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Abstract: Infertility is an emerging health issue worldwide, and female infertility is intimately
associated with embryo implantation failure. Embryo implantation is an essential process during
the initiation of prenatal development. Recent studies have strongly suggested that autophagy in
the endometrium is the most important factor for successful embryo implantation. In addition,
several studies have reported the effects of various natural products on infertility improvement via
the regulation of embryo implantation, embryo quality, and endometrial receptivity. However, it is
unclear whether natural products can improve embryo implantation ability by regulating endometrial
autophagy. Therefore, we performed a literature review of studies on endometrial autophagy, embryo
implantation, natural products, and female infertility. Based on the information from these studies,
this review suggests a new treatment strategy for female infertility by proposing natural products
that have been proven to be safe and effective as endometrial autophagy regulators; additionally, we
provide a comprehensive understanding of the relationship between the regulation of endometrial
autophagy by natural products and female infertility, with an emphasis on embryo implantation.

Keywords: autophagy; embryo implantation; female infertility; natural products

1. Introduction

Autophagy is a major pathway for lysosome-mediated degradation and recycling
of a wide variety of biological macromolecules, including proteins, carbohydrates, lipids,
and nucleic acids [1]. In the late 1950s, electron microscopy studies have contributed
to the discovery of autophagy. Christian De Duve recognized a lysosome-dependent
cellular process for the degradation of intracellular materials and termed it “autophagy” in
1963 [2]. In the early 1990s, Yoshinori Ohsumi created a new paradigm for understanding
autophagy by identifying the essential genes for autophagy in baker’s yeast [3,4]. Since
this breakthrough, molecular studies on autophagy have been conducted in mammalian
cells as well as in yeast, and have fueled major advances in biomedical research [5].

Autophagy is well-established as an important mechanism for maintaining cellular
homeostasis, including organelle integrity, stress response, metabolic regulation, protein qual-
ity control, and host defense, via the removal or recycling of intracellular molecules [1,5,6].
Emphasizing the importance of autophagy, various studies have suggested that defec-
tive autophagy contributes to and is a therapeutic target for multiple human diseases,
such as asthma, systemic lupus erythematosus, Crohn’s disease, Parkinson’s disease, and
several types of cancer [7–11]. Recent studies have revealed that autophagy also plays a
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fundamental role in male and female infertility by regulating the developmental process of
reproductive organs and germ cells [12,13]. In particular, there is a specialized endometrial
autophagy process to maintain processes that are vital to endometrial homeostasis, includ-
ing menstruation, embryo implantation, and decidualization [14,15]. In addition, there is
evidence that endometrial autophagy is essential for embryo implantation [16–18].

Embryo implantation is defined as a crucial process for attachment of the blastocyst,
which is a properly developed embryo, to a receptive uterus and its implantation into
the epithelium. Defective embryo implantation leads to an unsuitable environment for
pregnancy, leading to a variety of additional problems, including infertility, subfertility,
spontaneous miscarriage, abnormal intrauterine fetal growth, and pre-eclampsia [18,19].
Given the importance of embryo implantation, the regulation of endometrial receptivity
is currently considered as one of the primary therapeutic strategies for treating female
infertility, particularly repetitive implantation failure [19,20].

For successful embryo implantation, the endometrium must undergo various internal
changes to increase receptivity for the embryo, without which embryo implantation will not
occur or fail. Previous studies have shown that different synchronized molecular processes
mediated by a variety of proteins, including cytokines, growth factors, adhesion molecules,
and angiogenic factors, are required to regulate endometrial receptivity [21–23]. These
molecular and cellular processes are commonly called endometrial autophagy, and defec-
tive endometrial autophagy results in endometrial hyperplasia, endometrial carcinoma,
endometriosis, and infertility [15,24,25]. Therefore, understanding the role of autophagy in
the endometrium holds promise for the development of novel therapeutic strategies for
improving endometrial function.

Infertility is an important global public health problem, and the use of natural products
to treat infertility has been considered a promising and safe alternative to conventional
therapies [26–28]. Natural products are derived from diverse sources, including plants,
bacteria, and fungi, and have been used as therapeutic candidates for various diseases,
including Alzheimer’s disease, asthma, atherosclerosis, cancers, obesity, rheumatoid arthri-
tis, and ulcerative colitis [29–33]. In addition, to better understand the efficacy of natural
compounds against infertility and their safety, mechanistic studies are currently being
conducted to discover natural substances that are effective in treating infertility.

To date, several studies have shown that natural products regulate endometrial au-
tophagy and are effective as a treatment for infertility; however, there is no evidence of an
association between their ability to control endometrial autophagy and improve infertility.
Therefore, in this review, we discuss the correlation between the regulation of embryo im-
plantation and endometrial autophagy after treatment with natural products. Additionally,
this review suggests a new direction for research on the mechanism of infertility treatment
with natural products.

