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In high-throughput genetics studies, an important aim is to identify gene–environment

interactions associated with the clinical outcomes. Recently, multiple marginal

penalization methods have been developed and shown to be effective in G×E studies.

However, within the Bayesian framework, marginal variable selection has not received

much attention. In this study, we propose a novel marginal Bayesian variable selection

method for G×E studies. In particular, our marginal Bayesian method is robust to

data contamination and outliers in the outcome variables. With the incorporation of

spike-and-slab priors, we have implemented the Gibbs sampler based on Markov Chain

Monte Carlo (MCMC). The proposed method outperforms a number of alternatives in

extensive simulation studies. The utility of the marginal robust Bayesian variable selection

method has been further demonstrated in the case studies using data from the Nurse

Health Study (NHS). Some of the identified main and interaction effects from the real data

analysis have important biological implications.

Keywords: gene-environment interaction, marginal analysis, robust Bayesian variable selection, spike-and-slab

priors, markov chain monte carlo method

1. INTRODUCTION

The risk and progression of complex diseases including cancer, asthma and type 2 diabetes are
associated with the coordinated functioning of genetic factors, the environmental (and clinical)
factors, as well as their interactions (Hunter, 2005; Von Mutius, 2009; Cornelis and Hu, 2012;
Simonds et al., 2016). The identification of important gene–environment(G×E) interactions leads
to novel insight in dissecting the genetic basis of complex diseases in addition to the main effects
of genetic and environmental factors. In the last two decades, searching for the important G×E
interactions has been extensively conducted based on genetic association studies (Cordell and
Clayton, 2005; Wu et al., 2012). One representative example is the genome-wide association
study (GWAS), where the statistical significance of interaction between the environmental
exposure and the genetic variant has been marginally assessed one at a time across the whole
genome. Important findings are evidenced by genome-wide significant p-values after adjusting for
multiple comparisons.

Recently, substantial efforts have been devoted to novel penalized variable selection methods
for G×E studies (Zhou et al., 2021). In particular, marginal penalization has achieved very
competitive performances with the aforementioned significance-based G×E analysis (Shi et al.,
2014; Chai et al., 2017; Zhang et al., 2020). For example, within the framework of maximum rank
correlation, Shi et al. (2014) has developed a penalization method robust to outliers and model
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misspecification in determining important G×E interactions
one at a time. Zhang et al. (2020) has imposed hierarchical
structure between the main effects and interactions in marginal
identification of G×E interactions using regularization. Despite
success, these studies have limitations. First, as a common tuning
parameter is demanded for all the marginal models, its selection
requires pooling all genes together to conduct a joint model-
based cross-validation. While such a strategy is not rare, it
seems not in favor of the marginal nature of the proposed G×E
studies. Second, a rigorous measure to quantify uncertainty is
not available. Zhang et al. (2020) has constructed 95% confidence
intervals based on the observed occurrence index (OOI) values
(Huang and Ma, 2010); nevertheless, this measure has been
used to demonstrate stability of identified effects rather than
quantifying uncertainty of penalized estimates.

These limitations have motivated us to consider Bayesian
analyses. In literature, Bayesian variable selection methods have
been developed for G×E analysis in multiple studies (Zhou
et al., 2021). For example, with indicator model selection, Liu
et al. (2015) has imposed hierarchical Bayesian variable selection
for linear G×E interactions. Li et al. (2015) has proposed a
Bayesian group LASSO to identify non-linear interactions in
nonparametric varying coefficient models. Ren et al. (2020) has
further incorporated selection of linear and nonlinear G×E
interactions simultaneously while accounting for structured
identification in the Bayesian adaptive shrinkage framework. All
these fully Bayesian methods can efficiently provide uncertainty
quantification based on the posterior samples from MCMC.
Nevertheless, our limited literature mining shows that none of
the marginal Bayesian variable selection methods have been
proposed for interaction studies so far.

Historically, marginal analysis has prevailed in G×E
interaction studies within the framework of genetic association
studies. Although recent studies have confirmed the utility of
regularized variable selection in joint G×E analysis, more efforts
are needed for marginal penalizations, especially through the
Bayesian point of view. The step toward marginal Bayesian
variable selection is of particular significance in developing a
coherent framework of analyzing G×E interactions.

Here, we propose a novel marginal Bayesian variable selection
method for the robust identification of G×E interactions. As
heavy-tailed distributions and outliers in the response variable
have been widely observed, robust modeling is essential for
yielding reliable results. Specifically, the robustness of the
proposed method is facilitated by the Bayesian formulation
of the least absolute deviation (LAD) regression, which has
been a popular choice in frequentist G×E studies but seldom
investigated in a similar context from the Bayesian perspective.
We consider the Bayesian LAD LASSO for regularized
identification of interaction effects. As Bayesian LAD LASSO
does not lead to zero coefficients, the spike-and-slab priors
(George and McCulloch, 1993; Ishwaran and Rao, 2005) has
been incorporated to impose exact sparsity in the adaptive
shrinkage framework. The corresponding MCMC algorithm has
been developed to accommodate fast computations. We have
demonstrated the advantage of the proposed robust Bayesian
marginal analysis in simulation. The findings from the case study

of the Nurses’ Health Study (NHS) with SNP measurements have
important biological implications.

2. METHOD

We use Y to denote a continuous response variable representing
the cancer outcome or disease phenotype. Let X = (X1, . . . ,Xp)
be the p genetic variants, E = (E1, . . . ,Eq) be the q environmental
factors and C = (C1, . . . ,Cm) be the m clinical factors. We
denote the ith subject with i. Let (Yi, Ei, Ci, Xi) (i = 1, . . . , n)
be independent and identically distributed random vectors. For
Xij (j = 1, . . . , p), the measurement of the jth genetic factor on
the ith subject considers the following marginal model:

Yi =
q

∑

k=1

αkEik +
m

∑

t=1

γtCit + βjXij +
q

∑

k=1

ηjkXijEik + ǫi

=
q

∑

k=1

αkEik +
m

∑

t=1

γtCit + βjXij + ηjW̃i + ǫi,

(1)

where αk’s and γt ’s are the regression coefficients corresponding
to effects of environmental and clinical factors, respectively. For
the jth gene Xj (j = 1, . . . , p), the G×E interactions effects

are defined with Wj = (XjE1, . . . ,XjEq), ηj = (ηj1, . . . , ηjq)
T .

