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Predicting protein-ligand interactions using artificial intelligence (AI) models has attracted
great interest in recent years. However, data-driven AI models unequivocally suffer from a
lack of sufficiently large and unbiased datasets. Here, we systematically investigated the
data biases on the PDBbind and DUD-E datasets. We examined the model performance
of atomic convolutional neural network (ACNN) on the PDBbind core set and achieved a
Pearson R2 of 0.73 between experimental and predicted binding affinities. Strikingly, the
ACNN models did not require learning the essential protein-ligand interactions in complex
structures and achieved similar performance even on datasets containing only ligand
structures or only protein structures, while data splitting based on similarity clustering
(protein sequence or ligand scaffold) significantly reduced the model performance. We
also identified the property and topology biases in the DUD-E dataset which led to the
artificially increased enrichment performance of virtual screening. The property bias in
DUD-E was reduced by enforcing the more stringent ligand property matching rules, while
the topology bias still exists due to the use of molecular fingerprint similarity as a decoy
selection criterion. Therefore, we believe that sufficiently large and unbiased datasets are
desirable for training robust AI models to accurately predict protein-ligand interactions.

Keywords: artificial intelligence, convolutional neural network, protein-ligand interaction, virtual screening,
molecular docking, scoring function, topology fingerprint
INTRODUCTION

Structure-based virtual screening (molecular docking) has been widely used to discover new ligands
based on target structures (Kitchen et al., 2004; Shoichet, 2004; Irwin and Shoichet, 2016; Zhou
et al., 2016; Wang et al., 2017; Lyu et al., 2019; Peng et al., 2019). The molecular docking approach is
designed to identify small molecules from a large chemical library that possess complementary to a
protein binding site. The heart of molecular docking is the scoring function for estimation of
binding affinities of protein-ligand complexes. Large research efforts in the field have been dedicated
to the development of scoring functions in terms of their abilities to reproduce crystal ligand
binding poses, to prioritize the known active compounds in a large compound database, and to
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predict the relative binding affinities (Stahl and Rarey, 2001;
Halgren et al., 2004; Huang et al., 2006a; Wang et al., 2016; Liu
et al., 2017; Guedes et al., 2018; Su et al., 2019). Despite some
success, it is still very challenging to predict protein-ligand
interactions accurately and efficiently using molecular docking.

In the retrospective studies, the performance of virtual screening
was evaluated on several public available benchmarking datasets,
including the Community Structure-Activity Resource (CSAR)
(Dunbar et al., 2011), the PDBbind (Liu et al., 2017), the Directory
of Useful Decoys (DUD) (Huang et al., 2006b), and the Directory of
Useful Decoys - Enhanced (DUD-E) (Mysinger et al., 2012). The
CSAR and PDBbind datasets were compiled to facilitate the
prediction of the binding affinities based on experimental complex
structures. The availability of experimental protein-ligand complex
structures allows the structure-based featurization to correlate the
protein-ligand binding interactions and the binding affinities. The
DUD and DUD-E datasets were originally designed to assess
docking enrichment performance by distinguishing the annotated
actives from among a large database of computationally generated
non-binding decoy molecules.

In recent years, deep learning (DL) technologies in the field of
artificial intelligence (AI) have rapidly developed, and have been
quickly introduced into the different aspects of drug discovery and
development process (Chen et al., 2018; Ching et al., 2018; Hu et al.,
2018; Ivanenkov et al., 2019; Xu et al., 2019; Zhavoronkov et al.,
2019). However, DL relies on large and high-quality annotated
datasets, and this approach is only in the early stages of applicability
for protein-ligand binding prediction (Shen et al., 2019). Two types
of representations have been applied in studying protein-ligand
interactions (Ching et al., 2018). One is three-dimensional (3D)
grid, which discretize protein-ligand complex structure into a 3D
grid with features stored at the grid point (Wallach et al., 2015;
Ragoza et al., 2017; Jiménez et al., 2018; Stepniewska-Dziubinska
et al., 2018). For example, a 3D convolutional neural network
(CNN) model was shown to outperform the AutoDock Vina in
enrichment performance by achieving amean area under the curve
(AUC) of 0.86 on theDUD-Edataset (Ragoza et al., 2017). Another
model (named Pafnucy) was tested for binding affinity prediction
on the PDBbind v2013 core set with a Pearson R2 of 0.49
(Stepniewska-Dziubinska et al., 2018).

