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ABSTRACT

A two-level principal component predictor (2L-PCA) was proposed based on the 
principal component analysis (PCA) approach. It can be used to quantitatively analyze 
various compounds and peptides about their functions or potentials to become useful 
drugs. One level is for dealing with the physicochemical properties of drug molecules, 
while the other level is for dealing with their structural fragments. The predictor has 
the self-learning and feedback features to automatically improve its accuracy. It is 
anticipated that 2L-PCA will become a very useful tool for timely providing various 
useful clues during the process of drug development.

INTRODUCTION

With the fast developments of computer-aided drug 
design (CADD) [1–5], currently a number of drug design 
approaches are developed, and several computer software 
packs [6, 7] are available that can speed up the discovery 
of new chemical and biological drugs in more efficient and 
economical procedure. However, so far we still have no 
perfect theories, ideal technologies, and faultless software 
tools that can guarantee complete success of the designed 
drugs due to the complicity of the interactions between 
medicinal drugs and their biological targets [8, 9]. The 
factors and parameters that may affect the bioactivities of 
drugs are not only from the structure of drug itself, but 
also from its biological target, coenzymes, and interaction 
environment [10, 11].

Principal component analysis (PCA) [12–14] 
is a useful tool that has been widely used in chemistry, 
biology, environment, and many fields of social science. 

The PCA approach has also been used in drug design for 
many years. Traditionally PCA is a single level and one 
direction prediction and analysis technique, described as 
the following equation
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where { },xi k � are the physicochemical parameters of 
the i-th molecule, � �{ }ak are the coefficients of molecular 
parameters, and wi is bioactivity of the i-th molecule 
[15, 16]. The bioactivity wi could be logarithm of IC50,i 
(pIC50,i=-logIC50,i), or binding free energy ΔG°i between 
drug and receptor.

After the coefficients � �{ }ak of parameters are solved 
from the linear equations Eq.1 in a training set of drug 
candidates, the parameter coefficients � �{ }ak can be used 
to predict the bioactivities of the designed or newly 
synthesized drug compounds,
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where K is the total number of molecular parameters. 
Currently hundreds even thousands of molecular 
parameters are available for drug design [17, 18]. 
However for certain drug-receptor interaction system, 
these parameters are not equally important; actually too 
many parameters may cause the over correlation problem 
[19, 20]. In PCA technique only the principle components 
are selected to describe the bioactivities of drug molecules, 
and to predict the bioactivities of drug candidates.

In the present study, an improved principal 
component analysis method, the so-called two-level 
principal component analysis (2L-PCA), is proposed to 
deal with the extreme complexity and huge amount of 
parameters in drug design and discovery. In the 2L-PCA 
predictor, the 1st level is to deal with the physicochemical 
properties of drug molecules, and the 2nd level is to deal 
with the fragments of molecular structures. The proposed 
two-level model can not only significantly enhance the 

prediction power, but also yield more useful information 
for in-depth analysis.

According to Chou’s 5-step rule [21] that has been 
widely used by many investigators (see, e.g., [22–37]), 
to develop a really useful statistical predictor, one should 
consider the following five procedures: (1) benchmark 
dataset; (2) sample representation; (3) operation algorithm; 
(4) cross validation; (5) web-server. Below, let us describe 
how to deal with them one-by-one. However, to comply 
with the Journal’s rubric style, they are not exactly 
following the aforementioned order.

RESULTS AND DISCUSSION

As an example to show the advantage of 2L-PCA, 
we applied it for predicting the binding affinity of epitope-
peptides with class I MHC molecules HLA-A*0201 [38, 
39]. HLA-A*0201 is one of the most frequent class I 
alleles found in many different species and populations, 
which plays a critical role for antigen presentation in both 
viral antigens [40] and tumor antigens from a variety of 

Table 1: Eight physicochemical parametersa of 20 natural amino acid side chains

A.A. Lip Hyd SL (Å2) SH (Å2) Pα Pβ Pc V(Å3)

