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Abstract: Current influenza vaccines have modest efficacy. This is especially true for current live
attenuated influenza vaccines (LAIV), which have been inferior to the inactivated versions in recent
years. Therefore, a new generation of live vaccines may be needed. We previously showed that
a mutation at PB1 residue 319 confers enhanced temperature sensitivity and attenuation in an
LAIV constructed in the genetic background of the mouse-adapted Influenza A Virus (IAV) strain
A/PR/8/34 (PR8). Here, we describe the origin/discovery of this unique mutation and demonstrate
that, when combined with the PB2 N265S mutation of LAIV, it conveys an even greater level of
temperature sensitivity and attenuation on PR8 than the complete set of attenuating mutations
from LAIV. Furthermore, we show that the combined PB1 L319Q and PB2 N265S mutations confer
temperature sensitivity on IAV polymerase activity in two different genetic backgrounds, PR8 and
A/Cal/04/09. Collectively, these findings show that the PB2 LAIV mutation synergizes with a mutation
in PB1 and may have potential utility for improving LAIVs.
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1. Introduction

Influenza A Viruses (IAV) dramatically impact human health and infect millions of persons per
year [1]. Whereas infection is typically self-limited and lasts only a few days, it can cause life-threatening
illness in vulnerable populations such as the very young and very old [2]. Between 3000 and 49,000
people die of seasonal influenza each year in the United States, with over 250,000 deaths worldwide.
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Indeed, 2.8% of global deaths of infants under one year of age and 1.8% of deaths among children
aged 1–4 years are attributable to influenza infection [3,4]. Additionally, influenza can undergo major
antigenic changes through the process of reassortment, which may lead to devastating and costly
pandemics [5–10].

Antiviral therapy and vaccination serve as the first line of defense against IAV, but antiviral usage
is limited by the increasing prevalence of resistant clinical isolates [11–20]. Vaccination is therefore the
recommended mechanism of protection, and currently, three vaccine strategies are utilized [21–26].
The first, inactivated influenza vaccine (IIV), contains either detergent-disrupted virions or purified
membrane proteins from the strains projected to circulate in the population the following year [27].
IIV is currently formulated to include two IAV and two influenza B virus strains, which are selected
each year by the World Health Organization (WHO) [28–36]. The second strategy utilizes purified
recombinant IAV hemagglutinin produced in insect cells, which is delivered at a dose three-fold higher
than the level of HA present in IIV and also corresponds to the WHO-recommended strains [37,38].
The third option is a live attenuated influenza vaccine (LAIV). The Influenza A LAIV currently licensed
in the US consists of six internal gene segments (PB1, PB2, PA, NP, M, and NS) of a cold passaged
isolate of A/Ann Arbor/6/60 H2N2, now termed the master donor virus (MDV) [39–52]. HA and
NA-the segments, encoding the same surface proteins used in the IIV that year, are added to these six
gene segments [26].

The MDV backbone used in seasonal LAIVs was created by passaging A/Ann Arbor/6/60 at
decreasing temperatures until growth was achieved at 25 ◦C [53]. In addition to an increased ability to
grow at low temperatures, this strain has decreased viral titers at elevated temperatures with little
to no productive replication at temperatures above 37 ◦C [44]. Further experiments determined that
these temperature sensitive (ts) viruses were attenuated in both mice and humans [44]. Temperature
sensitivity and attenuation were found to be conveyed by mutations within PB2 (N265S), PB1 (K391E,
E581G, A661T), and NP (D34G) [42,45].

Early studies, conducted prior to the availability of contemporary molecular cloning methods,
examined the phenotypic stability of wild-type IAVs containing single gene segments from LAIV [43–54].
Here, we describe one of these single gene replacement (SGR) viruses, containing the PB2 gene of
LAIV in the genetic background of a seasonal H3N2 virus [54]. This SGR virus was found to possess
an unexpectedly high degree of temperature sensitivity, which was associated with a novel mutation
in PB1 (PB1 319Q). We previously showed that this PB1 mutation confers enhanced temperature
sensitivity and attenuation on an LAIV constructed in the genetic background of the IAV strain,
A/PR/8/34 (PR8) [55]. Here, we describe the discovery/origin of this mutation and propose a mechanism
for its temperature sensitive phenotype.