The other representation is graph neural network (Battaglia
et al., 2018), every atom is a vertex and the atomic features
(including atom type, charge, distances, and neighbors) in
molecule are stored at the atom (Pereira et al., 2016; Gomes et al.,
2017; Cang et al., 2018; Feinberg et al., 2018). For example, DeepVS
was reported to achieve a mean AUC of 0.81 for cross-target cross
validation (CV) on the DUD dataset (Pereira et al., 2016). The
atomic convolutional neural network (ACNN) was developed for
binding affinity prediction but did not outperform random forest
(RF) on the PDBbind datasets (Gomes et al., 2017). Cang et al.
(2018) achieved a PearsonR2 of 0.66 on the PDBbind v2013 core set
using the model trained on the refined set.

However, Sieg et al. (2019) recently reported that the AI models
were heavily biased by 1Dproperties and 2D topology trained on the
DUDandDUD-E datasets. Onlywith the use of six physicochemical
properties, RF classifiers achieved mean AUCs up to 1.0 for intra-
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target CV, while for cross-target CV on DUD and DUD-E,
maximum mean AUCs of 0.78 and 0.80 were able to obtain,
individually. Only using topology information of compounds, RF
and DeepVS achieved a mean AUC of 0.78 for cross-target CV on
DUD, and grid-based CNN model yielded a mean AUC of 0.84 for
cross-target CV on DUD-E. Similarly, Chen et al. (2019) also
reported the bias on topology in DUD-E. These studies
demonstrate that AI models trained on ligand properties or ligand
topology have comparable enrichment performance as those trained
on docked complexes.

In the present work, we systematically investigated the data
biases in the PDBbind and DUD-E datasets, including different
data splitting methods, featurization, models, and metrics. We
trained ACNNmodels (Gomes et al., 2017) on the protein-ligand
complex structures, as well as on the ligand structures without
the presence of proteins or on the protein structures by removing
the ligand information. Strikingly, all these models performed
comparably well in predicting binding affinities in test subsets,
which strongly suggests that the ACNN models did not require
learning essential protein-ligand interactions. Furthermore, we
visualized the individual atomic contributions decomposed from
the ACNN scores and found that the ACNN models may
actually rely on the similarity of atomic features that exist in
the training and test subsets to predict binding affinities. These
results indicate that PDBbind has data biases in both proteins
and ligands for building reliable AI models. Finally, we
demonstrated that model learned the topology bias in DUD-E
even after reducing the property bias by carefully designed CV
experiments. We expect that our study will provide a useful
guideline to assess the model performance in predicting protein-
ligand interactions using state-of-the-art AI approaches.
METHODS

Datasets
The PDBbind is a comprehensive collection of protein-ligand
complexes in the Protein Data Bank (PDB) with experimentally
measured binding affinities, which contains core, refined, and
general sets (Table 1) (Li et al., 2014). For clarification, the
PDBbind v2013 core set is identical to the v2015 core set. At
present study, we only report the results obtained from the
PDBbind v2015. The general set contains a total of 11,987
protein-ligand complexes in PDB with experimentally measured
binding affinity data. The refined set contains 3,796 complex
structures chosen from the general dataset to enforce higher
quality protein-ligand complex structures and binding affinities.
TABLE 1 | The PDBbind and DUD-E datasets.