Leu (L) 1.2906 0.0000 84.5476 0.0000 1.21 1.30 0.68 166.7

Ile (I) 1.1046 0.0000 88.6055 0.0000 1.08 1.60 0.66 166.7

Val (V) 0.5324 0.0000 77.8108 0.0000 1.06 1.70 0.62 140.0

Phe (F) 0.4412 -0.1195 105.7054 11.2472 1.13 1.38 0.71 189.9

Met (M) 1.0768 -0.3068 70.3631 23.2299 1.45 1.05 0.58 162.9

Trp (W) 0.8364 -0.4310 133.6980 14.8820 1.08 1.37 0.75 227.8

Ala (A) 0.1744 0.0000 34.7760 0.0000 1.42 0.83 0.70 88.6

Cys (C) 0.2479 -0.2402 23.5563 30.4540 0.70 1.19 1.18 108.5

Gly (G) 0.0208 0.0000 3.7616 0.0000 0.57 0.75 1.50 60.1

Tyr (Y) 0.4534 -0.5896 80.9646 42.7160 0.69 1.47 1.06 193.6

Thr (T) 1.4265 -0.4369 46.7285 16.0490 0.83 1.19 1.07 116.1

Ser (S) 0.2346 -0.6040 26.0681 15.9613 0.77 0.75 1.32 89.0

His (H) 0.8124 -0.7766 82.1701 13.8631 1.00 0.87 1.06 153.2

Gln (Q) 1.0036 -0.7211 70.0876 17.8662 1.11 1.10 0.86 143.9

Lys (K) 1.4600 -0.6229 97.7144 8.0786 1.16 0.74 0.98 168.7

Asn (N) 0.6396 -0.7211 50.5075 17.7804 0.67 0.89 1.35 117.7

Glu (E) 1.0315 -0.9298 57.1582 25.5726 1.51 0.37 0.84 138.4

Asp (D) 0.6058 -0.9298 37.4173 25.2736 1.01 0.54 1.20 111.1

Arg (R) 1.2424 -1.4797 90.8008 35.3095 0.98 0.93 1.04 173.4

Pro (P) 0.3226 0.0000 69.2297 0.0000 0.57 0.55 1.59 122.7

Lip: lipophilic index; Hyd: hydrophilic index; SL: lipophilic surface area; SH: hydrophilic surface area; Pα: potency of 
α-helix; Pβ: potency of β-band; Pc: potency of loop; V: volume of side chains.
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Table 2: Amino acid sequences and experimental and predicted bioactivities of 90 MHC-I peptides in the training set