2. Autophagy

Autophagy plays an important role in maintaining cellular homeostasis and energy
levels. There are at least three forms of autophagy that depend on the cargo delivery system
to the lysosome: macroautophagy, microautophagy, and chaperone-mediated autophagy
(Figure 1). Macroautophagy, which is the primary autophagic pathway, refers to the
formation of autophagosomes to collect cellular material, which subsequently fuses with
lysosomes to break down the material. In contrast, in microautophagy, lysosomes directly
engulf cytoplasmic cargo and degrade the material. Chaperone-mediated autophagy,
which is unique to mammalian cells, involves a cargo recognition complex in the cytosol
(heat shock protein 70 chaperone, Hsp70) and a cargo translation complex at the lysosome
(lysosomal-associated membrane protein type 2A, Lamp2A). Hsp70 recognizes and attaches
to a specific motif sequence in substrate proteins, and then the complex is delivered to
Lamp2A in the lysosome membrane. The substrate protein is translocated to the lysosomal
lumen for degradation by a lysosomal channel formed by Lamp2A [34].
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tophagy, heat shock protein 70 chaperon (Hsp70) recognizes substrate proteins and delivers them 
to lysosomal-associated membrane protein type 2A (Lamp2A) in the lysosome membrane. The 
substrate proteins are translocated to the lysosomal lumen for degradation by lysosomal enzymes. 
Abbreviations: Atg, autophagy-related gene; Lc3, microtubule-associated protein 1 light chain 3; 
PE, phosphatidylethanolamine. 

Figure 1. Three types of autophagy. There are three types of autophagy, depending on the cargo
delivery system to the lysosome. (A) In macroautophagy, cytosolic components are sequestered
within autophagosomes, which subsequently fuse with lysosomes. (B) By contrast, in microau-
tophagy, lysosomes directly sequester the cytosolic components. (C) In chaperone-mediated au-
tophagy, heat shock protein 70 chaperon (Hsp70) recognizes substrate proteins and delivers them
to lysosomal-associated membrane protein type 2A (Lamp2A) in the lysosome membrane. The
substrate proteins are translocated to the lysosomal lumen for degradation by lysosomal enzymes.
Abbreviations: Atg, autophagy-related gene; Lc3, microtubule-associated protein 1 light chain 3; PE,
phosphatidylethanolamine.

Macroautophagy (hereafter referred to as autophagy) removes and recycles intracel-
lular components, such as damaged organelles and unnecessary proteins. Autophagic
activity is low under normal conditions; however, it increases with nutrient starvation,
infection, and accumulation of unused components [35]. Defects in autophagy lead to the
disruption of intracellular homeostasis and have been reported to cause various diseases,
including metabolic and neurodegenerative diseases as well as various types of cancer [36].
Therefore, it is important to understand the molecular basis of autophagy. However, the
physiological roles of autophagy are still not fully understood owing to a lack of methods
for assessing autophagic flux. Therefore, the importance of quantitative assay systems for
autophagic flux has been identified as a critical barrier to understanding autophagy as a
therapeutic target for diverse diseases.
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3. Regulation of Autophagosome Formation

Understanding the molecular basis of the formation and composition of cellular struc-
tures involved in autophagy is vital for improving our understanding of the process. As
autophagy serves as a dynamic recycling machinery that maintains homeostasis for recy-
cling cellular components and damaged organelles, the process is strictly regulated under
physiological and pathological conditions [37]. The most important pathways for regulat-
ing autophagy are the mammalian target of rapamycin (mTOR) and AMP-activated protein
kinase (AMPK) pathways [38,39]. AMPK, a key energy sensor and regulator of cellular
metabolism, activates autophagy in response to ATP deficiency. Conversely, autophagy
is inhibited by mTOR, a central cell-growth regulator that integrates growth factors and
nutrition signals [39]. These two pathways counteract each other through phosphorylation
of different serine residues of Unc-51 like kinase 1 (ULK1) or direct inhibition of mTOR1
by activated AMPK, thereby tightly regulating the initiation of autophagy [38,40]. Diverse
stress conditions, such as nutrition starvation, growth factor deprivation, endoplasmic
reticulum stress, viral infection, genotoxic stress, and oxidative stress, are known as phys-
iological autophagy inducers [41–43]. Among the upstream regulators, liver kinase B1
(LKB1) is a master kinase of AMPK activation and serves as a metabolic checkpoint for
cell growth in low nutrient conditions [44,45]. In addition, other stress conditions such as
reactive oxygen species (ROS), which accumulate during glucose and amino acid depri-
vation, can also activate AMPK through activation of LKB1 or direct S-glutathionylation
of cysteine residues on AMPK [42,46]. Other pathways, including p62/Keap1/Nrf2 and
DNA damage response, also mediate the intercommunication between oxidative stress and
autophagy [42].