2. Materials and Methods

2.1. Cells and Media

Experiments were carried out in HEK 293 FT cells (ATCC), MDCK cells (ATCC), or A549 cells (Sigma).
Cells were grown in Dulbecco’s Minimum Essential media (Gibco) supplemented with 10% Fetal Bovine
Serum (USA Scientific) and Penicillin/Streptomycin (Gibco) (Growth media). Virus infections were
carried out in Dulbecco’s Minimum Essential media (Gibco) supplemented with 0.3% Bovine Serum
Albumin Fraction V (Gibco), Penicillin/Streptomycin (Gibco), and 1 µg/mL L-(tosylamido-2-phenyl)
ethyl chloromethyl ketone (TPCK) treated Trypsin (Sigma) (Infection media). Minigenome experiments
were carried out in Optimem (Gibco) without supplementation. Plaque purifications were performed
using warmed overlays of 20% 10X DMEM (Gibco) in ddH20 supplemented with Bovine Serum Albumin
Fraction V (Gibco), Glutamax™ (Gibco), gentamycin (Gibco), 5% NaCO3 (Gibco), 1 µg/mL TPCK treated
Trypsin (Sigma), and Seakem™ LE (low melting point) Agarose (Lonza) (Purification media).
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2.2. Plaque Purification

Our initial viral stocks consisted of (i) A/Korea/82 H3N2 HA, and NA with the six internal
segments of LAIV; (ii) a SGR with the PB2 segment of LAIV and all other segments from A/Korea/82
(SGR); and (iii) a derivative of this SGR that had been serially passaged at elevated temperatures and
had been reported to phenotypically revert (SGR-Rev) [54]. Serial dilutions from 10−1 to 10−6 of each
viral stock were added to confluent six-well dishes of MDCK cells. Cells were incubated at 33 ◦C for
1 h. Warmed virus purification media was overlaid on the MDCK cells and incubated at 33 ◦C for
72 h. Ten plaques were chosen from each viral stock and amplified through one round of passage in
a confluent T-75 flask at 33 ◦C. The supernatants of these flasks were harvested 72 h post infection,
clarified by centrifugation at 2000 rpm, stored at −80 ◦C, and titered by TCID50 on MDCK cells.

2.3. Tissue Culture Infectious Dose for 50% Infection (TCID50)

Viral supernatants were diluted from 100–10−7 in infection media and used to infect fresh 96-well
plates of MDCK cells in quadruplicate for 1 h at 33 ◦C. Fresh infection media was then added and
the plates were incubated at their respective temperatures for 5 days. Upon completion of infection,
a hemagglutination assay was performed as described [56,57]. TCID50 was calculated by the method
of Reed and Muench [58].

2.4. Single Reaction Genomic Amplification for IAV Gene Sequencing

IAV vRNA was isolated from the supernatant of infected MDCK cells using the RNA Nucleospin®

purification kit (Machery-Nagel), reverse transcribed and amplified using SuperScript™ III One-Step
RT-PCR System with Platinum® Taq High Fidelity (Thermo Fisher), and cloned into a modified
pHH21 vector as described [59]. The four genes of the ribonucleoprotein (PB1, PB2, PA, and NP) genes
were then subcloned into the pCAGGS vector and transformed into XL-1 Blue E. coli. When possible,
the EcoRI and XhoI sites were used, but due to sequence limitations, some genes required utilization
of the XhoI and BglII sites. All genes were sequenced after cloning to confirm that no additional
mutations had been added. All plasmids are available upon request.

