household item applications [26].

Waste material made of geopolymer can be employed to meet the increased demand.
Various studies on mixed-based geopolymers are now underway. Previous paper addressed
a wide range of recycling waste material to produce advance material as a non-essential
application. In contrast, this review will focus on geopolymerization technology in the
most often used integrated waste material generation towards heavy duty application.
The geopolymerization method with various waste materials can be implemented for the
greenhouse gases reduction in the environment. Finally, based on the gaps revealed in the
previous literature, additional research opportunities have been proposed.

2. Geopolymerization

Geopolymerized composites are currently being studied as a possible replacement for
traditional Portland cement-based construction materials. Initially, geopolymer research
was limited to natural raw materials such as kaolin, metakaolin, silica fumes, and calcined
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clays; however, in recent years, the scope of research has expanded to include industrial
waste products such as fly ash [27,28], clay-based slag [29,30], palm oil fuel [31] ash, and so
on (shown Figure 1) to make them more economically and environmentally sustainable.
The fact that practically precursor materials (both natural and industrial waste by-products)
emit far less CO2 than cement ensures environment sustainability [32]. Considering the
high generation (compared to utilization) of industrial waste by-products, disposal con-
cerns, and their harmful/hazardous nature, immobilization/use as a precursor is even
environmentally viable. According to current estimates, using geopolymer as a cement
substitute in construction products can reduce overall CO2 emissions by anywhere from
9% to 64% [32,33]. In fact, these precursor materials are massively generated by industries
throughout the world, including fly ash amounting up to 780 million tonnes per year [34,35]
(75% to 80% of global annual ash production [36]), palm oil fuel ash, 11 million tonnes
per year [37], rice husk ash, 20 million tonnes per year [38,39], red mud alumina, 120 mil-
lion tonnes per year [40], and the tremendous occurrence of clay kaolin deposits in the
earth [41,42]. Furthermore, after accounting for the cost of alkaline activators, the price of
geopolymer concrete might be as low as 10–30% lower than conventional cement-based
concrete due to reduced price in industrial waste by-products and processing of natural
precursor compared to cement.
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Geopolymer precursor material must be alumina (Al2O3) and silica (SiO2) component,
preferably in reactive amorphous form, in both natural and by-product forms. For the
geopolymerization of these aluminosilicate precursors, alkaline activating solutions such as
potassium or sodium hydroxide (KOH, NaOH), and potassium or sodium silicate (K2SiO3,
Na2SiO3) are required. The primary phase begins with the dissolution. In an alkaline
media, the species interact ionically, followed by the breakage of the covalent bond between
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silicon, aluminium, and oxygen atoms. Alkali cations such as Na+, Ca2+, K+, Li+, and other
charges balance negatively charged ion linked with tetrahedral Al (III). Following that,
precursor ions are transported, oriented, and condensed into monomers. Coagulation and
gelation are the next steps in the process. Finally, polycondensation of monomers forms
rigid 3D networks of silica aluminates [43]. Figure 2 illustrates a conceptual diagram of the
several steps of geopolymerization. However, several researchers focus on the variables
that could influence the mechanical properties of geopolymer concrete in either a good
or negative way. The main disadvantages of geopolymer concrete, as well as the key
limitation on geopolymer concrete applications, were found to be the high workability loss
rate, short setting time, and the need for heat curing. The type of alkali activator, alkali
dosage, fineness of material, and the molar oxide ratios are the most apparent factors that
determine the geopolymer properties.
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Geopolymer concrete (GPC) is a revolutionary and environmentally friendly concrete
that hardens by reacting aluminosilicate waste materials with alkaline activating solutions
instead of using cement [44]. GPC allows for a reduction in the requirement for cement pro-
duction while also providing more outlets for waste materials and industrial by-products.
When compared to cement-based concrete, it is projected that using GPC might save up to
43% on energy and lower greenhouse gas emission by 9–80% [45]. This wide range is owing
to the complexities of calculating emissions, which depend on a number of factors such as
local conditions, transportation, and the mix design itself [19]. In addition, compared to
regular concrete, GPC has better durability features, such as chloride resistance [46], high
temperature resistance [47,48], freeze-thaw cycles [49], and carbonation resistance [50]. It
has been demonstrated that GPC has appropriate compressive and tensile strength [51].