No. Peptide
sequence

Expt
pIC50

Pred
pIC50

pIC50
Diff No. Peptide

sequence
Expt
pIC50

Pred
pIC50

pIC50
Diff

1 VALVGLFVL 5.148 5.7543 -0.6063 46 VVMGTLVAL 7.174 7.3163 -0.1423
2 GTLVALVGL 5.342 5.9368 -0.5948 47 YLEPGPVTI 7.187 7.1654 0.0216
3 LQTTIHDII 5.501 5.8143 -0.3133 48 GLSRYVARL 7.248 7.4620 -0.2131
4 SLHVGTQCA 5.842 6.1580 -0.3160 49 LLAQFTSAI 7.301 7.4302 -0.1292
5 ALPYWNFAT 5.869 6.6416 -0.7726 50 VLLDYQGML 7.328 7.5911 -0.2631
6 SLNFMGYVI 5.881 5.9560 -0.0750 51 YLEPGPVTV 7.342 7.4078 -0.0658
7 NLQSLTNLL 6.000 6.6992 -0.6992 52 ILSPFMPLL 7.3470 7.1400 0.2070
8 FVTWHRYHL 6.025 5.7230 0.3020 53 YLSPGPVTA 7.383 7.5610 -0.1780
9 DPKVKQWPL 6.176 5.7407 0.4354 54 IIDQVPFSV 7.398 7.6528 -0.2548
10 ITSQVPFSV 6.196 6.5888 -0.3928 55 SVYDFFVWL 7.444 7.3654 0.0786
11 ALAKAAAAI 6.211 6.2433 -0.0323 56 ITWQVPFSV 7.463 7.4417 0.0213
12 GLGQVPLIV 6.301 6.5651 -0.2641 57 ITYQVPFSV 7.480 7.6613 -0.1813
13 MLDLQPETT 6.335 6.8570 -0.5220 58 GLYSSTVPV 7.481 7.6303 -0.1493
14 LLSSNLSWL 6.342 6.3502 -0.0082 59 VMGTLVALV 7.553 7.2369 0.3161
15 GLACHQLCA 6.380 6.0594 0.3206 60 LLLCLIFLL 7.585 7.1406 0.4444
16 LIGNESFAL 6.415 7.0559 -0.6409 61 SLDDYNHLV 7.585 7.1764 0.4086
17 ALAKAAAAV 6.419 6.4857 -0.0667 62 VLIQRNPQL 7.644 6.9473 0.6967
18 LLAVGATKV 6.477 6.5115 -0.0344 63 SLYADSPSV 7.658 7.7106 -0.0526
19 ALAKAAAAL 6.511 6.2262 0.2848 64 ILSQVPFSV 7.699 7.6472 0.0518
20 WILRGTSFV 6.556 6.9084 -0.3524 65 IMDQVPFSV 7.719 8.0305 -0.3115
21 IISCTCPTV 6.580 6.6649 -0.0849 66 QLFEDNYAL 7.764 7.4713 0.2927
22 FLGGTPVCL 6.623 6.8756 -0.2526 67 ALMDKSLHV 7.770 7.5250 0.2450
23 ALIHHNTHL 6.623 6.7908 -0.1677 68 YAIDLPVSV 7.796 7.6075 0.1885
24 NLSWLSLDV 6.639 6.0466 0.5924 69 FVWLHYYSV 7.824 8.1149 -0.2909
25 YMIMVKCWM 6.663 6.6427 0.02035 70 MLGTHTMEV 7.845 7.3180 0.5270
26 VLQAGFFLL 6.682 7.0412 -0.3592 71 LLFGYPVYV 7.886 8.0253 -0.1393
27 GTLGIVCPI 6.714 6.5233 0.1907 72 ILKEPVHGV 7.921 7.5915 0.3295
28 VILGVLLLI 6.785 7.4728 -0.6878 73 YLMPGPVTV 7.932 7.9139 0.0181
29 VTWHRYHLL 6.793 6.5597 0.2333 74 WLDQVPFSV 7.939 7.9514 -0.0124
30 PLLPIFFCL 6.796 7.5217 -0.7257 75 KTWGQYWQV 7.955 7.6934 0.2616
31 TLGIVCPIC 6.815 5.9499 0.8651 76 ALMPLYACI 8.000 7.4383 0.5617
32 CLTSTVQLV 6.832 7.1061 -0.2741 77 YLAPGPVTA 8.032 7.6408 0.3912
33 ILLLCLIFL 6.845 6.7815 0.0635 78 YLYPGPVTV 8.051 8.3112 -0.2602
34 FAFRDLCIV 6.886 6.6689 0.2171 79 LLMGTLGIV 8.097 7.6769 0.4201
35 FLEPGPVTA 6.898 7.4940 -0.5960 80 YLWPGPVTV 8.125 8.0916 0.0334
36 ALAKAAAAA 6.947 6.8081 0.1389 81 FLLTRILTI 8.149 7.8796 0.2694
37 LMAVVLASL 6.954 7.4908 -0.5368 82 GLLGWSPQA 8.237 8.2184 0.0185
38 YVITTQHWL 6.983 6.3410 0.6420 83 ILYQVPFSV 8.310 8.7197 -0.4097
39 LLCLIFLLV 6.996 7.5015 -0.5055 84 GILTVILGV 8.347 7.8414 0.5056
40 ITAQVPFSV 7.020 6.6685 0.3515 85 NMVPFFPPV 8.398 8.0854 0.3126
41 YLEPGPVTL 7.058 7.1483 -0.0903 86 ILDQVPFSV 8.481 7.6904 0.7906
42 YTDQVPFSV 7.066 7.0742 -0.0082 87 YLFPGPVTA 8.495 8.3473 0.1477
43 NLYVSLLLL 7.114 6.9769 0.1371 88 YLDQVPFSV 8.638 8.1326 0.5054
44 ILHNGAYSL 7.127 7.3493 -0.2223 89 ILFQVPFSV 8.699 8.4335 0.2655
45 SIISAVVGI 7.159 7.3048 -0.1458 90 ILWQVPFSV 8.770 8.5002 0.2698
Statistical indices:

R=0.887132 R2= 0.787003 RES=0.366873 SEE=0.038672.
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cancers [41–44], and is expressed in approximately 50% 
of Caucasians population [45].

The epitope-peptides consist of nine amino acids 
[38, 39]. In the 2L-PCA study for the epitope-peptides, 
the nine side chains of the nine amino acids are the nine 
fragments. Eight physicochemical properties are used 
as the descriptors of the 20 natural amino acids. Four of 
them are the HMLP parameters [15, 16], describing the 
lipophilic character, hydrophilic character, surface area 
with lipophilic potential, and surface area with hydrophilic 
potential, respectively. The fifth property is the volume of 
amino acid side chains. The remaining three properties are 
the secondary structural potency indices of amino acids: 
the α-potency, β-potency, and coil-potency [46]. Listed in 
Table 1 are the eight physicochemical parameters of 20 
amino acids used in this study.