2.5. Minigenome Assay

First, 60% confluent HEK 293FT cells in Poly(ethyleneimine) solution (PEI) (Fisher) coated 24-well
plates were transfected with 200 ng pCAGGS-NP, pCAGGS-PA, pCAGGS-PB1, and pCAGGS-PB2;
50 ng pPolI-NP-Luc; and 10 ng pCAGGS-Gaussia in triplicate using in Optimem for 60 min at 37 ◦C
and then transferred to their indicated temperature. Control wells were also transfected with all above
plasmids except PB1 (“-PB1 samples”) to control for background luminescence. At 24 h post transfection,
cells were lysed using 125 µL Passive Lysis Buffer (Promega) and cleared through centrifugation at
10,000 rpm at 4 ◦C for 2 min. Next, 25 µL clarified lysates were added to Corning Costar™white 96-well
flat-bottomed optical plates (Fisher). To each well, 25 µL Luciferase Activity Reagent II (Promega) was
added, the plate was shaken for 20 s, and a luminescence measurement was made of each well for 2 s
using a Beckman Coulter DTX 880 plate reader. Then, 25 µL Stop & Glo® Reagent (Promega) was
added to each well, the plate was shaken for 20 s, and a luminescence measurement was made of
each well for 2 s using the same Beckman Coulter DTX 880. All reactions were performed in triplicate
on at least three separate occasions. The background luminescence detected in the “-PB1 samples”
(firefly luminescence divided by Gaussia luminescence) was arbitrarily set as 1. Increases above
this were denoted as fold increases in activity. All data were depicted as fold induction, where the
firefly luminescence produced by the viral polymerase was normalized to (divided by) the Gaussia
luminescence (which is produced by the cells independent of the viral polymerase).
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2.6. Site-Directed Mutagenesis

Site-directed mutagenesis was performed using the QuikChange II, Lightning, and Lightning
Multi Site directed mutagenesis kits (all from Agilent). Two clones possessing the correct mutation
were selected from each mutagenesis reaction and used for each minigenome assay to confirm the
desired effects.

2.7. Viral Rescue

Four different PR8 viruses (wt PR8 (PR8), PR8 containing PB2 N265S (PR8 265S), PR8 containing
PB1 L319Q (PR8 319Q), and PR8 containing both PB2 N265S and PB1 L319Q (PR8 265S/319Q)) were
created using the bidirectional plasmid system for A/Puerto Rico/8/1934 (H1N1) (a kind gift from
Dr. Adolfo García-Sastre, Mt. Sinai School of Medicine) as described [60]. All viruses were plaque
purified upon rescue and the polymerase sequenced in its entirety.

2.8. Growth Curves

Fresh confluent six-well dishes of A549 cells were infected with virus at a MOI of 0.01. Then,
10% of the supernatant (300 µL) was collected and replaced with fresh media at 12 h, 24 h, 48 h, 72 h,
and 96 h post infection. These supernatants were clarified by centrifugation and stored at −80 ◦C prior
to titering by TCID50 in MDCK cells.

2.9. Viral Attenuation

All experiments were performed as described [61]. First, 5–7-week-old female C57/B6 mice were
purchased from Jackson Labs, lightly anesthetized, and infected with increasing doses of virus in 30 µL
of infection media. Animals were monitored daily for signs of clinical distress and euthanized at 25%
body weight loss. LD50 was calculated by the method of Reed and Muench [58]. The data for PR8
319Q were reproduced from our previous work [55].

2.10. Ethics Statement

All animal experimentation in this study was reviewed and approved by the University of
Rochester’s University Committee on Animal Resources (UCAR). The University of Rochester and its
animal research facilities are fully accredited by the Association for Assessment and Accreditation of
Laboratory Animal Care, International, and adhere to the humane use of animals, as dictated by the
National Institutes of Health’s Office of Laboratory Animal Welfare through the Animal Welfare Act as
prescribed by “The Guide for the Care and Use of Laboratory Animals”.