Autophagosome formation can be divided into three stages: initiation, nucleation, and
expansion (elongation). The process of autophagosome formation is shown in Figure 2. To
initiate autophagy, the ULK complex (which contains the Ser/Thr kinases ULK1 and/or
ULK2, autophagy-related protein 13 (Atg13), FAK family kinase-interacting protein of
200 kDa (FIP200), and Atg101) and the class III phosphoinositide 3-kinase (PI3K-III) com-
plex, also known as the Beclin1 complex (which is composed of vacuolar protein sorting 34
(Vps34), p150, Beclin1, and Atg14), are required. In mammalian cells, the ULK complex is
bound to mTOR complex 1 (mTORC1) and is inactive under fed conditions. Upon amino
acid starvation, the ULK complex dissociates from mTORC1 and is activated, resulting
in increased kinase activities of ULK1 and ULK2. Next, the ULK complex binds to the
membrane, which is the site of autophagosome initiation, and recruits the complexes for
autophagosome nucleation [47]. The ULK complex phosphorylates the PI3K-III complex,
which is equally important for autophagosome initiation and activates Vps34 lipid kinase.

Following autophagosome initiation, Vps34 generates phosphatidylinositol 3,4,5-
triphosphate (PI3P) on the membrane, which becomes a phagophore. These events drive
the nucleation of the isolation membrane and recruit additional Atg proteins and autophagy-
specific PI3P effectors, such as WD-repeat domain phosphoinositide-interacting 2 (Wipi2)
and double FYVE-containing protein 1 (Dfcp1) [48]. During autophagosome nucleation,
the interaction of PI3P with Wipi2 contributes to phagophore formation.

During expansion, the Atg12-Atg5-Atg16L1 complex (also known as the Atg16L1
complex) is recruited to the membrane, where it lipidates microtubule-associated protein 1
light chain 3 (MAP1-LC3, hereafter referred to as Lc3). Thus, Lc3 is associated with the au-
tophagosomal membrane [49]. The association of cytosolic Lc3 proteins with the membrane
occurs during the expansion of the isolation membrane. Before the closure of the isolation
membrane, which becomes an autophagosome, the Atg proteins are dissociated from the
membrane; however, lipidated Lc3 remains attached [50]. The Lc3 protein is thought to aid
the expansion and closure of the isolation membrane [51,52] and its association with the
autophagosomal membrane provides an important marker for identifying autophagosomes
in cells.
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Figure 2. Autophagosome formation. Autophagosome formation can be divided into three stages.
(A) During initiation, the UNC51-like kinase (ULK) complex is dissociated from mTORC1 and binds
to the autophagosome initiation site. The ULK complex recruits and phosphorylates the class III
phosphoinositide 3-kinase (PI3K-III) complex. (B) During nucleation, the PI3K-III complex generates
phosphatidylinositol 3,4,5-triphosphate (PI3P) on the membrane and recruits autophagy-specific
PI3P effectors, such as WD-repeat domain phosphoinositide-interacting 2 (Wipi2). The interaction of
PI3P with Wipi2 contributes to the phagophore formation. (C) During expansion (elongation), the
Atg12-Atg5-Atg16L1 complex (also known as the Atg16L1 complex) is recruited to the membrane and
lipidates microtubule-associated proteins 1 light chain 3 (Lc3). The pro-form of Lc3 is cleaved at the
carboxyl-terminal (C-terminal) by Atg4 and becomes cytosolic Lc3-I, thereby exposing the C-terminal
glycine residue. Lc3-I is subsequently transferred to the autophagosome by Atg3 and conjugated with
phosphatidylethanolamine (PE) at the C-terminal glycine residue by the Atg16L1 complex, resulting
in the formation of Lc3-II. During the autophagy process, Lc3-II bound to the autophagosomal
inner membrane is degraded by lysosomal enzymes. The expression of genes related to lysosomal
biogenesis and autophagolysosome formation is controlled by a master transcriptional regulator,
TFEB. Abbreviations: AMPK, AMP-activated protein kinase; Atg, autophagy-related gene; ERK,
extracellular signal-regulated kinase; LKB1, liver kinase B1; GSK3β, glycogen synthase kinase-3β;
mTOR, mechanistic target of rapamycin kinase; PKC, protein kinase C; PPP3CB, protein phosphatase
3 catalytic subunit beta; TFEB, transcription factor EB; Vps, vacuolar protein sorting-associated
protein, Lc3, microtubule-associated proteins 1 light chain 3.
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There have been various suggestions regarding the origins of phagophore membranes
and nucleation sites. These include de novo synthesis and pre-existing cellular mem-
branes, such as the endoplasmic reticulum (ER), Golgi, mitochondria, endosomes, and the
plasma membrane. However, recent data suggest that the ER is the most essential site for
phagophore formation and elongation upon amino acid starvation, although the Golgi,
mitochondria, plasma membrane, and endosomes also contribute to these events. The
Golgi apparatus is essential for the trafficking of Atg9-containing vesicles and mitochondria
supply lipid vesicles to the phagophore upon starvation. The plasma membrane is also a
source of phagophore and autophagosome membranes under both basal and starvation
conditions [47].