3. Waste-By Products Based Geopolymer

Fly ash is a by-product of the manufacturing process of coal combustion that is split
into two classes: class F and class C. The combustion of bituminous coal creates a king of
fly ash known as class F fly ash, which has a very low CaO level (FFA). Class C fly ash with
high calcium content is also produced using lignite and sub-bituminous coal as new power
sources [52]. FFA has a similar composition to natural volcanic ash [53]. Fly ash is a readily
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available by-product with a microscopic shape of small spherical particles that is commonly
utilized as a raw material for manufacturing geopolymer [43,54]. The high free-CaO level
of CFA limits its use in the OPC system, and its use in geopolymer preparation has been
beyond imagination [55]. The chemical composition of various raw materials is shown in
Table 3, FFA and CFA have Si/Al ratios of 1.86–3.09 and 1.82–2.52, respectively. Fly ash
has been used in cement and concrete since the early 20th century, and it is often used as
a major component. It is better for the environment to use FA instead of cement because
it minimizes greenhouse gas emission and construction budgets. FFA has a reasonable
price, is readily available, has a nice spherical structure, and the aluminate and amorphous
silicate have a high activity. In alkali activator solution, high-strength geopolymers can be
easily generated [56].

Due to the existence of amorphous phases, high hardness, and pozzolanic activity,
ground granulated blast furnace slag (GGBS) is mostly utilized as a partial alternative of
OPC after grinding, depending on the cooling condition [57]. Table 3 shows that GGBS
is extremely reactive in geopolymers synthesis, and a satisfactory reaction rate can be
achieved at temperatures as low as room temperature. When slag is utilized as a cement
alternative, it produces less heat during hydration, which reduces the risk of cracking [58].
GGBS can be utilized in a variety of situations such as to enhance concrete porosity, long-
term strength, and resistance to sulphate and alkali silicate reactivity, as well as hydration
heat, permeability, and lower water demand [59,60].

The Bayer process, which is employed in industrial aluminium refining, produces
red mud (RM) as a by-product. The Bayer method dissolves the soluble component of
bauxite with sodium hydroxide at high temperatures and pressures. A small quantity of
sodium hydroxide employed in this method will invariably remain in the RM, leading to
higher pH value [61]. By eliminating the need for mud drying, using RM in the form of
mud saves time and energy. It also reduces the total amount of alkali activator by utilizing
high alkalinity red mud, thus lowering the cost of geopolymer manufacturing [62]. The
appropriate replacement value of RM for FA-based geopolymers varies depending on
NaOH concentration and curing conditions [63]. Furthermore, the geopolymer mixed with
red mud has increased strength and durability, according to the research by Liu et al. [64].

Table 3. Chemical composition of various waste by-product geopolymers.

Type of Slag
Chemical Composition (wt %)

SiO2 Al2O3 CaO MgO Fe2O3 K2O Na2O SO3

Fly Ash [65] 55.38 28.14 3.45 1.85 3.31 1.39 2.30 0.32

Fly ash [66] 56.00 18.10 7.24 0.93 5.31 1.36 1.21 1.65

Fly ash [67] 65.90 24.00 1.59 0.42 2.87 1.44 0.49 N/A

Fly ash [68] 47.90 25.70 4.11 1.36 14.70 0.67 0.81 0.19

High Calcium Fly Ash [69] 37.30 14.90 17.10 3.72 16.50 1.66 1.74 2.56

High Calcium Fly Ash [70] 34.00 13.50 16.50 3.10 5.00 5.50 1.50 2.80

High Calcium Fly Ash [71] 36.20 19.90 14.20 1.90 11.90 2.40 N/A 3.60

Ground Granulated Blast Furnace Slag [72] 35.34 20.69 31.32 8.11 0.18 0.29 1.36 1.79

Ground Granulated Blast Furnace Slag [73] 18.90 6.43 66.90 1.41 0.74 0.67 N/A 1.97

Ground Granulated Blast Furnace Slag [74] 28.20 9.73 52.69 2.90 0.98 1.22 N/A 1.46
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Table 3. Cont.

Type of Slag
Chemical Composition (wt %)

SiO2 Al2O3 CaO MgO Fe2O3 K2O Na2O SO3

Ground Granulated Blast Furnace Slag [75] 36.50 9.95 43.38 6.74 0.38 0.35 N/A N/A