2.11. Semi-Infectious Particles

For these experiments, we modified the technique developed by Brooke and Yewdell for measuring
semi-infectious particles [62,63]. In brief, MDCK cells were infected at an MOI of 0.01 at 33 ◦C and
39 ◦C with (i) PR8 WT, (ii) PB1 319Q, (iii) PB2 265S, (iv) PB1 319Q & PB2 265S, (v) PR8 LAIV (mutations
introduced = PB2 N265S, PB1 K391E, PB1 E581G, PB1 A661T), and (vi) PR8 LAIV plus PB1 319Q
viruses. After 72 h, viral supernatants were harvested and clarified via centrifugation. Particle levels
were then analyzed through hemagglutination assay. The same day of harvest, fresh plates of cells were
infected with each of the virus stocks at the permissive temperature of 33 ◦C using virus concentration
of 1 HA unit /10 cells. Viral spread was disrupted by the addition of the HA-neutralizing antibody
NR-4542 (kindly provided by the Yewdell lab via BEI) 2 h post infection to ensure a single-cycle
infection. At 10 h after antibody addition, cells were gently trypsinized, resuspended, and stained
for HA and NA (using antibodies kindly provided by the Yewdell lab via BEI; HA Ab = NR-48783,
NA Ab = NR-50239). Then, 250,000 cells were run on a BD Accuri Flow Cytometer, and the ratio of cells
positive for HA alone or NA alone was compared to cells expressing both proteins. This experiment
was performed in triplicate on three separate dates, each with freshly generated viral stocks.
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3. Results

3.1. Identification of a Single-Gene Replacement Virus That is More Temperature Sensitive than LAIV

We compared the growth kinetics of plaque-purified isolates of three viruses that each contained
the PB2 segment of a cold-adapted A/Ann Arbor/6/60 (H2N2) mutant (A/AA/60-LAIV) (which was
subsequently used as the basis of the currently licensed LAIV), with the remaining seven segments
derived from either this same cold-adapted virus or a seasonal H3N2 strain A/Korea/1982. Specifically,
we characterized three related viruses. The first contained the HA and NA gene segments of
A/Korea/1982 and the remaining six segments from A/AA/60-LAIV (hereafter referred to as LAIV).
The second was a single-gene replacement A/Korea/1982 virus containing only the PB2 segment from
A/AA/60-LAIV (hereafter referred to as SGR). The SGR virus was previously shown to retain the ts
phenotype of LAIV [54]. The third virus was a derivative of SGR that had been serially passaged at
elevated temperatures and had undergone phenotypic reversion of its ts phenotype (hereafter referred
to as SGR-Rev [54] (Table 1)).
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Figure 1. A single gene replacement virus containing the PB2 segment of LAIV serially passaged at
33 ◦C (SGR) increased temperature sensitivity compared to both LAIV and a revertant derivative of
this parental virus (SGR-Rev). Multicycle growth curve experiments were performed at 33 ◦C, 37 ◦C,
and 39 ◦C with (A) MDCK and (B) A549 cells (ATCC) as described [63]. Mean ± SD values for triplicate
infections are plotted. The dotted line denotes the limit of detection (50 TCID50/mL). All viruses
contained the HA and NA genes of A/Korea/82 (H3N2). LAIV denotes a virus containing all six internal
segments of the cold-adapted, temperature-sensitive, attenuated (ca ts att) A/AnnArbor/6/60 MDV.
SGR and SGR-Rev had the same membrane proteins, but contained only one segment (PB2) from
A/AnnArbor/6/60, with all others deriving from a seasonal strain A/Korea/82 H3N2. SGR-Rev represent
a derivative of SGR that was passaged at increasing temperatures until growth was again detected at
39 ◦C [54].
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Table 1. Genetic composition of viruses shown in Figure 1.

Virus PB2 PB1 PA NP M NS HA NA

LAIV A/AA-LAIV A/AA-LAIV A/AA-LAIV A/AA-LAIV A/AA-LAIV A/AA-LAIV A/Korea A/Korea
SGR A/AA-LAIV A/Korea A/Korea A/Korea A/Korea A/Korea A/Korea A/Korea

SGR-rev A/AA-LAIV A/Korea A/Korea A/Korea A/Korea A/Korea A/Korea A/Korea

All viruses were plaque purified at 33 ◦C and 10 plaques of each virus were subjected to a single
round of amplification in MDCK cells at 33 ◦C. The ribonucleoprotein segments (PB1, PB2, PA, and NP)
of each viral plaque were then sequenced and found to be identical at the amino acid level across
strains in all ten virus clones tested (data not shown). Representative stocks were then analyzed
for multicycle growth kinetics in A549 and MDCK cells (Figure 1). LAIV grew at all temperatures
(Figure 1). SGR-Rev grew poorly at 39 ◦C as described (Figure 1), while the parental SGR virus grew
at 33 ◦C and 37 ◦C, but completely failed to replicate at 39 ◦C (Figure 1). Therefore, this SGR virus
displayed a temperature-sensitive phenotype.