Lc3, a mammalian homolog of yeast Atg8, is widely used to measure autophagic
activity. In humans, three paralogs of Lc3 have been reported: Lc3a, Lc3b, and Lc3c, which
are encoded by the MAP1LC3A, MAP1LC3B, and MAP1LC3C genes, respectively. The
cellular distribution, molecular function, and regulation of Lc3a and Lc3c have not yet
been studied. Thus, Lc3b is commonly used in autophagy studies [53]. The Lc3 protein
undergoes a series of post-translational modifications. The pro-form of Lc3b is cleaved at
the carboxyl-terminal (C-terminal) by Atg4 and becomes cytosolic Lc3b-I, thereby expos-
ing the C-terminal glycine residue. When autophagy is induced, Lc3b-I is subsequently
transferred to the autophagosome by Atg3 and conjugated with phosphatidylethanolamine
(PE) at the C-terminal glycine residue by the Atg16L1 complex, resulting in the formation
of Lc3b-II [54]. The lipidated Lc3b-II is bound to both the outer and inner membranes of
the autophagosome [55]. During the autophagy process, Lc3b-II bound to the autophago-
somal inner membrane is degraded by lysosomal enzymes, whereas those located in the
autophagosomal outer membrane are released into the cytosol and recycled [56]. Owing to
this property, Lc3b is widely used as an autophagosome marker.

The fusion of autophagolysosomes with lysosomes is indispensable for the completion
of the catabolic process of autophagy [57,58]. Transcription factor EB (TFEB), a member
of the MiTF/TFE3 family, has been regarded as a master transcriptional regulator of lyso-
somal biogenesis [59,60]. The nuclear translocation and transcriptional activity of TFEB
are controlled by the phosphorylation of specific serine residues. When serine residues
including Ser122, Ser142, and Ser211 are phosphorylated, TFEB is inactive and localizes to
the cytoplasm [61]. The Ser211 residue is crucial for binding to the 14-3-3 scaffold protein
and subsequent cytoplasmic sequestration [62]. The phosphorylation of TFEB is mainly
controlled by mTOR kinase and by phosphatase, protein phosphatase 3 catalytic subunit
beta (PPP3CB) [59,63]. Other kinases, such as extracellular signal-regulated kinase (ERK),
glycogen synthase kinase-3β (GSK3β), and Akt, are also involved in the phosphorylation
and cytoplasmic retention of TFEB [60,64,65]. However, the regulatory role of mTOR in
nuclear translocation of TFEB is controversial. The phosphorylation of Ser462, Ser463,
Ser466, Ser467, and Ser469, which are located at the C-terminus of TFEB, drive its nuclear
translocation. These residues can be phosphorylated by mTOR or protein kinase C (PKC)
β [66,67]. TFEB translocated into the nucleus regulates the expression of target genes
bearing the coordinated lysosomal expression and regulation (CLEAR) motif, thereby
participating in the formation and lysosomal fusion of autophagosomes as well as lyso-
somal biogenesis [57,68]. Thus, TFEB activity has been regarded as a potential target for
modulating autophagy and lysosomal function for treating several pathological conditions,
including cancer and neurodegenerative diseases [59,69].

4. Regulation of Embryo Implantation

Pregnancy is a complex, but highly organized process that comprises multiple steps,
including fertilization, implantation, decidualization, placentation, and the birth of off-
spring [70]. During the early stage of pregnancy, the endometrium undergoes major cellular
changes, such as the receptiveness of the endometrial epithelium and decidualization of
endometrial stromal cells (ESCs) [71]. The ability of the endometrium to allow embryo
implantation is referred to as endometrial receptivity [18]. The features of endometrial
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receptivity include histological changes, such as angiogenesis, edema, and enhanced se-
cretory activity of the endometrial glands [19,72]. Decidualization refers to significant
changes occurring in uterine ESCs, including morphological and functional changes in
ESCs, vascular changes to endometrial arteries, extracellular matrix remodeling, and the
appearance of immune cells. Decidualization plays an important role in placental formation
between the uterus and fetus by mediating the invasiveness of trophoblast cells [73].

These complex processes are regulated by diverse factors, including (1) the ovarian
steroid hormones progesterone and estrogen, (2) the cytokines leukemia inhibitory factor
(LIF) and interleukin 6 (IL6), and (3) growth factors such as transforming growth factor-β
(TGF-β) and heparin binding-epidermal growth factor (HB-EGF). These factors regulate
the expression of several integrin molecules. Integrin molecules play a crucial role in
the attachment of blastocysts to the uterine epithelium [74]. During the implantation
period, ovarian steroids facilitate appropriate morphology, function, and development of
the endometrium [75]. The endometrium in the mid-to-late-secretory phase, where the
concentrations of ovarian steroid hormones are highest and implantation occurs, shows
high expression levels of cytokines such as LIF and IL6 [76,77]. Cytokines play an important
role in the adhesion between the endometrium and embryo during implantation and
promote placental development. In particular, diminished secretion of LIF is associated with
recurrent implantation failure (RIF) [78]. TGF-β and HB-EGF are expressed in endometrial
stromal and epithelial cells and have been reported to regulate endometrial cell proliferation
and decidual transformation [74]. The major factors regulating endometrial receptivity and
decidualization are summarized in Figure 3.
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Figure 3. Regulatory factors in embryo implantation. Embryo implantation is regulated by diverse
factors. (A) The ovarian steroid hormones progesterone and estrogen facilitate the appropriate
morphology, function, and development of the endometrium during the implantation period. (B) The
cytokines leukemia inhibitory factor (LIF) and interleukin 6 (IL6) are involved in the regulation of
endometrial receptivity via expressing adhesion molecules, which play a crucial role in the attachment
of the trophoblast to the uterine epithelium. (C) The growth factors transforming growth factor-
β (TGF-β) and heparin binding-epidermal growth factor (HB-EGF) are expressed in endometrial
stromal and epithelial cells to regulate endometrial cell proliferation and decidual transformation.
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Although assisted reproductive technology (ART) has advanced, the implantation
success rates of transferred embryos have not improved sufficiently [20,79]. A variety
of studies, including those on growth factor treatment, immune therapy, platelet-rich
plasma infusion, and intentional endometrial injury, have been conducted to improve the
implantation rate [79–83]. However, there are very limited options for improving improper
endometrial receptivity and decidualization [84]. Thus, more profound approaches are
required to comprehend the molecular basis of embryo implantation and thereby identify
novel therapeutics to improve the implantation rate.