In this study the HMLP parameters were used to 
describe the lipophilicity and hydrophilicity of molecular 
fragments. In peptides the HMLP parameters of the 
20 natural amino acid side chains are available from 
literatures. However, the HMLP parameters of common 
chemical molecular fragments have to be derived using 
complicated calculations. In such cases other hydrophobic 
parameters can be used, e.g., the atom-based hydrophobic 
parameters in [47].

To reduce computational time, the cross validation 
in this study was performed via the independent dataset 
test [48], as described as follows. The sequences and 

experimental binding affinities of the 90 peptides were 
used as the training dataset to train the model, while those 
of the 40 peptides taken from [49] as the independent 
dataset to test the model. Actually, such 40 peptides 
had also been compiled in a series of publications [41, 
42, 50–55]. The logarithms (pIC50) of IC50 were used as 
the bioactivity, because they are related to the changes 
in the free binding energy [55, 56]. Listed in Table 2 are 
the sequences and the experimental pIC50 of the peptides 
used in the training set. The binding strength of the 90 
training peptides and 40 testing peptides covers the low, 
intermediate, and high affinity. The following two criteria 
were applied in the choice of the testing peptides: (1) the 
range of binding affinities in the testing dataset should 
not exceed the range of affinities in the training set; (2) 
the amino acid at each position in the testing dataset 
should also be present at that position in the training set of 
peptides. These two conditions make the 130 peptides to 
be the ideal benchmark dataset for 2L-PCA method.

The iterative 2L-PCA technique described in 
Method section is used for the binding affinity study of 
peptides based on the sequences and experimental data 
listed in Table 2. The initial coefficient values � �{ }

( )bl
0 of 

fragment parameters were assigned to 1, implying that 
all fragment parameters are equally important. Shown 
in Figure 1 are the curves of correlation coefficients R 
vs iterations , where the curve Ra is for the iteration of 
coefficients �{ }ak , and the curve Rb is for the iterations of 

Figure 1: The correlation coefficients between experimental and predicted bioactivities increase with the iterations. Ra 
is the correlation coefficient in the iterative procedure for {ak

(n)} of the physicochemical properties, and Rb is the correlation coefficient in 
the iterative procedure for {bl

(n)} of the molecular fragments.
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Figure 2: The residue between predicted bioactivities and experimental bioactivities in the iterative procedure. The Q 
is the average square root of the summation of squared differences between predicted bioactivities and experimental bioactivities. Qa is for  
{ak

(n)} iteration and Qb is for {bl
(n)} iteration.

coefficients { }bl . The average fitting error Q between the 
calculated bioactivities and the experimental bioactivities 
of peptides are shown in Figure 2, where Qa is for �{ }ak
iteration and Qb for { }bl  iteration. It has been observed 
that, after 10 to 12 iterations, the iterative result converged 
smoothly. The converged prediction coefficient sets � �{ }

( )ak
n

and � �{ }
( )bl
n are given in Table 3. In the iterative solution 

precedure the correlation coefficien increases from the first 
value RA

(1)=0.4167 to the converged value RA
(98)=0.8871, 

and the prediction residue decreases from the first value 
QA

(1)=0.7223 to the converged value QA
(98)=0.0387.

The predicted pIC50 of the 40 queried peptides in 
the testing set are given in Table 4, which were predicted 

using the coefficients � �{ }
( )ak
n

of properties and � �{ }
( )bl
n of 

fragments based on the eight physicochemical parameters 
and the nine fragments (amino acid side chains). The 
diversity of the peptides in the training set is very 
important for the prediction power of TLPC, especially for 
the residue positions at which we want to make prediction. 
It is expected that, with more experimental data available, 
the predictive power of 2L-PCA will be further improved. 
Actually, 30 prediction servers for human MHC-I peptide 

Table 3: Prediction coefficients of eight physicochemical properties and nine residue positions obtained from the 
training set of MHC-I peptides

No. Property
Coefficient

No.
Position Coefficient

a{ }k (Residue) b{ }kl
1 Lip -0.02445 1 R1 2.53268

2 Hyd 0.19258 2 R2 8.36712

3 SL -0.00212 3 R3 3.06856

4 SH 0.00348 4 R4 -4.89559

5 Pα 0.15367 5 R5 3.12686

6 Pβ 0.07823 6 R6 2.45367

7 Pc 0.19764 7 R7 1.24669

8 Vol 0.00366 8 R8 -3.50416

-- -- -- 9 R9 -3.79249
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Table 4: Amino acid sequences and experimental and predicted bioactivities of 40 MHC-I peptides in the testing set