3.2. A Single Residue Conveyed the Majority of Phenotypic Reversion

To determine what mutations were necessary for the temperature sensitivity of the SGR virus,
the ribonucleoprotein components of these viruses (PB1, PB2, PA, and NP) were cloned, sequenced,
and introduced into the expression vector pCAGGS for further analysis [64]. The PB2 segment was
from the A/Ann Arbor/6/60 strain and the PB1, PA, and NP segments from A/Korea/1982. Six amino acid
differences were detected between the polymerases of the SGR and SGR-Rev viruses (Table 2). The role
of these mutations in imparting temperature sensitivity was then examined using a minigenome
assay [57], which revealed temperature sensitivity of the polymerase of the SGR virus at both 37 ◦C
and 39 ◦C (left panels, Figure 2). In contrast, the polymerase of SGR-Rev displayed robust polymerase
activity at both of these temperatures (right panels, Figure 2). Replacement of the PA or PB2 segment
from the polymerase of SGR did not impart temperature sensitivity to the polymerase of (SGR-rev)
(Figure 2). However, replacement of the PB1 segment of SGR-Rev resulted in temperature sensitive
polymerase activity at 39 ◦C (Figure 2).

Table 2. Amino acid variation between the single gene replacement and revertant viruses. Incidence of
residue distribution was determined through the analyze sequence variance function on fludb.org,
based on sequencing data current through 2019.

Amino Acid Incidence among
Human IsolatesSGR SGR-Rev

PB2 73 Q K 32,794 D 12 K

PB1
145 S N 145 S 23,711 N
319 Q L 0 Q 23,671 L

PA
347 D N 33,464 D 21 N 14,589 S
409 S N 18,919 N
632 S P 33,445 S 18 P

There are only two amino acid differences between the SGR and SGR-Rev in PB1 (S145N, Q319L;
the SGR residue is listed first). We therefore used site-directed mutagenesis (Agilent) to examine the
phenotypic effect of these individual mutations-and determined that a mutation from glutamine to
leucine at residue 319 was primarily responsible for the increased polymerase activity of the SGR-Rev
virus at 39 ◦C (Figure 3).
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We next performed a reciprocal experiment, introducing the PB2 265N and PB1 319L mutations 
into the SGR polymerase (Figure 4). This analysis revealed that the PB1 319 residue was the key driver 
of the ts phenotype. The introduction of the 319L residue alone was sufficient to mediate loss of 
temperature sensitivity and acquisition of the phenotype of the SGR-Rev virus (Figure 4). 

Figure 2. SGR impaired polymerase activity at 37 ◦C and 39 ◦C as compared to SGR-Rev, and this was
attributable to the PB1 gene segment. Minigenome assays were performed in HEK-293T cells (ATCC)
as described [61]. X-axis labels denote the source of the various polymerase components (PB2, PB1, PA)
in the minigenome assay. Mean ± standard deviation (SD) fold increase activity over a no-PB1 control
is shown. All transfections were performed in triplicate on three separate occasions. Statistics were
performed using one-way ANOVA followed by Tukey’s posttest. Ns: Not significant, *** p < 0.001.
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Figure 3. Residue 319Q is primarily responsible for the increased temperature sensitivity of the SGR
virus at 37 ◦C. Minigenome assays were performed in HEK-293T cells (ATCC) as described [61]. X-axis
labels denote the source of the various polymerase components (PB2, PB1, PA) in the minigenome
assay. Data represent mean ± standard deviation (SD) fold increase activity over a no-PB1 control.
All transfections were performed in triplicate on three separate occasions. Data from Figure 2 for
groups SGR, PB1 SGR with Rev PB2 and PA, and SGR-Rev were reproduced for comparison. Statistics
were performed using one-way ANOVA followed by Tukey’s posttest. Ns: Not significant, * p < 0.05,
** p <0.01, *** p < 0.001.