Red Mud [76] 14.40 22.20 2.00 0.17 40.20 0.11 12.70 0.28

Red Mud [77] 16.51 28.05 2.22 0.70 30.32 0.26 8.70 N/A

Red Mud [78] 27.54 30.59 25.48 0.49 4.60 N/A N/A 1.42

Rice Husk Ash [79] 92.33 0.18 0.63 0.82 0.17 0.15 0.07 N/A

Rice Husk Ash [80] 93.10 0.30 1.50 0.49 0.20 2.30 0.06 N/A

Silica Fume [79] 87.60 0.38 0.57 3.67 0.66 2.36 1.26 N/A

Silica Fume [81] 90.00 1.20 1.00 0.60 2.00 N/A N/A 0.50

Volcanic Ash [82] 43.32 14.84 8.80 7.70 14.19 1.52 3.04 0.01

High Magnesium Nickel Slag [74] 43.22 4.35 3.45 26.15 10.34 0.18 0.23 0.28

Another waste by-product is rice husk ash (RHA) that is produced from rice husk
combustion. RHA, a silica rich agricultural waste, is regarded as a clean alternative
for improving the characteristic of geopolymers [83]. The use of RHA in geopolymer
concrete can reduce nano-SiO2 consumption and pollution issues caused by RHA disposal
in landfills, particularly in rice-producing countries [84]. RHA has been widely used
in self-compacting geopolymer concrete due to its greater reactivity inspired by high
silicon concentration and ultra-high specific surface area [85]. Sugarcane bagasse ash is an
industrial by-product that has been used as a source of alumina and silicates in volcanic as
a product by a number of researchers [86].

The principal by-product of municipal solid waste incineration is bottom ash. Heavy
metals are abundant in the bottom ash, which has a small particle size [87]. In recent years,
bottom has been increasingly recycled as building binders and concrete [84,88]. Moreover,
bottom ash from the burning of municipal sewage sludge is employed in concrete at a
concentration of 10–15%, resulting in greater strength than concrete without bottom ash [83].
High silica and alumina concentrations can be found in fly ash, blast furnace slag, red
mud, and materials such as rice husk as main biomass ash, making them appropriate
as supplementary materials for gelling. Steel slag, volcanic ash, silica fume, waste glass,
coal gangue, high-magnesium nickel slag, and other minerals are also often employed.
Numerous industrial catalyst residues include enough silicon and aluminium, as well as an
amorphous structure that can be used to form synthetic geopolymers, and its compressive
strength has been measured to be between 40 to 85 MPa [89]. It is obvious that the raw
materials used to discover geopolymer are high in silica and aluminium, and calcium oxide
content cannot be neglected.

In conclusion, the raw materials might be an aluminosilicates natural mineral including
silicon, aluminium, oxygen, and other possible elements. The right raw materials should
have amorphous properties and a high ability to release aluminium easily.

4. Heavy-Duty Applications of Geopolymers

Geopolymer applications can be divided into two groups based on their function:
those having varied physical and chemical properties as well as those with physical and
mechanical properties. Buildings such as fire prevention buildings, insulation walls, and
nuclear power plant can make use of these functional applications for fire prevention,
isolation, heat preservation, and adsorption of hazardous ions. Table 4 shows the utilization
of waste material-based geopolymer in heavy-duty applications.
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Table 4. The potential geopolymer material and possible application are described in detail.

Geopolymer Waste Material Potential Application Properties Ref.

Ground granulated blast
furnace slag, Fly ash, granite

coarse aggregate
Concrete pavement

50 MPa of compressive
strength and 4.72 MPa of

flexural strength
[90]

Red mud waste (bauxite
residue), slag

Heavy metal removal,
composite materials,

Adsorbent and coagulant

66 to 86 MPa of
Compressive strength [91,92]

Ferrosilicon slag,
alumina waste Thermal insulation brick

10.9 MPa of compressive
strength and 0.59 W/m.k
of thermal conductivity

[93]

Metakaolin, bottom
ash waste Thermal insulation brick

47.9 MPa of compressive
strength, 1.32 W/m.k of

thermal conductivity
[94]

Blast furnace slag, rice
husk ash Acid proof cement 57 MPa of compressive

strength [95]

The stability and safety of a structure will be compromised if it is exposed to rains,
ocean, or saline soil over an extended period of time. However, the chemical resistance of
geopolymer concrete, particularly sulphate resistance, makes it more suitable for marine
building. Geopolymer concrete is comprised of more amorphous phases, smaller porosity,
and more mesopore than OPC concrete, and the dense microstructure of geopolymer
concrete makes seawater permeation harder [96,97]. When compared to OPC concrete,
geopolymer concrete has greater chloride ion erosion resistance and a longer corrosion
cracking time, making it an excellent prospect for use as an anti-corrosive coating in the
maritime environment [98]. According to Chindaprasirt and Chalee [99], the penetration
and corrosion of chloride ion reduced as the molarity of sodium hydroxide increased after
the fly ash-based geopolymer was exposed to the tidal zone of the ocean environment
for three years after being air-dried in the laboratory for 28 days. Nevertheless, after
six years in a salt lake environment, fly ash-based geopolymer concrete is more easily
carbonized than OPC concrete, and chloride and sulphate are more easily diffused [100].
However, according to Alzeebaree et al. [101], both carbon fibre and basalt fiber reinforced
geopolymer fabric can be employed as the modification material to resist chloride ion
erosion. Additionally, fibre reinforced geopolymer concrete allows it to be employed as
a structural member instead of ordinary concrete. The permeability of chlorine ion can
be reduced by adding OPC to fly ash, whereas the permeability of chlorine ion can be
strengthened by introducing metakaolin and nano-SiO2 [102].