5. Role of Autophagy in Embryo Implantation

Autophagy is a ubiquitous physiological process that plays diverse functions in different
processes and diseases, both in stromal cells and epithelial cells in the endometrium [85–87].
Previously, Peters et al. [12] reviewed the role of autophagy in female infertility related to
aged oocytes and the implication of oxidative stress in autophagy defects in age-related
ovarian dysfunction. However, the role of autophagy in embryo implantation in the uterus
remains largely unknown. During the menstrual cycle, the autophagic levels change dy-
namically. The autophagic level in normal ESCs is significantly higher in the secretory
phase than in the proliferative phase [14]. However, in patients with endometriosis, ESCs in
ectopic endometriosis foci show a constant autophagic level during the menstrual cycle [25].
Therapeutic approaches that inhibit or enhance autophagy have been reported as effective
options in experimental endometriosis using rodent models [24,88–90]. Thus, whether
the autophagic level is higher in normal or endometriotic tissues and whether the thera-
peutics induce or block autophagy are still being debated [91]. Although endometriosis
is closely related to female infertility, in this review we focus on the role of autophagy in
embryo implantation.

Among the processes of orchestrated events that are necessary for a successful preg-
nancy, two of the most critical steps are receptive endometrium and decidualization,
which are required for maternal interactions with the developing embryo [71]. High-fat
diet-induced obesity and palmitic acid treatment impair the decidualization of ESCs by
reducing AMPK and ULK1 expression and decreasing autophagic flux [92]. Deficiency
of folate, a major risk factor for birth defects, reduces the autophagy of endometrial cells,
thereby inhibiting the apoptosis of decidual cells, restraining endometrial decidualization,
and impairing early pregnancy [93].

Several systemic knockout studies have revealed that various ATG-related genes,
including BECN1 (Beclin1), RB1CC1 (FIP200), and AMBRA1, are embryonically lethal with
developmental defects [94–97]. However, the effects of these genes on embryo implantation
have not been sufficiently investigated. Recent studies using genetic abrogation have
shown that the autophagy of endometrial cells is closely involved in embryo implantation
and decidualization [98,99]. Oestreich et al. [98], using a reproductive tract conditional
knockout mouse model of RB1CC1, revealed that the autophagy protein FIP200 plays a
key role in the development of ESCs to decidualized ESCs. They also demonstrated that
Atg16L1 is necessary for proper decidualization and blastocyst implantation using mice
with a hypomorphic allele of the Atg16L1 gene (causes a partial loss of function) [99]. In
addition, cysteine-rich transmembrane BMP regulator 1 (CRIM1) functions as a regulator
of endometrial receptivity at least in part by facilitating Atg7-dependent autophagy in the
goat endometrium [100].

Pharmacological autophagy regulators have been examined to determine whether
they affect the function of endometrial cells. Rapamycin, an autophagy inducer, reverses
the impairment of endometrial decidualization in folate-deficient pregnant mice by disrupt-
ing AMPK/mTOR signaling [101]. In addition, Su et al. [16] suggested that autophagy is
associated with endometrial decidualization during early pregnancy by revealing impaired
uterine decidualization and reduced reproductive rate in female mice treated with the
autophagy inhibitors 3-MA and chloroquine. Moreover, zearalenone, a mycotoxin isolated
from several Fusarium species, blocks autophagic flux by inhibiting the fusion of autophago-
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somes and lysosomes, inducing the apoptosis of endometrial cells, and ultimately leading
to the failure of embryo implantation in young female pigs [102]. Collectively, these reports
indicate that endometrial autophagy is essential for embryo implantation, thereby playing a
crucial role in endometrial receptivity, decidualization, and subsequent fertility sustenance
during early pregnancy (Figure 4).
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Figure 4. Role of autophagy in embryo implantation. Cyclic changes in ovarian steroid hormones, in-
cluding estrogen and progesterone, regulate the growth, differentiation, and apoptosis of endometrial
cells in the different phases of the uterine endometrium. The levels of Lc3-II and flux of autophagy
are increased in the secretory phase, correlating with the level of progesterone. Defects of autophagy
directly affect the receptivity of endometrial epithelium and decidualization of endometrial stromal
cells. Abbreviation: LC3, microtubule-associated proteins 1 light chain 3.