We next performed a reciprocal experiment, introducing the PB2 265N and PB1 319L mutations
into the SGR polymerase (Figure 4). This analysis revealed that the PB1 319 residue was the key driver
of the ts phenotype. The introduction of the 319L residue alone was sufficient to mediate loss of
temperature sensitivity and acquisition of the phenotype of the SGR-Rev virus (Figure 4).
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loss of temperature sensitivity and acquisition of the phenotype of the SGR-Rev virus. Minigenome
assays were performed in HEK-293T cells (ATCC) as described [61]. In this experiment, PB2, PB1,
and PA were all derived from the SGR virus (PB2 265S, PB1 319Q). Specific site-directed mutations
were then introduced and evaluated as indicated in the X-axis label. Data represent mean ± standard
deviation (SD) fold increase activity over a no-PB1 control. All transfections were performed in triplicate
on three separate occasions. Statistics performed using one-way ANOVA followed by Tukey’s posttest.
Ns: Not significant, *** p < 0.001.

3.3. PB1 319Q and PB2 265S Impart Temperature Sensitivity to the Viral Polymerase of Two Additional
IAV Strains

To investigate whether the PB1 319Q mutation confers temperature sensitivity on polymerases
from other influenza A virus strains, we utilized polymerases from two additional strains of IAV:
A lab-adapted human isolate, A/Puerto Rico/8/34 H1N1 (PR8), and the pH1N1 pandemic 2009 human
isolate, A/California/04/09 pH1N1 (Cal). In both strains, this PB1 mutation synergized with the PB2 265S
mutation of LAIV to convey temperature sensitivity (Figure 5). It is notable also that the PB1 319Q mutation
conferred a stronger ts phenotype in the genetic background of Cal as compared to PR8 (Figure 5).
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cells (ATCC) as described [61]. In this experiment, PB2, PB1, and PA were all derived from the virus
as indicated in the legend. Polymerase activity was normalized to WT (left side; solid bars) or PB2
265-containing (right side; cross-hatched bars) polymerases at each temperature. Either WT or 265S
polymerase activity was arbitrarily set at 100% for ease of interpretation. Data represent mean ±
standard deviation (SD) fold increase activity over a no-PB2 control (all transfections were performed
in triplicate on three separate occasions). Statistics were performed using one-way ANOVA followed
by Tukey’s posttest. * p < 0.05, ** p <0.01, *** p < 0.001.

3.4. PB1 319Q and PB2 265S Impart Temperature Sensitivity to PR8

Having established that the PB1 319Q mutation caused the IAV polymerase to consistently assume
a temperature sensitive phenotype, we next aimed to test its effect on viral attenuation in vivo. To do
this, we utilized the mouse-adapted strain PR8, which is highly lethal in mice [61]. We rescued
PR8-derived viruses with either (i) PB2 N265S (the PB2 mutation of LAIV), (ii) PB1 L319Q, or (iii)
both mutations.

All viruses were sequenced to confirm that the desired mutations were present and that no
adventitious mutations were introduced (data not shown). We then analyzed the growth kinetics
of these viruses in A549 cells. When the PB2 mutation of LAIV (N265S) was introduced into PR8,
the resulting virus displayed temperature sensitivity, with reduced growth at 39 ◦C in both A549 and
MDCK cells (Figure 6). The addition of PB1 L319Q alone resulted in slight temperature sensitivity.
However, when PB1 319Q and PB2 265S were both present, virus growth was impaired at temperatures
as low as 37 ◦C (Figure 6). The PR8 265S/319Q double-mutant virus possesses a stronger ts phenotype
than a PR8 virus containing all of the LAIV mutations at both 37 ◦C and 39 ◦C (Figure 6).
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Figure 6. The PB2 265S and PB1 319Q mutations synergistically increased the temperature sensitivity
of virus growth in vitro when assessed in the genetic background of PR8. Multicycle growth curve
experiments were performed at 33 ◦C, 37 ◦C, and 39 ◦C with A549 cells (ATCC) as described [61].
Mean ± SD values for triplicate infections are plotted. The dotted line denotes the limit of detection
(50 TCID50/mL). Statistics were performed using one-way ANOVA followed by Tukey’s posttest on
log10 transformed titers. * p < 0.05, ** p <0.01, *** p < 0.001.