With a slight abuse of notation, denote W̃ = Wj. The βj’s and
ηjk’s are the regression coefficients of the genetic variants and
G×E interactions effects, correspondingly. Let us denote α =
(α1, . . . ,αq)

T and γ = (γ1, . . . , γm)
T . Then model (1) can be

written as:

Yi = Eiα + Ciγ + Xijβj + W̃iηj + ǫi. (2)

2.1. Bayesian Formulation of the LAD
Regression
The necessity of accounting for robustness in interaction studies
has been increasingly recognized (Zhou et al., 2021). Within the
frequentist framework, it is essentially dependent on adopting a
robust loss function to quantify lack of fit (Wu and Ma, 2015).
Among a variety of popular robust losses, the least absolute
deviation (LAD) loss function is well known for its advantages
in dealing with heavy-tailed error distributions or outliers in
response. The estimation of regression coefficients amounts to
the following minimization problem:

min
α,γ ,βj ,ηj

n
∑

i=1

|Yi − Eiα − Ciγ − Xijβj − W̃iηj|.

Here, we propose the robust marginal Bayesian variable selection
based on LAD. As the Laplace distribution is equivalent to the
mixture of an exponential distribution and a scaled normal
distribution (Kozumi and Kobayashi, 2011), for a Bayesian
formulation of LAD regression, we assume that ǫi(i = 1, . . . , n)
are i.i.d. random variables following the Laplace distribution
with density:

f (ǫi|τ ) =
τ

2
exp(−τ |ǫi|),
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where τ is the inverse of the scale parameters from the Laplace
density. Then the likelihood function of our marginal G×E
model can be expressed as:

f (Y|α, γ ,βj, ηj) =
n

∏

i=1

τ

2
exp(−τ |Yi−Eiα−Ciγ −Xijβj−W̃iηj|).

The above formulation using Laplace distribution is a special case
of the asymmetric Laplace distribution, which has been widely
adopted in Baysian quantile regression (Yu and Moyeed, 2001;
Yu and Zhang, 2005). In Baysian quantile regression, ǫi’s are
assumed to follow the skewed Laplace distribution with density

f (ǫ|τ ) = θ(1− θ)τexp(−τρθ (ǫ)),

where ρθ (ǫ) = ǫ{θ − I(ǫ < 0)} is the check loss function. The
random errors can be written as

ǫi = ξ1vi + τ−1/2ξ2
√
vizi,

where

ξ1 =
1− 2θ

θ(1− θ)
and ξ2 =

√

2

θ(1− θ)

with quantile level θ ∈ (0, 1), vi∼exp(τ−1), and zi∼N(0, 1).
The Bayesian LAD regression is a special case of Bayesian

quantile regression (Li et al., 2010) with θ=0.5, resulting in that
ξ1 = 0 and ξ2 =

√
8. Therefore, the response Yi can be written as:

Yi = µi + τ−1/2ξ2
√
vizi,

vi|τ iid
∼ τexp(−τvi),

zi
iid
∼ N(0, 1),

(3)

where µi = Eiα + Ciγ + Xijβj + W̃iηj.

2.2. Bayesian LAD LASSO With
Spike-and-Slab Priors
In model (1), the coefficients βj and ηj correspond to the main
and interaction effects with respect to the jth genetic variant,
respectively. When βj = 0 and ηj = 0, the genetic variant has
no effect on the phenotype. A non-zero βj suggests the presence
of main genetic effect. For ηj, if at least one of its component
is not zero, then the G×E interaction effect exists. In literature,
Bayesian quantile LASSO, with Bayesian LAD LASSO as its
special case, has been proposed to conduct variable selection
(Li et al., 2010). However, a major limitation is that Bayesian
quantile LASSO cannot shrink regression coefficients to 0 exactly,
resulting in inaccurate identification and biased estimation. To
overcome such a limitation, we incorporate spike-and-slab priors
to impose sparsity within Bayesian LAD LASSO framework
as follows.

For the jth gene (j = 1, . . . , p), the marginal LAD LASSO
model is given by

n
∑

i=1

|Yi − Eiα − Ciγ − Xijβj − W̃iηj| + λ1|βj| + λ2

q
∑

k=1

|ηjk|.

Let ϕ1 = τλ1 and ϕ2 = τλ2. Then the conditional Laplace
prior on the coefficient of main effect βj can be expressed as scale
mixtures of normals:

π(βj|τ , λ1) =
ϕ1

2
exp{−ϕ1|βj|}

=
∫ ∞

0

1√
2πs1

exp(−
β2
j

2s1
)
ϕ2
1

2
exp(

−ϕ2
1

2
s1)ds1.

The conditional Laplace prior on the coefficients of interaction
effect ηj can be written as:

π(ηj|τ , λ2) =
q

∏

k=1

ϕ2

2
exp{−ϕ2|ηjk|}

=
q

∏

k=1

∫ ∞

0

1√
2πs2

exp(−
η2
jk

2s2
)
ϕ2
2

2
exp(

−ϕ2
2

2
s2)ds2.