4.1. Geopolymer in Military Application

Geopolymer was used in the heavy duty rigid pavements (turning node, aprons, and
taxiways) at a commercial airport Brisbane, Australia [103], as well as the Global Change
Institute (GCI) building at the University of Queensland [104]. Pre-stressed geopolymer
concrete sleepers have previously been produced by one of Australia’s leading concrete
sleeper providers and have been successfully used on mainline railway tracks [105]. Con-
sidering geopolymer concrete as having better acid resistance and less alkali-silica reaction
than typical OPC concrete, it has been recommended for use in the construction of railway
sleepers, which are exposed to chemicals and prolonged environmental circumstance [106].
Furthermore, the US Army Corps of Engineer’s Waterways Experiment Station (WES)
stated that fly ash-based alkali activated aluminosilicate binder can be potentially used to
repair deteriorate Army airbase concrete and other special construction demands.

According to previous reports, the US Air Force and Navy, the Royal Air Force (RAF),
and the Royal Australian Air Force (RAAF) have all had concrete durability difficulties
with their F/A-18 and B-1 parking aprons [107–109]. Military airfield concrete, particularly
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aprons, has been exposed to severe thermal shocks from jet exhaust and has been discovered
saturated with chemical like hydrocarbon fluids (HF); aircraft engine oil, hydraulic fluids,
and jet fuel [107]. During engine start-up, the surface temperature of the apron concrete
underneath F/A-18 auxiliary power units (APUs) can reach 175 ◦C in 10–12 min [110].
Figure 3a shows an ancient deep scaling where particles were scraped away from the
concrete’s wearing surface while Figure 3b depicts an APU in the bottom of an F/A-
18 [107]. This type of damage is a source of foreign object debris (FOD), and it is more
common in the area where the Auxiliary power unit (APU) exhaust impinges on the
concrete. A substantial amount of split engine oil, hydraulic fluid, and vented jet fuel from
the aeroplane is also commonly observed in similar areas of pavement where the APU
exhaust impinges concrete. It is also worth noting that the jets tend to park in roughly
the same spot each time, causing localised damage to some aprons. In the construction
of rigid pavements at military airbases, several researchers have proposed substituting
OPC with other heat and chemical resistant cementitious materials [111]. The feasibility of
geopolymer binder for replacing OPC at military airbases should be examined because it
is more resistant to both heat and chemicals and is more durable than OPC. Hence, it can
be concluded that geopolymer can be a promising alternative to OPC for repairing apron
concrete at military airbases.
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4.2. Geopolymer in Civil-Engineering Application

Structures that are still in the design phase are likely to be subjected to blast and
impact loading threats. Due to its high-ultra strength, high ductility, and outstanding
toughness, Portland cement-based ultra-high performance concrete (PC-UHPC) has been
developed in recent decades to meet the increasing safety requirements of structures to
overcome such destructive intensive loadings. Although PC-UHPC has emerged as one of
the most promising construction materials for civil and military structures, the extensive
use of Portland cement has a negative impact on the environment due to the carbon dioxide
emission produced during cement manufacture. Meanwhile, the environment is facing a
large increase in the formation of industrial wastes and the consumption of raw material in
cement manufacture. As a result, it is required to develop a geopolymer as an alternative
binder system that is less expensive and energy-intensive while also being greener in order
to reduce or fully replace ordinary Portland cement. However, it has been noted that
the higher the geopolymer’s strength, the greater the fire resistance. Low-strength and
low-density geopolymers are difficult to dehydrate and react to volume changes better
in the temperature range of 100 ◦C to 1000 ◦C; even after heat exposure, their intensity
increases [112]. Figure 4 shows the effect of alkali cation selection on the fly ash-based
geopolymer’s high temperature exposure strength and durability. Depending on the type
of alkali cations utilized, densification of particular substrates and healing of microcracks
are useful to increasing strength in different temperature ranges [113]. These findings
imply that geopolymers can be tailored to attain stable (and even improved) strength after
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exposure to a high heat environment. The building’s damage caused by fire cannot be
ignored. The Windsor Tate Fire in Shanghai, as well as the 9/11 terrorist attack, resulted
in massive human and material losses. As a result, refractory materials for building are
crucial. Today, continuing to improve the sustainability and ecology of fire-resistant and
high-temperature materials is a primary concern. Therefore, the goal of geopolymerization
is to turn industrial solid waste into a chemically durable cement binder that is both
thermally stable and non-combustible.
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4.3. Geopolymer in Road Application