3.5. PB1 319Q and PB2 N265S Confer Synergistic Attenuation on PR8 In Vivo

We next sought to examine the attenuation of these viruses in mice. Similar to our previous work
with the single mutation at PB1 319 (L to Q), a single mutation at PB2 265 (N to S) attenuated PR8 [61].
Both of these viruses were 10-fold more attenuated than their wild-type counterparts, with an LD50

of 300 FFU (Table 3). Note, the LD50 values for the PR8 319Q, PR8 LAIV, and PR8 LAIV with 319Q
(Table 3) were taken from our previously published work [55]. The combination of PB2 N265S and PB1
L319Q resulted in an LD50 of 600,000 FFU (Table 3). Consistent with our in vitro findings, this PR8
265S/319Q double mutant virus is 20-times more attenuated than PR8 LAIV (LD50 = 30,000 FFU).
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Table 3. Mutations PB1 319Q and PB2 265S synergize to increase the LD50 of PR8-derived viruses.

Virus LD50
1

PR8 30 FFU 2

PR8 319Q 300 FFU 2

PR8 265S 300 FFU
PR8 265S & 319Q 600,000 FFU

PR8 LAIV 30,000 FFU 2

1 LD50 was determined from survival data of virally infected B6 mice by the method of Reed and Muench [58].
2 LD-50 for PR8 wt, PR8 319Q, and PR8 LAIV are taken from previous work [55].

3.6. The Combination of PB1 319Q and PB2 265S Increases the Formation of Semi-Infectious Particles

In order to understand how the PB1 319Q and PB2 265S mutations might synergize to promote viral
temperature sensitivity, we tested whether the polymerase mutations might influence the infectivity
of progeny virus in a temperature-dependent manner. To do this, we measured the production of
semi-infectious particles (SIPs) using the method of Brookes and Yewdell [62,63]. This approach uses
flow cytometry to determine how many infected cells display less than a full complement of influenza
proteins at a late timepoint following a single-cycle infection at a low multiplicity of infection.

We infected MDCK cells at 33 ◦C and 39 ◦C with (i) WT, (ii) PB1 319Q, (iii) PB2 265S, (iv) PB1 319Q
and PB2 265S, (v) PR8 LAIV, and (vi) PR8 LAIV 319Q viruses. After 72 h, we analyzed the levels of
viral particles through HA and infected new plates of cells, with equivalent numbers of viral particles.
We ensured a single-cycle infection by introducing an HA-neutralizing antibody (kindly provided
by the Yewdell lab) to prevent infection of new target cells. At the permissive temperature of 33 ◦C,
we found that, for each of the viral mutants tested, the majority of virus-infected target cells expressed
either HA or NA, but not both proteins (Figure 7). This is consistent with previous findings that the
majority of IAV virions fail to express one or more gene segments, and therefore cannot establish a
productive infection [62,63]. Unexpectedly, at the elevated temperature of 39 ◦C, we found that there
was a striking difference in the production of SIPs. Specifically, the mutant virus containing both the
PB1 319Q and the PB2 265S mutation produced over 20-times more SIPs than any of the single-mutant
viruses (or the parental WT virus) (Figure 7). In fact, viruses containing only this pair of mutations
had comparable rates of SIP production to PR8 viruses containing either the full complement of LAIV
attenuating mutations or the LAIV mutations plus PB1 319Q (Figure 7).
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of either WT, PB1 319Q, PB2 265S, PB1 319Q and PB2 265S, LAIV, and LAIV with PB1 319Q and placed at
either 33 ◦C or 39 ◦C. After 72 h, viruses were harvested and new cultures of MDCK cells were infected
at the permissive temperature of 33 ◦C with equivalent HA levels of virus from each experimental
condition. Neutralizing antibodies to HA were added 2 h post infection to ensure single-cycle infections.
At 10 h post infection, cells were lightly trypsinized and were stained for HA and NA. Then, 250,000
cells were run on a flow cytometer to determine the number of single-positive and double-positive
cells. The ratio of single-positive cells to double-positive cells is depicted, thus showing the ratio
of semi-infectious particles containing only the HA or NA gene segment to fully infectious viruses
containing both segments. Experiments were performed in triplicate on separate dates including
the treatment of stocks at various temperatures. Statistical analysis: Data were log transformed
and analyzed by one-way ANOVA with correction for multiple comparisons using Tukey’s multiple
comparison test; * p < 0.05, ** p < 0.01, *** p < 0.001.