Therefore, we consider the following hierarchical formulation for
the marginal G×E model:

βj|s1,π1∼(1− π1)N(0, s1)+ π1δ0(βj),

s1|ϕ2
1∼

ϕ2
1

2
exp(−ϕ2

1

2
s1),

ηjk|s2k,π2
iid
∼ (1− π2)N(0, s2k)+ π2δ0(ηjk)(k = 1, . . . , q),

s2k|ϕ2
2
iid
∼

ϕ2
2

2
exp(−ϕ2

2

2
s2k)(k = 1, . . . , q),

(4)

where δ0(βj) and δ0(ηjk) denote the spike at 0, respectively,
and the slab distributions are represented by two normal
distributions, N(0, s1) and N(0, s2k). Here, π1 ∈ [0, 1] and π2 ∈
[0, 1]. The mixture of the spike and slab components facilitate
the selection of main and interaction effects. Instead of setting
π1 and π2 to a fixed value such as 0.5, we assign conjugate beta
priors on them as π1∼Beta(r1, u1) and π2∼Beta(r2, u2), which
account for the uncertainty in π1 and π2. In this paper, we choose
r1 = u1 = r2 = u2 = 1 as it gives a prior mean with 0.5 and it
also allows a prior to spread out.

In addition, the normal prior has been placed on the
coefficients of environmental factor αk(k = 1, . . . , q) and clinical
factor γt(t = 1, . . . ,m) as:

αk
iid
∼

1√
(2πα0)

exp(−
α2
k

2α0
)(k = 1, . . . , q)

γt
iid
∼

1
√

(2πγ0)
exp(− γ 2

t

2γ0
)(t = 1, . . . ,m),

We also assume conjugate Gamma priors on τ , ϕ2
1 and ϕ2

2 with

τ∼Gamma(a, b),

ϕ2
1∼Gamma(c1, d1),

ϕ2
2∼Gamma(c2, d2).

In typical G×E studies, the environmental and clinical factors are
of low dimensionality and the selection of them is not of interest.
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Therefore, the sparsity-inducing priors have not been adopted
for these factors. We consider the Bayesian LAD LASSO type of
regularization in the proposed study as published studies have
demonstrated that baseline penalty such as MCP and LASSO
work well for marginal variable selection (Shi et al., 2014; Chai
et al., 2017).

It is noted that Zhang et al. (2020) has proposed a marginal
sparse group MCP to respect the strong hierarchy between main
and interaction effects. Their results are promising when long
tailed distributions and outliers are not present in the response
variable. Although sparse group (or, bi-level) variable selection
has been demonstrated as being very effective in multiple G×E
studies based on joint models (Zhou et al., 2021), in our study,
there is only one group per each marginal model. The sparse
group no longer has significant advantages over individual level
selection. Therefore, it has not been considered here.

Our model respects the weak hierarchy of “main effects,
interactions.” If imposing the strong hierarchy is needed, the
genetic factor, once it is not selected given the presence of
corresponding interaction effects, can be added back to the
identified marginal model for a refit to impose strong hierarchy
(Chai et al., 2017). While such a practice is not uncommon
in marginal interaction studies, Shi et al. (2014) has also
revealed satisfactory performance when strong hierarchy has not
been pursued.

2.3. The Gibbs Sampler for Robust
Marginal G×E Analysis
For the jth genetic factor, the joint posterior distribution of all the
unknown parameters conditional on data can be expressed as

π(α, γ ,βj, ηj, v, s1, s2, τ ,ϕ1,ϕ2,π1,π2, zi|Y)

∝
n

∏

i=1

1
√

2πτ−1ξ 22 vi

exp
{

−
(yi − Eiα − Ciγ − Xijβj − W̃iηj)

2

2τ−1ξ 22 vi

}

×
n

∏

i=1

τexp(−τvi)τ
a−1exp(−bτ )

1√
2π

exp(−1

2
z2i )

×
q

∏

k=1

1√
(2πα0)

exp(−
α2
k

2α0
)

×
m

∏

t=1

1
√

(2πγ0)
exp(− γ 2

t

2γ0
)

×
(

(1− π1)(2πs1)
−1/2exp(−

β2
j

2s1
)I{βj 6=0} + π1δ0(βj)

)

×
q

∏

k=1

(

(1− π2)(2πs2k)
−1/2exp(−

η2
jk

2s2k
)I{ηjk 6=0} + π2δ0(ηjk)

)

× ϕ2
1

2
exp(−ϕ2

1

2
s1)

×
q

∏

k=1

ϕ2
2

2
exp(−ϕ2

2

2
s2k)

× (ϕ2
1)

c1−1exp(−d1ϕ
2
1)

× (ϕ2
2)

c2−1exp(−d2ϕ
2
2)

× π
r1−1
1 (1− π1)

u1−1

× π
r2−1
2 (1− π2)

u2−1

Let µ(−αk) = E(yi) − Eikαk, (i = 1, . . . , n), (k = 1, . . . , q),
representing the mean effect without the contribution of Eikαk.
The posterior distribution of the coefficient of environmental
factor αk conditional on all other parameters can be expressed as:

π(αk|rest)
∝ π(αk)π(Y|·)

∝ exp
{

−
n

∑

i=1

(yi − Eiα − Ciγ − Xijβj − W̃iηj)
2

2τ−1ξ 22 vi

}

× exp(−
α2
k

2α0
)

∝ exp
{

− 1

2

[

(

n
∑

i=1

τE2
ik

ξ 22 vi
+ 1

α0
)α2

k

− 2

n
∑

i=1

τ (yi − µ(−αk))Eik

ξ 22 vi
αk

]

}

.

Hence, the full conditional distribution of αk is normal
distribution N(µαk , σ

2
αk
)with mean

µαk =
(

n
∑

i=1

τ (yi − µ(−αk))Eik

ξ 22 vi

)

σ 2
αk
,

and variance

σ 2
αk

=
(

n
∑

i=1

τE2
ik

ξ 22 vi
+ 1

α0

)−1
.

The posterior distribution of the coefficient of clinical factor
γt(t = 1, . . . ,m) conditional on all other parameters can be
obtained in similar way. Let µ(−γt) = E(yi) − Citγt , i =
1, . . . , n, then

γt|rest∼N(µγk , σ
2
γt
),

where

µγt =
(

n
∑

i=1

τ (yi − µ(−γt))Cit

ξ 22 vi

)

σ 2
γt
,

σ 2
γt
=

(

n
∑

i=1

τC2
it

ξ 22 vi
+ 1

γ0

)−1
.