No Sequence Expt
pIC50

Pred
pIC50

pIC50
Diff No Sequence Expt

pIC50

Pred
pIC50

pIC50
Diff

1 LLGCAANWI 5.301 5.1708 0.1302 21 ITFQVPFSV 7.179 7.3750 -0.1960
2 SAANDPIFV 5.342 4.8592 0.4828 22 FTDQVPFSV 7.212 6.8379 0.3741
3 TTAEEAAGI 5.380 5.4678 -0.0878 23 RLMKQDFSV 7.342 7.5681 -0.2261
4 LTVILGVLL 5.580 5.3216 0.2584 24 KLHLYSHPI 7.352 6.6450 0.7070
5 HLLVGSSGL 5.792 6.4811 -0.6891 25 ITMQVPFSV 7.398 7.2641 0.1340
6 GIGILTVIL 6.000 5.7321 0.2679 26 KIFGSLAFL 7.478 6.7818 0.6962
7 TVILGVLLL 6.072 5.4662 0.6058 27 ALVGLFVLL 7.585 7.3852 0.1998
8 WTDQVPFSV 6.145 6.8930 -0.7480 28 YLSPGPVTV 7.642 7.2387 0.4033
9 AIAKAAAAV 6.176 6.4480 -0.2720 29 GLYSSTVPV 7.699 7.6303 0.0687
10 ILTVILGVL 6.419 7.0160 -0.5970 30 YLYPGPVTA 7.772 8.6335 -0.8615
11 AVAKAAAAV 6.495 5.9131 0.5819 31 YLAPGPVTV 7.818 7.3184 0.4996
12 ILDEAYVMA 6.623 7.4445 -0.8215 32 VVLGVVFGI 7.845 7.4509 0.3941
13 LLWFHISCL 6.682 6.3594 0.3226 33 MMWYWGPSL 7.921 7.4007 0.5203
14 TLDSQVMSL 6.793 7.2566 -0.4636 34 ILAQVPFSV 7.939 7.7270 0.2120
15 HLYQGCQVV 6.832 7.6799 -0.8479 35 FLLSLGIHL 8.053 8.1578 -0.1048
16 QLFHLCLII 6.886 7.6475 -0.7615 36 ILMQVPFSV 8.125 8.3225 -0.1975
17 ITDQVPFSV 6.947 6.6320 0.3150 37 YLFPGPVTV 8.237 8.0249 0.2121
18 ALCRWGLLL 7.000 7.2766 -0.2766 38 YLMPGPVTA 8.367 8.2363 0.1307
19 NLGNLNVSI 7.119 7.0974 0.02160 39 YLWPGPVTA 8.495 8.4140 0.0810
20 HLYSHPIIL 7.131 7.5663 -0.4353 40 FLDQVPFSV 8.658 7.8964 0.7616
Statistical indices:

R=0.867872 R2= 0.753202 RES=0.469728 SEE=0.074271.

Figure 3: Eigenvalues and contributions of properties and peptide positions. (a) The eigenvalues of property eigenvectors. (b) 
The contributions of properties to the eigenvalues. The volumes (Vol) and hydrophobic surface areas (SL) of amino acid side chains make 
the largest contributions. (c) The eigenvalues of peptide position eigenvectors. (d) The contributions of peptide positions to the eigenvalues. 
The contributions of all nine amino acid positions are almost equally important.
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Table 5: Eigenvalues and contributions of physicochemical properties and amino acid positions in training set of 
peptides

Physicochemical properties Positions (fragments)

No. Eigenvaluea Property Contribution No Eigenvalue a Position b Contribution

1 0.99118 Lip 0.00004 1 0.98873 Residue-1 0.12126
2 0.00641 Hyd 0.00000 2 0.00300 Residue-2 0.12043
3 0.00240 SL 0.20595 3 0.00249 Residue-3 0.1130
4 0.00005 SH 0.00534 4 0.00213 Residue-4 0.09871
5 0.00004 Pα 0.00004 5 0.00106 Residue-5 0.1046
6 0.00003 Pβ 0.00005 6 0.00094 Residue-6 0.10804
7 0.00002 Pc 0.00002 7 0.0007 Residue-7 0.11931
8 0.00001 Vol 0.78857 8 0.00058 Residue-8 0.10186
-- -- -- -- 9 0.00037 Residue-9 0.11278

a Eigenvalues are normalized.
b The positions of peptides are equal to the fragments of molecules.

molecules were evaluated in a review article [57]. Among 
the 30 existing servers, 16 were ranked as the first class 
that provided the most accurate prediction results for 
MHC-I peptide molecules with the correlation coefficients 
ranging from r = 0.55 to r = 0.87. It has been shown in this 
study that the prediction correlation coefficient yielded by 
our 2L-PCA method is r = 0.868, being ranked around the 
very top of the first class.