6. Potential Involvement of Autophagic Regulation on the Effect of Natural Products
as Embryo Implantation Enhancer

As summarized above, autophagy is increased in the secretory phase of the menstrual
cycle and plays a key role in embryo implantation by inducing changes in the uterine
endometrium, including endometrial receptivity and decidualization. However, the roles of
autophagy-enhancing natural products have not been thoroughly investigated to improve
embryo implantation. To date, various natural compounds have been screened and reported
as regulators of autophagy [29,30]. Among the various natural compounds that have
been identified as autophagy activators, we selected and organized only natural products
that have been proven to be safe, are approved by the United States Food and Drug
Administration (FDA), and have effects on female fertility (Table 1). Although the direct
mechanisms underlying the correlation between autophagy activation and the efficiency of
female fertility are still unclear, 20 natural products have been suggested as inhibitors or
enhancers of female fertility and have been shown to activate autophagy.

Among these autophagy inducers derived from natural products, 10 compounds,
berberine, brefeldin A, curcumin, chrysin, fisetin, α-mangostin, paeoniflorin, rapamycin,
γ-tocotrienol, and ursolic acid, have been reported to enhance the female fertility rate by
reducing polycystic ovary syndrome (PCOS) and ovarian cell death, protecting the ovary
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from damage, and improving embryo quality and ovarian life span [103–117]. Several of
the 10 natural compounds that improve fertility, including berberine, paeoniflorin, ursolic
acid, and deferoxamine, have been reported to ameliorate endometriosis [103,118–121].
Endometriosis is a major cause of female infertility and is associated with reduced oocyte
quality and implantation failure [122,123].

Of the 20 natural products that we examined, only nine were found to be directly
related to embryo implantation. Four compounds, apigenin, curcumin, genistein, and
quercetin, were identified as antagonists for embryo implantation [124–130]. Four com-
pounds, berberine, emodin, paeoniflorin, and γ-tocotrienol, increased implantation rates
by increasing endometrial receptivity or decidualization [103,116,120,131,132]. In contrast,
resveratrol has been shown to have dual effects as an agonist and antagonist [133,134].
Kuroda et al. [135] compared these reports and concluded that the timing of drug treatment
is important in modulating the decidual response. Resveratrol treatment during the initial
decidual phase (i.e., coinciding with the implantation window in vivo) inhibits decidual
transformation. However, after the initial phase, resveratrol may promote decidualization
by inhibiting decidual senescence. Collectively, the compounds berberine, emodin, paeoni-
florin, and γ-tocotrienol might be potential candidates that can increase the rate of embryo
implantation, although their effectiveness still requires further investigation.

Several studies have been conducted on the pharmacological or genetic abrogation of
autophagy [98–101], and the role of autophagy in embryo implantation has been largely
elucidated. However, the effects of autophagic activators on embryo implantation are not
uniform, although the pathways of autophagy activation by these compounds are similar.
There are several possible reasons for this heterogeneity. First, the off-target effects of
natural products may be different and result in different outcomes. Second, other factors
may exist in the “natural products-autophagy activation-embryo implantation” axis. Finally,
incomplete autophagic flux may be a source of inconsistency. For example, zearalenone
increases Lc3 activation and autophagosome formation, but blocks autophagic flux, thereby
leading to implantation failure in gilt [102]. Therefore, further studies should be conducted
to develop novel drug candidates to reduce implantation failure by inducing autophagy.
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Table 1. Effects of natural product autophagy regulators on female fertility.

Classification Name Chemical Structure Biological Action Autophagy-Related Mode
of Action

Effect on Female
Reproduction References

Acetohydroxamic
acids Deferoxamine
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Table 1. Cont.

Classification Name Chemical Structure Biological Action Autophagy-Related Mode
of Action

Effect on Female
Reproduction References
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7. Possible Role of Autophagy on the Effect of Medicinal Herbal Drugs as Embryo
Implantation Enhancer

As shown in Table 2, traditional herbal medicines have been used to treat female infer-
tility [191]. Several reports have suggested that traditional herbal formulas and medicinal
herbs successfully improve endometrial receptivity and might be an alternative option for
improving the outcome of embryo implantation [192–194]. Many herbal formulas have
been studied for enhancing the embryo implantation rate in animal studies and clinical
study [195–213]. Among these formulas, Erbu Zhuyu decoction and Tokishakuyakusan
(TJ-23, Danggui Shaoyao san in Chinese) have been reported to induce autophagy via the
expression of Beclin1 and LC3 [208,214,215]. However, as the induction of autophagy in
Tokishakuyakusan was not examined in the uterine endometrium, it is not clear whether
autophagy activation is directly related to the enhancement of endometrial receptivity.