4. Discussion

We previously described a novel mutation within the IAV polymerase subunit PB1 at a residue that
was conserved across IAV strains [55]. Here, we described the origins/discovery of this mutation and
investigated the mechanism by which it is temperature-sensitive. This mutation, leucine to glutamine
at residue 319, arose in a virus that contained the PB2 mutation of LAIV (N265S). When introduced into
divergent polymerases, this PB1 mutation alone impaired both viral polymerase activity (Figure 5),
as measured by minigenome assays, and viral growth (Figure 6). However, the combination of PB1
L319Q with PB2 265S (a mutation contained in LAIV) resulted in a severe temperature-sensitive defect,
rendering the polymerase nonfunctional at temperatures as low as 37 ◦C and dramatically reducing
viral growth at 37 and 39 ◦C without affecting viral replication at 33 ◦C. When the mouse-adapted
strain PR8 was mutated to include either PB1 319Q or PB2 265S, a 10-fold increase in attenuation over
the wild-type virus was seen (Table 2). However, the combination of these two mutations resulted in a
20,000-fold increase in attenuation over the wild-type virus (and a 20-fold increase over PR8 containing
the full complement of LAIV attenuating mutations).

The exact mechanism of interaction between these two mutations remains to be fully elucidated,
but it is notable that the PB1 319Q and PB2 265S double mutant virus exhibited a striking propensity to
generate high levels of semi-infectious particles at the nonpermissive temperature of 39 ◦C. This did
not occur at the permissive temperature of 33 ◦C, and was unique to the double mutant virus (Figure 7).
Viruses containing the mutations of LAIV alone also demonstrated this same effect (Figure 7). Consistent
with this, Chen et al. previously showed that the attenuating mutations of LAIV altered IAV virion
morphology and M1 protein levels in a temperature sensitive manner [38].

A recent editorial by Belshe noted that some methods used to quantitate LAIVs, such as
the fluorescent focus assay, “may detect non-infectious vaccine antigens,” thereby leading to
underdosing [65] and potentially contributing to the low efficacy of recent H1N1 LAIVs [66,67].
Our data underscore this concern, since we show that LAIVs can generate high levels of semi-infectious
particles. At the same time, if this dosing issue were to be corrected, LAIVs that generate SIPs could
be advantageous, since they would produce high levels of antigen in the absence of high levels of
virus replication. Similarly, the use of LAIVs with increased temperature sensitivity (whose replication
would be restricted to the nasal epithelium and upper airway) might permit the safe use of higher
doses of vaccine viruses, thereby further increasing their immunogenicity. Additional studies are
needed to address these hypotheses.

5. Conclusions

The combination of the PB2 265S mutation from the current LAIV and the novel PB1 319Q
mutation resulted in a unique IAV phenotype, with greater temperature sensitivity and higher levels
of attenuation than the current LAIV in a murine model. This virus also generated increased levels of
semi-infectious particles at elevated temperatures. This may result in increased viral attenuation at



Viruses 2020, 12, 1246 12 of 15

elevated temperatures, while potentially maintaining near-normal levels of immunogenicity through
the production of viral proteins in the absence of fully infectious virus progeny. These findings may
have important implications for future efforts to develop improved LAIVs.

6. Patents

A.C., S.D., B.K., and J.T. are all inventors on patent 9,878,032 B2 (Attenuated Influenza Vaccines
and Uses Thereof), held by the University of Rochester [68].
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