Let µ(−βj) = E(yi) − Xijβj and l1 = π(βj = 0|rest), the
conditional posterior distribution of the coefficient of genetic
factor βj is a spike-and-slab distribution:

βj|rest∼(1− l1)N(µβj , σ
2
βj
)+ l1δ0(βj), (5)
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where

µβj =
(

n
∑

i=1

τ (yi − µ(−βj))Xij

ξ 22 vi

)

σ 2
βj
,

σ 2
βj
=

(

n
∑

i=1

τX2
ij

ξ 22 vi
+ 1

s1

)−1
.

We can show that

l1 =
π1

π1 + (1− π1)s
−1/2
1 (σ 2

βj
)1/2exp{ 12 (

∑n
i=1

τ (yi−µ(−βj)
)Xij

ξ22 vi
)2σ 2

βj
}
.

The posterior distribution of βj is a mixture of a normal
distribution and a point mass at 0. That is, at each iteration of
MCMC, βj is drawn from N(µβj , σ

2
βj
) with probability (1 − l1)

and is set to 0 with probability l1.
Similarly, the posterior distribution of the interaction of the

jth gene and environmental factors ηjk(k = 1, . . . , q) is also a
spike-and-slab distribution. Denoteµ(−ηjk) = E(yi)−Wikηjk and

l2k = π(ηjk = 0|rest), ηjk follows this distribution:

ηjk|rest∼(1− l2k)N(µηjk , σ
2
ηjk
)+ l2kδ0(ηjk), (6)

where

µηjk =
(

n
∑

i=1

τ (yi − µ(−ηjk))W̃ik

ξ 22 vi

)

σ 2
ηjk
,

σ 2
βj
=

(

n
∑

i=1

τW̃2
ik

ξ 22 vi
+ 1

s2k

)−1
.

And

l2k =
π2

π2 + (1− π2)s
−1/2
2k

(σ 2
ηjk
)1/2exp{ 12 (

∑n
i=1

τ (yi−µ(−ηjk)
)W̃ik

ξ22 vi
)2σ 2

ηjk
}
. (7)

The full conditional posterior distribution of s1 is:

s1|rest
∝ π(βj|s1,π1)π(s1|ϕ2

1)

∝
(

(1− π1)(2πs1)
−1/2exp(−

β2
j

2s1
)I{βj 6=0}

+ π1δ0(βj)
)

exp(−ϕ2
1

2
s1).

(8)

When βj = 0, equation (8) is proportional to exp(−ϕ2
1
2 s1).

Therefore, the posterior distribution of s1 is exp(
ϕ2
1
2 ).

When βj 6= 0, equation (8) is proportional to

1
√
s1
exp(−ϕ2

1

2
s1)exp(−

β2
j

2s1
)

∝ 1
√
s1
exp

{

− 1

2
[ϕ2

1 s1 +
β2
j

s1
]}.

Therefore, when βj 6= 0, the posterior distribution for s−1
1 is

Inverse-Gaussian(

√

ϕ2
1

β2
j

,ϕ2
1).

Similarly, for s2k(k = 1, . . . , q), when ηjk = 0, the posterior

distribution of s2k is exp(
ϕ2
2
2 ). When ηjk 6= 0, the posterior

distribution for s−1
2k

is Inverse-Gaussian(

√

ϕ2
2

η2
jk

,ϕ2
2).

The full conditional posterior distribution of ϕ2
1 :

ϕ2
1 |rest
∝ π(s1|ϕ2

1)π(ϕ
2
1)

∝ ϕ2
1

2
exp(−ϕ2

1 s1

2
)(ϕ2

1)
c1−1exp(−d1ϕ

2
1)

∝ (ϕ2
1)

c1exp
(

− ϕ2
1(s1/2+ d1)

)

.

Therefore, the posterior distribution for ϕ2
1 is Gamma (c1 +

1, s1/2+d1). Similarly, the posterior distribution for ϕ2
2 is Gamma

(c2 + q,
∑q

k=1
s2k/2+ d2).

The full conditional posterior distribution of π1 is given as:

π1|rest
∝ π(s1|ϕ2

1)π(ϕ
2
1)

∝ π
r1−1
1 (1− π1)

u1−1

×
(

(1− π1)(2πs1)
−1/2exp(−

β2
j

2s1
)I{βj 6=0} + π1δ0(βj)

)

.

Then, the posterior distribution for π1 is Beta (1 + r1 −
I(βj 6= 0), u1 + I(βj 6= 0)).

The full conditional posterior distribution of π2 is given as:

π2|rest
∝ π(s2|ϕ2

2)π(ϕ
2
2)

∝ π
r2−1
2 (1− π2)

u2−1

×
q

∏

k=1

(

(1− π2)(2πs2k)
−1/2exp(−

η2
jk

2s2k
)I{ηjk 6=0} + π2δ0(ηjk)

)

.

So, the posterior distribution for π2 is Beta (1 + r1 −
∑q

k=1
I(ηjk 6= 0), u1 +

∑q

k=1
I(ηjk 6= 0)).

The full conditional posterior distribution of τ is given as:

τ |rest
∝ π(v|τ )π(τ )π(Y|·)

∝ τn/2 exp
{

−
n

∑

i=1

(yi − Eiα − Ciγ − Xijβj − W̃iηj)
2

2τ−1ξ 22 vi

}

× τnexp(−τ

n
∑

i=1

vi)τ
a−1exp(−bτ )

∝ τ a+
3
2 n−1exp

{

− τ
[

n
∑

i=1

(
(yi − Eiα − Ciγ − Xijβj − W̃iηj)

2

2ξ 22 vi

+ vi)+ b
]

}

.
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Therefore, the posterior distribution for τ is Gamma(a +
3
2n,

[
∑n

i=1(
(yi−Eiα−Ciγ−Xijβj−W̃iηj)

2

2ξ22 vi
+ vi)+ b

]

).