2L-PCA neither needs knowing the exact 
comformations of the peptides nor needs aligning the 
peptides according to a template. The two steps are 
necessary but quite difficult for CoMFA [58, 59] and 
CoMSIA [60, 61] owing to that there are numerous 

possible conformations for peptides and that the 
experimental crystal structure for serving as a template is 
often not available. 2L-PCA method provides an alternate 
way for design of the chemical drugs and peptide drugs.

The eigenvalues and contributions of 
physicochemical properties and amino acid positions in 
peptides are summarized in Table 5 and shown in Figure 3. 
In Table 5 the eigenvalues are normalized. The eigenvalue 
portion of the first three property eigenvectors is almost 
100%, and the eigenvalue portion of the first eigenvector 
alone is larger than 99%. Most contributions are made by 
the three properties: side chain volume (Vol), lipophilic 
surface area (SL), and hydrophilic surface area (SH), as 

Figure 4: Illustration of molecular fragments. (A) The structural fragments in neuraminidase (NA) of influenza virus A inhibitors. 
The molecular structure is divided into 4 fragments according to the substitutes being investigated. The fragments F1, F2 and F3 are three 
substituent groups, and the fragment F4 is the remaining part of the molecular parent. (B) In short peptides each side chain of amino acid 
residue is a fragment.
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Figure 5: The iterative algebra solution procedure of the solution of 2L-PCA prediction model for the two sets of 
coefficients {ak

(n)} and {bl
(n)}, where N is the number of molecular samples, L is the number of fragments in molecules, L′ 

is the principal number of fragments, K is the number of physicochemical properties, and K′ is the principal number 
of properties.
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shown in Figure 3b and Table 5. The contributions of other 
5 properties seem very small. The eigenvalue of the first 
peptide position eigenvector is larger than 98%. In Table 
5 the contributions of the nine amino acid positions are 
different. However the differences are not big, implying 
that all positions are almost equally important. The 
detailed computation results are given in Supplementary 
Information 1.

We are often facing two kinds of challenges in 
theoretical prediction for drug design: one is over-correlation 
problem, and the other is lack of information and explanation 
for the predicted results. The over-correlation problem is 
caused by large amount of parameters used in the prediction 
model, which may yield quite good correlation results in 
self-consistency test [62, 63], but very poor predicted results 
in independent dataset test owing to the high dimensional 
disaster [19] or “curse of dimensionality” problem. To solve 
this problem, the pseudo amino acid composition (PseAAC) 
was introduced [64]. Ever since then, the concept of 
PseAAC or the general PseAAC [21] has been widely used 
in drug development and biomedicine [65, 66] and nearly 
all the areas of computational proteomics (see, e.g., [67] as 
well as a long list of references cited in [68, 69]). Actually, 
the physicochemical properties used here can be regarded 
as some optimal pseudo components [70]. It is through 
such a PseAAC approach to remove the trivial parameters 
(or reduce the feature vector’s dimension) and grasp the 
key ones. Besides, the traditional prediction methods fail 
to provide a good explanation for the predicted results; i.e., 
how do the physicochemical properties and the structural 
changes affect the bioactivities? In contrast to that, the 
proposed “2L-PCA” method can provide more information 
about the impact of the physicochemical properties and 
molecular fragments to the bioactivities of drug candidates.

MATERIALS AND METHODS

In practical drug design and development, usually 
the basic structure of drug candidates keep constant, 
only small modifications are made on several fragments. 
The structure parameters of the entire molecules cannot 
clearly describe the detailed characters of the small 
changes at individual fragments or substitutes. In the 
2L-PCA model the molecular structures are separated into 
several fragments, and are described by a set of fragment 
parameters. An example of molecular structure and its 
fragments is shown in Figure 4A. The idea of molecular 
fragments also can be applied to the peptide drugs, in 
which each side chain of an amino acid is a fragment, as 
shown in Figure 4B.

General 3D equation of 2L-PCA

In the 2L-PCA prediction model the bioactivity wi of 
molecule i is the summation of contributions Δgi,l from all 
molecular fragments; i.e.,

l

L

l i l ib w
=
∑ ∆ =
1

g , � � �
 

(3)

where Δgi,l is the contribution of fragment l to the 
bioactivity wi of molecule i, bl is the prediction coefficient 
of fragment l, and L is the total number of molecular 
fragments. The contribution Δgi,l of fragment l is the 
summation of the contributions from all physicochemical 
properties of fragment l, namely

∆ =
=
∑gi l
k

K

k i l ka x, , ,

1  
(4)

where xi,l,k is the physicochemical property k of fragment 
l in molecule i, ak is the prediction coefficient of 
physicochemical property k, and K is the total number of 
physicochemical properties.