Name Task type Sets Crystal
structures

#Actives #Decoys

PDBbind Regression Core 195 195 0
Refined 3,706 3,706 0
General 11,987 11,987 0

DUD-E Classification Original 102 22,886 1,411,214
MW ≤ 500 102 19,374 1,182,039
Fe
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The core set consists of 195 high-quality complexes clustered in 65
structural groups, each containing three complexes with low,
medium, and high binding affinities. In addition, Wan et al.
(2013) modeled 2,431 binding interactions of 17 kinase inhibitors
against 143 protein kinases using physics-based approach. We also
tested thekinase inhibitor selectivitypredictionon thisdatasetusing
ACNNmodels trained on the PDBbind refined set.

The DUD and DUD-E datasets were designed for
benchmarking molecular docking enrichment power by
providing challenging decoys. For each annotated active, 50
decoys with six similar physicochemical properties, including
molecular weight (MW) and cLogP, but dissimilar topology
(fingerprint) were selected from the ZINC12 database (Irwin
et al., 2012). The DUD-E dataset consists of 22,886 actives and
1,411,214 decoys against 102 targets. We compiled a variation of
DUD-E, namedDUD-E(MW ≤ 500) by simply removing actives with
MW(only accounting for all heavy atoms) greater than 500 and the
same fraction of decoys (Table 1).

Dataset Splitting
Each PDBbind set was split into the training, validation, and test
subsets following an 80/10/10 ratio. We trained models on the
training subset by using early stopping to avoid overfitting, tuned
hyperparameters on the validation subset to select the best
model, and subsequently evaluated model performance on the
test subset. We applied three types of dataset splitting methods,
including random, ligand scaffold-based, and protein sequence-
based splitting. Scaffold-based splitting was based on ligand
scaffold similarity, where the ligand 2D scaffolds (Bemis and
Murcko, 1996) were extracted using RDKit software (Landrum,
2006) and clustered using Extended-Connectivity Fingerprints
(ECFP) (Rogers and Hahn, 2010) with Tanimoto coefficient (Tc)
cutoff value of 0.8. The obtained large, medium, and small
clusters were assigned into the training, validation, and test
subsets, respectively. The test subset contained the smallest
clusters to create a greater challenge for AI models. The
sequence-based splitting was performed by using the UCLUST
(Edgar, 2010) program with sequence identity cutoff of 0.4.

To stay consistent with a previous report, we trained models on
the refined and general sets, and tested on the core set. To avoid the
same protein-ligand complex used in training and testing
simultaneously, we removed samples in the refined and general
sets overlapping with the core set. In addition, we removed analogs
or homologs based on ligand scaffold or protein sequence similarity
when we applied scaffold-based and sequence-based splitting in
training. Nevertheless, we subsampled the same number of samples
(2,036 samples accounting for 55% of the refined set, 7,792 samples
accounting for 65% of the general set) from the rest of samples in the
refined or general sets, respectively, and split them into the training
and validation subsets following a 90/10 ratio.