Last, we have the full conditional posterior distribution of vi:

vi|rest
∝ π(v|τ )π(Y|·)

∝ 1
√
vi

exp
{

−
(yi − Eiα − Ciγ − Xijβj − W̃iηj)

2

2τ−1ξ 22 vi

}

× exp(−τvi)

∝ 1
√
vi

exp
{

− 1

2

[

(2τ )vi

+
τ (yi − Eiα − Ciγ − Xijβj − W̃iηj)

2

ξ 22 vi

]

}

.

It is easy to show that

1

vi
|rest∼ Inverse-Gaussian

(

√

2ξ 22

(yi − Eiα − Ciγ − Xijβj − W̃iηj)2
, 2τ ).

The spirit of marginal penalization for G×E interactions lies
in the usage of a common sparsity cutoff to determine a list
of important main and interaction effects. Instead of focusing
on a fixed cutoff, varying the cutoff can generate different lists,
resulting in a comprehensive view of important findings. The
tuning parameter in penalized estimation serves as the cutoff.
Therefore, the same tuning parameter has to be adopted for
all the sub-models (Shi et al., 2014; Chai et al., 2017; Zhang
et al., 2020). To further justify such a common tuning parameter,
Zhang et al. (2020) has attempted using the joint model to
select the common tuning through cross-validation. However,
this seems not coherent with the nature of marginal analysis.

Ideally, the tuning parameter should be determined by
each model itself to allow for flexibility in controlling
sparsity individually, and a common cutoff is still available to
examine different lists of important effects. With the Bayesian
formulation, we can avoid such a limitation of frequentist
marginal penalization methods. In particular, the priors have
been placed on regularization parameters to determine the
sparsity in a data-driven manner for each sub-model. With
the spike-and-slab priors, the posterior distributions on the
coefficients of main and interaction effects naturally lead to the
usage of inclusion probability as a common cutoff to pin down
the list of important effects, which is described in detail in the
next section.

3. SIMULATION

To demonstrate the utility of the proposed approach, we
evaluate the performance through simulation study. In particular,
we compare the performance of the proposed method, LAD
Bayesian Lasso with spike-and-slab priors (denoted as LADBLSS)
with three alternatives, LADBayesian Lasso (denoted as LADBL),

Bayesian Lasso with spike-and-slab priors (denoted as BLSS)
and Bayesian Lasso (denoted as BL). LADBL is similar to the
proposed method, except that it does not adopt the spike-
and-slab prior. The details of posterior inference are given in
the Appendix.

Under all settings, the sample size is set as n = 200, and
the number of G factors is p = 500 with q = 4, m = 3. For
environmental factors, we simulate four continuous variables
from multivariate normal distributions with marginal mean
0, marginal variance 1 and AR1 correlation structure with
ρ = 0.5. In addition, three clinical factors are generated from
a multivariate normal distribution with marginal mean 0 and
marginal variance 1 and AR1 structure with ρ = 0.5. Among
the p main G effects and pq G×E interactions, 8 and 12 effects
are set as being associated with the response, respectively. All the
environmental and clinical factors are important with nonzero
coefficients, which are randomly generated from a uniform
distribution Unif[0.1, 0.5]. The random error are generated
from: (1) N(0, 1)(Error 1), (2) t-distribution with 2 degrees
of freedom (t(2)) (Error2), (3) LogNormal(0,2)(Error3),
(4) 90%N(0,1)+10%Cauchy(0,1)(Error4), (5)
80%N(0,1)+20%Cauchy(0,1)(Error5). All of them are
heavy-tailed distribution except the first one.

In addition, the genetic factors are simulated in the following
four settings.

Setting 1: In simulating continuous genetic variants, we
generate multivariate normal distributions with marginal mean
0 and variance 1. The AR structure is considered in computing
the correlation of G factors, under which gene j and k have
correlation ρ|j−k| with ρ = 0.5.

Setting 2: We assess the performance under single-nucleotide
polymorphism (SNP) data. The SNPs are obtained by
dichotomizing the gene expression values at the 1st and
3rd quartiles, with the 3 levels (0,1,2) for genotypes (aa, Aa,
and AA). Here, the gene expressions are generated from the
first setting.

Setting 3: Consider simulating the SNP data under a pairwise
linkage disequilibrium (LD) structure. For the two minor alleles
A and B of two adjacent SNPs, let q1 and q2 be the minor
allele frequencies (MAFs). The frequencies of four haplotypes
are as pAB = q1q2 + δ, pab = (1 − q1)(1 − q2) + δ, pAb =
q1(1 − q2) − δ, and paB = (1 − q1)q2 − δ, where δ denotes the
LD. Assuming Hardy–Weinberg equilibrium and given the allele
frequency for A at locus 1, we can generate the SNP genotype
(AA, Aa, aa) from a multinomial distribution with frequencies
(q21, 2q1(1 − q1), (1 − q1)

2). Based on the conditional genotype
probability matrix, we can simulate the genotypes for locus 2.
With MAFs 0.3 and pairwise correlation r = 0.6, we have δ =
r
√

q1(1− q1)q2(1− q2).
We collect the posterior samples from the Gibbs Sampler with

10,000 iterations and discard the first 5,000 samples as burn-
ins. The posterior medians are used to estimate the coefficients.
For approaches incorporating spike-and-slab priors, we consider
computing the inclusion probability to indicate the importance
of predictors. Here, we use a binary indicator φ to denote that
the membership of the non-spike distribution. Take the main
effect of the jth genetic factor, Xj, as an example. Suppose we

Frontiers in Genetics | www.frontiersin.org 6 December 2021 | Volume 12 | Article 667074

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Lu et al. Robust Marginal Bayesian Analysis

have collected H posterior samples from MCMC after burn-ins.
The jth G factor is included in the marginal G×E model at the
hth MCMC iteration if the corresponding indicator is 1, i.e.,

φ
(h)
j = 1. Subsequently, the posterior probability of retaining the

jth genetic main effect in the final marginal model is defined as
the average of all the indicators for the jth G factor among the H
posterior samples. That is,

pj = π̂(φj = 1|y) = 1

H

H
∑

h=1

φ
(h)
j , j = 1, . . . , p.