Inserting the Eq.4 into Eq.3 we get the general 
equation of 2L-PCA prediction model as given by

l

L

l
k

K

k i l k ib a w

i N
= =
∑ ∑












=

=
1 1

1 2

x , ,

( , , , )  

(5)

where N is the total number of molecular samples. Eq.5 
can be expressed in vector and matrix form as given below

X B A WN L K L K N, , = �  (6)

where XN,L,K is the three dimensional (3D) data matrix 
of molecular parameters, WN is the bioactivity column 
vector of molecular samples, BL is the coefficient 
vector of fragments, and AK is the coefficient vector of 
physicochemical properties.

2D equations of properties and fragments

The general three-dimensional 2L-PCA equation 
of Eq.6 can be reduced to two 2D equations with the 
following algebra operations,

X A HN L K K N L, , ,=  (7)

where HN,L is the 2D data matrix of molecular fragments. 
Substituting HN,L into Eq.6, we obtain the following 
fragment 2D equation

H B WN L L N, = �  (8)

Likewise, the property 2D equation can also be expressed 
as

X B FN L K L N K, , ,=  (9)

and

F A WN K K N, =  (10)



Oncotarget70573www.impactjournals.com/oncotarget

where FN,K is the 2D data matrix of physicochemical 
properties.

Algebra solutions of property and fragment 2D 
equations

The fragment 2D equation Eq.8 and the property 2D 
equation Eq.10 can be solved using the standard algebra 
method. Both sides of the fragment 2D equation of Eq.8 
are multiplied with the transposed matrix Ht

N,L from left, 
it follows that

H H UN L
t

N L L L, , ,=  (11)

and

H W SN L
t

N L, =  (12)

Thus, we get the following symmetrically square matrix 
equation of fragments

U B SL L L L, =  (13)

Since the fragment square matrix equation of Eq.13 is 
multiplied by its inverse matrix U-1

L,L, the prediction 
coefficients BL for the fragments are obtained, as given 
below

B U SL L L L= −
,
1

 (14)

where the inverse matrix U-1
L,L can be obtained by solving 

the eigen equation [71] [48] of UL,L, namely the equation

UL,LΨL,L = αL,LΨL,L (15)

meaning

UL L
L

L L, ,
− =1 1

αα
ΨΨ

 
(16)

where ΨL,L is the eigenvectors and αL is the eigenvalues of 
fragment square matrix UL,L[72, 73].

Similarly, left-multiplying both sides of property 2D 
equation of Eq.10 with Ft

N,K, we have

F F VN K
t

N K K K, , ,= � � �  (17)

and

F W TN K
t

N K, = � � �  (18)

From Eqs.17-18, we get the following square matrix 
equation of properties

V A TK K K K, = � � �  (19)

Multiplying Equation Eq.19 with the inverse matrix V-1
K,K, 

will give the solution of property prediction coefficients 
AK; i.e.

A V TK K K K= −
,
1

 (20)

Thus, the inverse matrix V-1
K,K is obtained by solving the 

eigen equation of property square matrix VK,K:

VK K K K K K K, , ,ΦΦ ββ ΦΦ=  (21)

and

VK K
K

K K, ,
− =1 1

ββ
Φ

 
(22)

where ΦK,K is the eigen-vectors and βk is the eigen-values 
of the property square matrix VK,K.

Iterative solution of 2L-PCA equations

In the training dataset for drug candidates the two 
prediction coefficients set AK and BL in the 2L-PCA 
general equation Eq.6 are solved in an iterative procedure 
[74, 75]. Firstly the initial fragment coefficients B(0)

L are 
assigned to 1 {bi=1, i=1,2…,L}, implying all fragments are 
equally important. The initial B(0)

L are used in the property 
2D equations Eq (9) and (10), thus the first solution of 
property coefficients A(1)

K is obtained by solving the eigen-
equations Eq.17-20. Then the property coefficients A(1)

K 
are used in the fragment equations Eqs.7-8, and the first 
solution of fragment coefficients B(1)

L are obtained by 
solving eigen-equations Eq.11-14. In the next iterative 
cycle the B(1)

L is used to find the A(2)
K. Above iterative 

procedure is repeated for n times, until to reaching a 
threshold value ε; i.e.,

Q Q
n n
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22
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(23)

The bioactivities of designed drugs and newly 
synthesized drug candidates are predicted using the 

converged coefficients � �{ }
( )ak
n

and � �{ }
( )bl
n as given below

w b a xi
l

L

l
n

k

K

k
n

i l k
pred =

=

( )

=
∑ ∑
1 1

( )
( )

, , � � �
 

(24)

Illustrated in Figure 5 is the iterative solution 
procedure for the 2L-PCA predictor.