Medicinal plants have also been studied to improve the rate of embryo implanta-
tion. Decusirol isolated from Angelica gigas enhanced endometrial receptivity [216] and
Theobroma cacao and American ginseng increased preimplantation potential without any
reproductive toxicity [217,218]. Theobroma cacao was reported as an autophagic inducer
through the activation of sirtuin-1/AMPK signaling in liver and kidney cells [219,220].
However, decusirol blocked autophagic flux by suppressing the expression of the lysoso-
mal enzyme cathepsin C in gastric cancer cells [221]. Our previous studies showed that
several medicinal plants, including Cnidium officinale, Cyperus rotundus, Paeonia lactiflora,
Perilla frutescens var. acuta, and Rehmannia glutinosa var. purpurae, have a positive effect
on improving endometrial receptivity by increasing LIF expression and integrin adhesion
molecules [222–225]. Among these, perillaldehyde from Perilla frutescens var. acuta, and
catalpol from Rehmannia glutinosa var. purpurea induces autophagy by activating AMPK
signaling [226–228]. Cyperus rotundus is also known to induce autophagy by increasing
LC3 and Beclin1 expression [229]. The major active compound responsible for autophagy
activation has not yet been elucidated. In particular, the extract from the roots of P. lactiflora
Pall. improved endometrial receptivity [225]. Paeoniflorin is the main active ingredient
of P. lactiflora for increasing endometrial receptivity via LIF expression [120]. In addition,
paeoniflorin has been reported to induce autophagy and AMPK activation in several types
of cells [114,230,231].

These studies have shown that diverse medicinal plants and herbal formulas enhance
endometrial receptivity and induce autophagy. The proposed autophagic mechanisms of
medicinal formulas and herbal drugs, which are reported as enhancers of embryo implan-
tation, are summarized in Figure 5. However, there is direct evidence that autophagy is
directly related to the implantation-promoting effects of these herbal formulas and medic-
inal herbs. Only Erbu Zhuyu decoction was examined for the expression of autophagic
proteins, Beclin1 and LC3B, in the uterine endometrium. In addition, the major active com-
pounds of medicinal compounds that increase autophagy are largely unknown. Diverse
natural products used for female infertility have potent antioxidant activity [232], therefore
the reduction in oxidative stress could be a possible mechanism underlying their autophagic
regulation and improved embryo implantation. The expression of oxidative stress-related
genes is involved in idiopathic recurrent miscarriage [233]. In patients suffering from RIF,
downregulation of sirtuin-1, a regulator of ROS homeostasis, impeded endometrial decidu-
alization [234]. Resveratrol, an autophagy inducer, restored zearalenone-induced impaired
decidualization through induction of the antioxidative gene glutathione peroxide 3 [235].
However, although oxidative stress can increase autophagy initiation, autophagy also
contributes to the clearance of irreversibly oxidized molecules [42]. Thus, the relationship
between oxidative stress and autophagy remains controversial. To improve our under-
standing of the mode of action of these herbal medicines and to develop novel therapeutic
options to enhance endometrial receptivity, more intensive studies should be performed
from the viewpoint of autophagy.
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pregnancy because they mediate the interaction between the maternal uterus and the 
developing embryo. If the embryo implantation and decidualization processes are un-
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Figure 5. The proposed mechanisms of natural products that enhance embryo implantation. Paeoni-
florin, resveratrol, γ-Tocotrienol, Perilla frutescens, Rehmannia glutinosa, and Theobroma cacao activate
AMPK and thereby induce autophagy. Berberine, Paeonia lactiflora, and Panax quinquefolius inactivates
mTORC1. Berberine, γ-Tocotrienol, Erbu Zhuyu decoction, and Cyperus rotundus reduced Beclin1.
Emodin, γ-Tocotrienol, Erbu Zhuyu decoction, Tokishakuyakusan, and Cyperus rotundus increase LC3
expression and/or its activation. Decusirol isolated from Angelica gigas interferes with autophagic
flux. Abbreviations: AMPK, AMP-activated protein kinase; Atg, autophagy-related gene; mTOR,
mammalian target of rapamycin kinase; Lc3, microtubule-associated proteins 1 light chain 3.
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Table 2. Effect of traditional herbal medicines improving endometrial receptivity on autophagy.

Name Active Components Role in Autophagy References

BaelanChagsangBang - - [236]

Bangdeyun and its component DS147 - - [196,197]

Buganshen recipe - - [198]

BuShenAnTai recipe - - [201]

Bushen Tiaoxue Granules and Kunling
Wan - - [202]

Dingkun Pill - - [206,207,212]

Erbu Zhuyu decoction - Increases the Beclin1 and LC3B [204,208]

Gushen’antai pills - - [195]

Liuwei Dihuang Granule - - [199]

Shoutaiwai recipe - - [200]

Tokishakuyakusan(Danggui Shaoyao san) -
Induces autophagy and mitophagy
via increasing PINK1 and LC3 but

reducing p62
[203,214,215]

Wenshen Yangxue decoction - - [205,211]

Xianziyizhen Recipe - - [237]