A larger posterior inclusion probability pj indicates a stronger
empirical evidence that the jth genetic main effect has a non-zero
coefficient, i.e., a stronger association with the phenotypic trait.

To comprehensively assess the performance of the proposed
and alternative methods, we consider a sequence of probabilities
as cutting-offs in inclusion probability for methods with
spike-and-slab priors. Given a cutoff probability, the main or
interaction is included in the final marginal model if its posterior
inclusion probability is larger than the cutoff, and is excluded
otherwise. Provided with a sequence of cutting-off probabilities
from small to large, we can investigate the set of identified effects
and calculate the true/false positive rates (T/FPR) as the ground
truth is known in simulation. For the sequence of cut-offs, we are
able to compute the area under curve (AUC) as a comprehensive
measure. Besides, for methods without spike-and-slab priors, the
confidence level of the credible intervals can be adopted as the
cut-off to compute TPR and FPRs. Therefore, all the methods
under comparison can be evaluated on the same ground.

In addition, we also consider Top100, which is defined as
the number of true signals when 100 important main effects
(or interactions) are identified. For methods with spike-and-
slab priors, 100 main effects or interactions are chosen with
the highest inclusion probabilities. For methods without spike-
and-slab priors, the indicators of all effects are computed
for a sequence of credible levels. The top 100 main effects
or interactions are chosen in terms of the highest average
identification values.

Simulation results for the gene expression data in the first
setting are tabulated in Tables 1, 2. We can observe that
the proposed method has the best performance among all
approaches, especially when the response variable has heavy-
tailed distributions. First, the performance of methods with
spike-and-slab priors is consistently better than methods without
spike-and-slab priors. For example, in Table 1, under error 3,
the AUC of LADBLSS is 0.9558 (sd 0.0161), which is much
larger than that of the robust method without spike-and-slab
priors, i.e., 0.8432(sd 0.0115) from LADBL. Also, the AUC of
robust methods is much larger than that of non-robust methods,
especially in the presence of heavy-tailed errors. For instance, in
the first setting under error 3, the AUC of LADBLSS is 0.9558
and the AUC of LADBL is 0.8432 while that of BLSS and BL
is around 0.5. Similar advantageous performance can also be
observed from the identification results with Top100. In Table 2

under error 5, LADBLSS identifies 7.80 (sd 0.55) out of the 8
main effects and 10.53 (sd 1.36) out of the 12 interaction effects.

TABLE 1 | Simulation results of the first setting for BL (Bayesian LASSO), BLSS

(Bayesian LASSO with spike-and-slab priors), LADBL (LAD Bayesian LASSO), and

LADBLSS (LAD Bayesian LASSO with spike-and-slab priors).

BL BLSS LADBL LADBLSS

Error 1 AUC 0.9182 0.9901 0.9258 0.9887

N(0,1) SD 0.0052 0.0021 0.0076 0.0026

Error 2 AUC 0.8332 0.9420 0.9004 0.9841

t(2) SD 0.0107 0.0235 0.0078 0.0031

Error 3 AUC 0.5343 0.5473 0.8432 0.9558

Lognormal(0,2) SD 0.0144 0.0576 0.0115 0.0161

Error 4 AUC 0.8221 0.9124 0.9222 0.9895

90%N(0,1) + 10%Cauchy(0,1) SD 0.0212 0.0410 0.0071 0.0024

Error 5 AUC 0.7507 0.8431 0.9192 0.9904

80%N(0,1) + 20%Cauchy(0,1) SD 0.0217 0.0633 0.0059 0.0018

AUC (mean of AUC) and SD (sd of AUC) based on 100 replicates. n = 200, p = 500, q =

4, and m = 3.

This is higher than the results of LADBL with 7.57 (sd 0.57)
of main effects and 6.83 (sd 1.07) of interaction effects. Second,
among all the methods with spike-and-slab priors, Bayesian LAD
method with spike-and-slab priors has the best performance in
all identification results. Under error 3, in Table 1, the AUC
of LADBLSS is 0.9558(sd 0.0161) while the AUC of BLSS is
0.5473(sd 0.0576). Under error 4 in Table 2, LADBLSS identifies
7.77(sd 0.57) main effects and 10.67(sd 1.50) interaction effects
while BLSS identifies 6.2(sd 2.62) main effects and 8.3(sd 3.98)
interaction effects, respectively.

Similar patterns can be observed in Tables 4, 5 in Appendix

for the second setting, and Tables 6, 7 in Appendix for the third
setting in Appendix. We have also investigated the performance
of when n = 2,000 under setting 1. While the difference among
the 4 methods significantly diminishes with such a large sample
size, we can still observe the superior performance of LADBLSS
by using a shorter list of top ranked effects. The results are
provided in the table from Supplementary Material. Overall, the
advantages of conducting robust Bayesian G×E analysis using
the proposed approach can be justified based on the results
of comprehensive simulation studies. The convergence of the
MCMC chains with the potential scale reduction factor (PSRF)
(Brooks and Gelman, 1998) has been conducted. In this study,
we use PSRF ≤ 1.1 (Gelman et al., 2004) as the cut-off point,
which indicates that chains converge to a stationary distribution.
The convergence of chains after burn-ins has been checked for
all parameters with the value of PSRF <1.1. Figure 1 shows
the convergence pattern of PSRF for the main and interaction
coefficients of the first genetic factors in Example 1 under error 3.

In simulation, the hyperparameters for the Gamma priors and
Beta priors specified in section Bayesian LADLASSOWith Spike-
and-slab Priors are set to 1. In addition, the initial values of the
regression parameters are also set to 1. Based on our experiments,
the results and convergence of the MCMC algorithm are not
sensitive to the choice of these parameters. We have observed
satisfactory convergence for all of our simulations. For one
simulated dataset under the first setting with n = 200, p = 500

Frontiers in Genetics | www.frontiersin.org 7 December 2021 | Volume 12 | Article 667074

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Lu et al. Robust Marginal Bayesian Analysis

TABLE 2 | Identification results of the first setting with Top100 method for BL

(Bayesian LASSO), BLSS (Bayesian LASSO with spike-and-slab priors), LADBL

(LAD Bayesian LASSO) and LADBLSS (LAD Bayesian LASSO with

spike-and-slab priors).