The development of geopolymers in the past and present has centred on the production
and use of such materials to replace cement in structural construction. There has not been
a lot of research applied in road construction. Several geopolymer research reports for
road applications were even at the proof-of-concept level. Tenn et al. [114] investigated
the interaction between sodium and potassium-based geopolymer binders and granite
or diorite pavement aggregates in order to promote the usage of geopolymer in place
of asphalt cement (or bitumen). Camacho-Tauta et al. [115] demonstrated an attempt to
improve road fatigue damage resistance by employing a fly ash-based geopolymer as a road
base layer. To assess the study material’s long-term performance, a full-scale accelerated
pavement test was assigned. Compared to a non-treated road base layer, the study found
that a geopolymer-treated road base layer could give a reduction in deformability. Waste
material-based geopolymer has been implemented as a replacement binder to enhance the
properties for road and pavement material as tabulated in Table 5.
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Table 5. Research work utilising geopolymers in road applications.

No. Researcher Materials Findings

1 Sukprasert et al. [116]
Fly ash, silty clay, ground

granulated blast
furnace slag

• Increase packing density
• Increased unconfined

compressive strength

2 Dave et al. [117] Ground blast furnace
slag, fly ash, silica fume

• Appropriate strength as road
repair material

• Well durability through
ultrasonic pulse velocity test

3 Wongsa et al. [118] Crumb rubber, river sand,
high calcium fly ash

• Average value of thermal
conductivity and density

• Meet the strength requirement
for lightweight concrete

4 Mohammed et al.
[119] Fly ash, crumb rubber

• Reduction in compressive and
flexural strength

• Higher water absorption

The Netherlands was one of the first countries in Europe to use fly ash and blast furnace
slag as a binder for acid-resistant pipe manufacture. Activated alkaline materials used in
civil construction subsequently established enterprises in other United Kingdom countries,
and eventually extended throughout the continent [120,121]. Conversely, the company
with the most building applications is based in Australia. In 2007, the Melbourne-based
company, E-cert, developed its own concrete. This company employs a blend of fly ash and
ground blast furnace slag that has been alkali activated according to a proprietary dosage
and composition. Bridges, highways, and big structures are several of the applications [122].

Figure 5a depicts a section of the Westgate Freeway in Port Melbourne’s highway
pavement. Since it was a different material, the project had to comply to numerous needs
of the local road authority as well as more specialized technical standards in order to gain
government clearance. The highway’s construction and use were agreed on by a group
of multinational construction corporations. Meanwhile, Figure 5b illustrates VicRoad’s
installation of 55 MPa E-Crete prefabricated panels. Due to the strict inspection in regard to
structural concrete, this strength was required [122].
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5. Conclusions and Suggestions for Future Works

Regardless of the differences in waste material used in geopolymerization, the selection
of raw materials depends on the desired application. Waste material-based geopolymer
rich in silicon, aluminium, and calcium are easy and highly accessible. This facilitates
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their disposal waste management rather than building a landfill full of them. This is
the main reason behind the low cost of manufacturing geopolymeric composites-based
waste material in civil and military application. The utilization of waste materials through
geopolymerization should be carried out in future works to mitigate the disposal and
environmental issues. Numerous studies have been conducted involving the use of waste-
based geopolymers with promising properties for heavy-duty applications such as military,
civil-engineering, and road applications.

Based on the identified gaps in this work, future recommendations on waste-material
based geopolymer in heavy duty application are listed below:

• Durability works using waste material in advanced application in the civil construction
or aerospace fields;

• Establishing standards in order to conduct more advanced tests and research on these
waste materials and, as a a result, expand the application as heavy-duty material in
civil construction or the aerospace industry;

• Besides construction and airbase application, the geopolymer material can also be
implemented as a defence material that consists of lightweight and higher mechanical
properties such as bulletproof, Kevlar helmet, and body armour;

• The study on the landfill and waste management cost is crucial in considering the
impact of the 3R implementation;

• An alternative activator to hydroxides and silicates that leads to lower environmental
impact and can cut the cost of geopolymer production;

• For better understanding and experimental application, standardize dosage and quan-
tify ingredients utilized in the manufacturing of activated alkali component.
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