Principal component analysis of properties and 
fragments

The property eigenvectors � �{ }ϕk  are orthogonal and 
normalized; i.e.,

ϕϕ ϕϕk j k j· ( )= ≠0 � � �
 

(25)

and
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ϕ ϕk k j k· ,= =
=
∑
j

K

1

2 1ϕ � � �
 

(26)

where the term φ2
j,k is the component of the j-th property 

in the k-th eigen-vector φk. The first K′ property eigen-
vectors are the principal components whose eigen-values 
are larger than a threshold (e.g., ε=90% or 95%); i.e.,

k

K
k

k

K
k

=

=

∑
∑

≥1

2

1

2

'
β

β
ε � � �

 

(27)

The total contribution γj of the j-th property to the 
bioactivity of molecular samples in training set is defined 
as the following summation,

γ β ϕj
k

K

k j k=
=
∑
1

2

'

,

 
(28)

The property eigen-vectors � �{ }ϕk span an orthogonal 
multiple space, in which a drug molecule Pi is a vector, 
and its projection Ji,k on the k-th property-eigenvector φk 
is calculated by

J
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i k

i k

i k
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where fi is the i-th row vector of the property matrix FNK 
of Eq.9. In the projection Ji,k of molecular sample Pi on 
the k-th property-eigenvector jk the component of the r-th 
property is αkφ

2
r,k, therefore the total contribution of r-th 

property to the sample Pi is the summation of components 
from all principal property eigenvectors, namely

ξ β ϕi r
k

K

k i k r kJ, , ,

'

=
=
∑
1

2

 
(30)

Similarly, the fragment eigenvectors ψl span an 
L-dimensional orthogonal space. The first L′ fragment 
eigenvectors are the principal components. The total 
contribution factor λj of the j-th fragment to the bioactivity 
of peptide set is given by

λ α ψj
l

L

l j l=
=
∑
1

2

'

,

 
(31)

In the same way the projection Ii,l of sample Pi on the 
l-th fragment-eigenvector ψl can be calculated by

I
h

h
i l

i l

i l
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L
i j j l

j

L
i j j

L
i j

,

, ,

, ,

.

| || |
= = =

= =

∑
∑ ∑

h
h

φ
φ

1

1

2

1

2

ψ

ψ
 

(32)

where hi is the i-th row vector of the fragment matrix 
HNL of Eq.7. In the projection Ii,l of molecule Pi on the 
l-th fragment-eigenvector φl the component of the r-th 
fragment is αlψ

2
r,l, therefore the total contribution of r-th 

fragment to the sample Pi is the summation of components 
from all principal fragment eigenvectors; i.e.,

ς α ψi r
l

L

l i l r lI, , ,

'

=
=
∑
1

2

 
(33)

Web-server

As pointed out in [76], user-friendly and publicly 
accessible web-servers represent the future direction 
for developing practically more useful predictors or any 
computational tools. Actually, user-friendly web-servers as 
given in a series of recent publications [23-25, 30, 32, 34-
36, 69, 70, 77-91] will significantly enhance the impacts 
by attracting the broad experimental scientists [66, 92]. We 
will do our best to establish a web-server for 2L-PCA as 
soon as possible. Once it has been done, an announcement 
will be made thorough a publication or our webpage.

CONCLUSION

The 2L-PCA predictor proposed in this paper is a 
very useful tool for drug design. Its advantages can be 
summarized as follows. (1) With 2L-PCA, the molecular 
structures of drug candidates can be separated into several 
fragments described by physicochemical parameters of 
the molecular fragments, thus the small modifications on 
individual fragments can be clearly shown. (2) Its two 
prediction coefficient sets � �{ }ak of properties and � �{ }bl of 
fragments can be solved in an iterative procedure, which 
possesses self-learning ability and information feed-back 
function in certain degree, and hence greatly promoting 
the prediction power of 2L-PCA. (3) It possesses the 
information from both of the structures of molecular 
fragments and the physicochemical properties, able to 
significantly improve the drug candidates in both the 
structure and property. (4) Its elegant algebra solution 
procedure will be very useful for further enhancing the 
ability of principal component analysis (PCA).
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