Main Interaction Total

Error 1 BL 7.60(0.49) 6.80(1.6) 14.40(1.73)

N(0,1) BLSS 7.80(0.41) 10.80(0.92) 18.60(1.13)

LADBL 7.67(0.55) 6.53(1.85) 14.20(1.81)

LADBLSS 7.76(0.5) 10.53(1.36) 18.30(1.49)

Error 2 BL 6.37(1.90) 3.90(2.07) 10.27(3.19)

t(2) BLSS 6.33(1.63) 8.53(2.46) 14.87(3.71)

LADBL 7.43(0.94) 5.80(1.71) 13.23(2.01)

LADBLSS 7.53(0.51) 9.90(1.56) 17.43(1.76)

Error 3 BL 0.90(1.21) 0.50(0.97) 1.40(1.45)

Lognormal(0,2) BLSS 0.73(0.94) 0.47(0.68) 1.20(1.35)

LADBL 6.27(1.55) 3.67(1.94) 9.93(2.75)

LADBLSS 6.10(1.37) 8.93(2.02) 15.03(3.09)

Error 4 BL 5.57(2.99) 3.63(2.53) 9.20(5.05)

90%N(0,1) BLSS 6.20(2.62) 8.30(3.98) 14.50(6.39)

+10%Cauchy(0,1) LADBL 7.77(0.43) 7.00(1.93) 14.77(1.81)

LADBLSS 7.77(0.57) 10.67(1.50) 18.23(1.67)

Error 5 BL 5.07(2.89) 3.00(2.49) 8.07(5.01)

80%N(0,1) BLSS 4.60(3.25) 5.70(4.23) 10.30(7.27)

+20%Cauchy(0,1) LADBL 7.57(0.57) 6.83(1.07) 14.40(1.83)

LADBLSS 7.80(0.55) 10.53(1.36) 18.33(1.69)

Mean(sd) based on 100 replicates. n = 200, p = 500, q = 4, and m = 3.

and standard normal error, the CPU time (in minutes) for fitting
all the 500 marginal models through 10,000 MCMC iterations on
a laptop with standard configurations are 1.27(BL), 1.75(BLSS),
6.16(LADBL), and 5.95 (LADBLSS) minutes, respectively. The
source codes of implementing all the methods under comparison
are included in the Supplementary Material.

4. REAL DATA ANALYSIS

In this study, we analyze the type 2 diabetes (T2D) data from
Nurses’ Health Study (NHS), which is a well-characterized
cohort study of women with high-dimensional SNP data, as
well as measurements on lifestyle and dietary factors. We
consider SNPs on chromosome 10 to identify main and gene–
environment interactions associated with weight, which is an
important phenotypic trait related to type 2 diabetes. Here,
weight is used as response and five environment factors, age
(age), total physical activity (act), trans fat intake (trans), cereal
fiber intake (ceraf), and reported high blood cholesterol (chol),
are considered. Data are available on 3,391 subjects and 17,016
gene expressions after cleaning the raw data through matching
phenotypes and genotypes and removing SNPs with MAF <0.05.
A prescreening is done before downstream analysis. We use a
marginal linear model with weight as response and age, act,
trans, ceraf, and chol as environment factors. Note that 10,000
SNPs that have at least two main or interaction effects with p <

0.05 are kept.The scale of working data is generally not a major

concern for marginal analysis, as the computation can be done
in a highly parallel manner. Here, we focus on chromosome
10 which has been reported to harbor interesting genes in
existing studies.

We use Top 100 method to identify 100 most important
main and interaction effects. The proposed method LADBLSS
identifies 20 main SNP effects and 80 gene–environment
interactions, which are listed in Table 8 in Appendix. Our study
provides crucial implications in identifying the important main
and interactions of SNPs and its associations with weight. For
example, three SNPs, rs17011106, rs4838643 and rs17011115,
located within gene WDFY4 are identified. WDFY4 has been
observed as an influential factor related to weight and obesity
(Barclay et al., 2015; Martin et al., 2019). In addition, SNPs
rs10994364, rs10821773, and rs10994308, located within gene
ANK3, are identified with interacting environment factors age
and chol. There are findings showing an association between
ANK3 and higher systolic blood pressure (Ghanbari et al.,
2014). Published studies have also shown that ANK3 is linked
to pulmonary and renal hypertension (Ghanbari et al., 2014).
Allele risk variants have been identified in ANK3, and these
variants explain a proportion of the heritability of BD (bipolar
disorder), which is associated with higher body mass index
(BMI) and increased metabolic comorbidity and the genetic risk
for BD relates to common genetic risk with T2D (Winham
et al., 2014). Our proposed method identifies its interaction
with chol, the high blood cholesterol. Data from several sources
suggest that islet cholesterol metabolism contributes to the
pathogenesis of T2D (Brunham et al., 2008). Furthermore, the
SNP rs1244416, corresponding to gene ATP5C1, interacts with
the reported high blood cholesterol. This gene has been found
to be deregulated in T2D skeletal muscle through pathway-
based microanalysis (Morrison et al., 2012). The interactions
between SNP rs10857590 and trans fat intake has also been
identified by using the proposed method. The SNP is within
gene ARHGAP22, which has been investigated in Huang
et ail. (2018). As a diabetic retinopathy (DR) susceptibility
gene, the expression of ARHGAP22 is positively associated
with endothelial progenitor cells (EPC) levels in T2D patients
with DR.