Yeosin-san Paeonia lactiflora and
Cyperus rotundus - [213,238]

Yiqixue buganshen recipe - - [198]

Zhuyun recipe - - [210]

Angelica gigas Decusirol Block autophagic flux by suppressing
cathepsin C expression [216,221]

Cnidium officinale - - [239]

Cyperus rotundus - Increases LC3B II/LC3B and Beclin1 [223,229]

Paeonia lactiflora Paeoniflorin Induces autophagy via inhibition of
AKT/mTOR [114,225,230]

Panax quiquefolius (American Ginseng) Ginsenoside Rb1 and
Rg1

Induces autophagy via inhibiting
AKT/mTOR [218,240,241]

Perilla frutescens var. acuta Perilaldehyde Induces autophagy via activating
AMPK [222,228]

Rehmannia glutinosa var. purpurea Catalpol Induces autophagy via activating
AMPK [224,226,227]

Theobroma cacao - Induces autophagy via activating
sirtuin-1/AMPK signaling [217,219,220]

Abbreviations: mTOR, mammalian target of rapamycin kinase; AMPK, AMP-activated protein kinase; LC3,
microtubule-associated protein 1 light chain 3.

Although traditional herbal medicines are generally regarded as safe for use in the
clinic, the scientific basis for safety issues is still insufficient. Several herbal medicines and
essential oils have been reported to cause harmful adverse outcomes, including fetal re-
sorption, teratogenicity, and embryo-fetotoxicity after maternal exposure [242,243]. Among
the medicinal herbs listed in Table 2, Chinese Angelica, a root of the Angelica genus, white
Paeony root, a root of P. lactiflora, and β-elemene, a compound contained in C. rotundus,
have been reported to increase the rate of adverse effects. Several herbal drugs, such as
Lippa citriodora leaves and large head Atractylodes roots, have shown teratogenic adverse
effects [244,245]. In contrast, another study reported that white Paeony root does not induce
any harmful adverse effects up to the highest dose tested of 32 g/kg/day [246]. In addition,
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safety assessment of products containing Angelica extract demonstrated no adverse effects
when used during pregnancy [247,248]. Moreover, the whole extract of Korean ginseng and
American ginseng does not increase harmful adverse effects in pregnant mice [218,249],
although ginsenoside Rb1 retarded early pre- and post-implantation development of mouse
embryos by inducing ROS-mediated apoptosis [250]. To precisely evaluate safety issues,
further good laboratory practice (GLP)-level reproductive toxicity studies should be con-
ducted. Currently, caution should be exercised in the clinical use of medicinal herbal drugs
during pregnancy.

8. Conclusions and Perspective

Successful pregnancy requires a sequence of orchestrated events, including embryo
implantation and decidualization [18,71]. These steps are critical for maintaining early
pregnancy because they mediate the interaction between the maternal uterus and the
developing embryo. If the embryo implantation and decidualization processes are un-
successful or improperly regulated, it may result in the loss of early pregnancy, RIF, or
pre-eclampsia [18,70]. Recent studies have demonstrated that autophagy is elevated in
the secretory phase of the menstrual cycle and is positively related to the formation of the
receptive endometrium [15,16]. Additionally, the decidualization process is mediated by a
highly regulated autophagy process [101]. Thus, autophagy may be a therapeutic target for
improving embryo implantation.

Diverse natural products have been reported to be autophagy inducers, and many
researchers are attempting to find novel therapeutic agents for the treatment of autophagy-
defective diseases, including cancer, neurodegenerative diseases, and aging [29,30,251].
Thus, natural products can be applied to improve the embryo implantation rate in an
autophagy-dependent manner. However, to date, only a few studies have focused on the
topic of autophagy as a major mechanism underlying the improvement of embryo implan-
tation, and thereby the treatment of female infertility by natural products. In addition, the
present autophagy inducers showed limitations due to their low specificity, irregular distri-
bution, and rapid clearance [59]. To encourage the development of novel drug candidates
for treating autophagy-related female infertility, the following two strategies might be help-
ful. Formerly, natural product-based autophagy inducers could be structurally modified to
enhance efficacy, specificity, bioavailability, and safety [252,253]. Nano-delivery of natural
products might be an option to improve aqueous solubility, bioavailability, and distribu-
tion to specific tissues [59,254]. Several studies have shown that natural product-loaded
nanoparticles, including the autophagy inducers resveratrol, quercetin, and curcumin
are promising for the treatment of various diseases such as cancer, inflammation, and
arthritis [255]. Toxicity concerns should be addressed before their clinical use in female
infertility patients.

There are several reasons for the limited scope of this review. First, the mechanism
of embryo implantation is still largely unknown, particularly its relationship with au-
tophagy. Second, there are not many pro-autophagic drug candidates that are safe for
use in early pregnancy. Third, in vivo methods for monitoring autophagic flux have not
been fully developed. Thus, these limitations should be addressed in future studies to
elucidate the precise role of autophagy in embryo implantation and to identify potential
candidates for treating female infertility from the perspective of endometrial receptivity
and decidualization in early pregnancy.
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