Analysis with alternatives BL, BLSS, and LADBL has also
been conducted. To compare the alternative methods with the
proposed method, we provide the numbers of main effects
and interactions identified by these methods with pairwise
overlaps in Table 3. It clearly shows that the proposed one
results in a very different set of effects compared to alternatives.
We refit the regularized marginal models by LADBL and
LADBLSS using robust Bayesian Lasso, and those identified
by BL and BLSS using Bayesian Lasso. In addition, the
inclusion probabilities of the selected main and interaction
effects using LADBLSS are provided in Table 9 in Appendix.
Results from the alternative methods are available from the
Supplementary Material. The proposed method selects the
100 most important effects with the inclusion probability
larger than 0.9, demonstrating its superiority in quantifying
uncertain compared to marginal penalization methods (Shi
et al., 2014; Chai et al., 2017; Zhang et al., 2020). We noticed
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FIGURE 1 | Potential scale reduction factor (PSRF) against iterations for the coefficients of the first genetic factors and its interaction with environmental factors in

Example 1 under error 3. Black line: the PSRF. Red dotted line: the upper limits of the 95% confidence interval for the PSRF. Blue dotted line: The threshold of 1.1. The

β̂1 represents the estimated coefficients of the main effects for the first genetic factor. The η̂11 to η̂13 represent the estimated coefficients of the first three interaction

effects for the first genetic factor.

the small magnitude of refitted regression coefficients from
LAD-based methods compared to those obtained by the non-
robust method in the Supplementary Material. This is due to
the difference between the LAD-based and least square based
loss function for robust and non-robust methods, respectively.
The advantage of LADBLSS over the non-robust methods can
be clearly observed. First, majority of the top 100 important
effects identified by BL are main genetic effects. This is
less likely to be reasonable as the response variable weight
has been well acknowledged to be also dependent on gene–
environment interactions. For BLSS, the inclusion probabilities
are low compared to those of the LADBLSS, suggesting lower
level of certainty and confidence in the regression coefficients
obtained from BLSS. The inferior performance of BL and
BLSS further justifies the need of developing robust methods
in marginal gene–environment interaction studies. Overall,
LADBLSS leads to identification results significantly different
from all the alternatives, as well as main and interaction effects
of important biological implications that are not discovered by
the benchmarks.

TABLE 3 | The numbers of main G effects and interactions identified by different

approaches and their overlaps for BL (Bayesian LASSO), BLSS (Bayesian LASSO

with spike-and-slab priors), LADBL (LAD Bayesian LASSO), and LADBLSS (LAD

Bayesian LASSO with spike-and-slab priors).

T2D Main Interaction

BL BLSS LADBL LADBLSS BL BLSS LADBL LADBLSS

BL 86 5 6 8 14 14 4 8

BLSS 24 3 6 76 20 23

LADBL 20 12 80 50

LADBLSS 20 80

5. DISCUSSION

In the past, G×E interaction studies have been mainly conducted
throughmarginal hypothesis testing, based on a diversity of study
designs utilizing parametric, nonparametric, and semiparametric
models (Murcray et al., 2009; Thomas, 2010; Mukherjee et al.,
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2012), which later have been extended to joint analyses driven
primarily by the pathway or gene set based association studies
(Wu and Cui, 2013a; Jin et al., 2014; Jiang et al., 2017). In
addition, published literature has also reported the success of
marginal screening studies, including those based on partial
correlations (Niu et al., 2018; Xu et al., 2019). Recently, the
effectiveness of regularized variable selection in G×E interaction
studies has been increasingly recognized, and a large number of
regularization methods have been proposed for joint interaction
studies (Zhou et al., 2021). Marginal penalization has also been
demonstrated as promising competitors, although they have only
been investigated in a limited number of frequentist studies (Shi
et al., 2014; Chai et al., 2017; Zhang et al., 2020).

Therefore, the proposed marginal robust Bayesian variable
selection is of particular importance, since joint and marginal
analysis cannot replace each other and marginal Bayesian
penalization has not been examined for G×E studies so far. In
particular, with the robustness and incorporation of spike-and-
slab priors in the adaptive Bayesian shrinkage, the LADBLSS
has an analysis framework more coherent with that of the joint
robust analysis1, which significantly facilitates methodological
developments for interaction studies.

Nevertheless, the proposed method has limitations. As a fully
Bayesian methods based onMCMC algorithms, the computation
cost is generally high due to the tradeoff for quantifying
uncertainty using posterior samples. Such a drawback can be
addressed through conducting the computation in a parallel
manner given the marginal nature of the method. Besides, the
variable selection conducted in our study is based on the L1
penalty within the Bayesian framework. As this structure ignores
the correlation among genetic features, a possible direction
for future improvement is to incorporate network or gene set
information in the identification of important gene–environment
interactions (Wang et al., 2021). Furthermore, in our study, the
genetic factor is represented by one SNP coded as a triadic factor.
A closer look at both the additive and dominant penetrance
effects of the SNP will lead to elucidation of the genetic basis
using marginal interaction studies on a finer scale. For gene–
environment interaction studies, marginal and joint analysis are
the two major paradigms, and cannot replace each other (Zhou
et al., 2021). It is always on a safe side to perform marginal
analysis in G×E studies in addition to the joint ones, facilitating
a more comprehensive understanding on the genetic architecture
of complex diseases.

The marginal Bayesian regularization can be extended
to different types of response, for example, under binary,
categorical, prognostic and multivariate outcomes. Nevertheless,
considering robustness in the generalized models with the
Bayesian framework is not trivial, especially under the
multivariate responses (Wu et al., 2014; Zhou et al., 2019).
We postpone the investigations to the future studies.The
interaction between genetic and environmental factors in this
study has been modeled as the product of the two corresponding
variables, which amounts to “linear” interactions. In practice,

1Ren, J., Zhou, F., Li, X., Ma, S., Jiang, Y., and Wu, C. (under revision). Robust

Bayesian variable selection for gene-environment interactions. Biometrics.

the linear interaction assumption has been frequently violated
(Ma et al., 2011; Wu and Cui, 2013b; Zhao et al., 2019), which
demands accommodation of these nonlinear effects through
nonparametric and semiparametric models (Li et al., 2015; Wu
et al., 2015, 2018; Ren et al., 2020). It is of great interest and
importance to migrate the nonlinear G×E studies to marginal
cases in the near future.
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