We split DUD-E into three folds based on target classes to
perform the cross-class CV study. There are 26 kinases in the first
fold, 31 targets in the second fold (including15proteases, 11nuclear
receptors, and five G-protein coupled receptors), and the rest of 45
targets in the third fold. We also applied a random CV on DUD-E
by randomly splitting the targets into three folds with the same fold
sizes as the cross-class CV.
Frontiers in Pharmacology | www.frontiersin.org 3
Models
ACNN
Weapplied the graph-basedmodel ACNN implemented in the open
source DeepChem package (Ramsundar et al., 2019) for predicting
protein-ligand interactions in PDBbind. The ACNN model only
requires atomic numbers and Cartesian coordinates of protein-
ligand complexes as input to predict binding affinities. First, the
ACNNmodel applies three independent atomic convolution blocks
to extract atomic features from the ligand, protein, and protein-
ligand complex, individually. In an atomic convolution block, the
maximum number of closest neighbors (M) is used to represent the
atomic environment for each atom. To represent the pairwise
interaction, a radial basis function kernel is applied to map the
distance between the atom and its each neighbor into a vector. And
the atomic feature (a vector) is obtained by element-wise sum of M
pairwise vectors. The atomic convolution blocks share the same
initial parameters but will be changed after training. Secondly, one
weight-sharing atomistic fully connected layer predicts atomic
energies from all the atomic features. Thirdly, the ACNN model
sumsup the atomic energies to predict the energies of protein, ligand,
and complex, individually, and then obtains the binding energy by
subtracting the energies of protein and ligand from the energy of the
binding complex. For analysis of bias in PDBbind, we modified
ACNN to model only protein structures (protein alone), and only
ligand structures (ligand alone) (Supplementary Figure 1). For
protein alone, two independent atomic convolution blockswere used
to extract atomic features from the same protein, and led to two
different protein energies calculated from the same fully connected
layer. The predicted “binding affinity” was the difference between
two protein energies. The same strategy was applied for ligand alone
as well. This strategy decouples the correlation of molecule size
(number of atoms) and binding energy (sum of atomic energies),
which enforces the ACNN model with the ability to learn
atomic features.

All models were trained with an early-stopping strategy by
stopping training if the performance on the validation subset did
not improve in five epochs. The maximum number of neighbors of
each atom was set to 4 at present study. We used a batch size of 16
and grouped samples with similar binding affinities into batches
without changing the samples in one batch from the first to the last
epochs. This training strategy is similar to the “curriculum learning”
strategy (Bengio et al., 2009) because it reduces the difficulty of
learning via training on the organized data.

Random Forest
Two feature sets for decoy selection were used to build the RF
models (Breiman, 2001) to evaluate the bias in the DUD-E dataset.
The first feature set consisted of six physicochemical properties,
includingMW(only accountingall heavyatoms), cLogP,numberof
rotatable bonds, number of hydrogen bond donors, number of
hydrogen bond acceptors, and net charge. The second feature set
was ECFP (Morgan fingerprint with a radius of 2 and 2,048 bits in
RDKit), which has been widely applied to encode molecular 2D
topology into fixed length binary vector. We computed the
properties and ECFP using the open source RDKit package.

The RF classifier from scikit-learn (Pedregosa et al., 2011)
version 0.21.3 was used. The default parameters were used except
February 2020 | Volume 11 | Article 69
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that the number of estimators was set to 100 and the seed of
random state was set to 0 for deterministic behavior during
fitting. The AUC value was used to evaluate the classification
performance of the RF. The enrichment factor was calculated as
EFsubset = (Activessubset/Nsubset)/(Activestotal/Ntotal). The higher
the percentage of known actives found at a given percentage of
the ranked database, the better the enrichment performance of
the virtual screening. Since the practical value of virtual screening
is to find active compounds as early as possible, we chose the
enrichment factor at the top 1% of the ranked dataset (EF1) to
evaluate the early enrichment performance in the present study.
In kinase inhibitor selectivity prediction, we used predictive
index (PI) as a semi-quantitative measurement of the power of
the target ranking order, where PI value (ranging from 1 to −1) of
1 indicates the perfect prediction, and 0 is completely random
(Pearlman and Charifson, 2001).
RESULTS

High Performance Achieved on the
PDBbind Datasets Using Random Splitting
We evaluated the performance of ACNN model to predict
protein-ligand binding affinities on the PDBbind datasets using
different data splitting approaches. The Pearson R2 values on test
subsets are reported in Supplementary Table 1. Firstly, we used
Frontiers in Pharmacology | www.frontiersin.org 4
a random splitting approach to split each PDBbind dataset into
the training, validation, and test subsets five times with different
random seeds. The increased number of protein-ligand
complexes in the refined and general sets improved the ACNN
model performance significantly (Figure 1A). The core set had
the lowest mean R2 value of 0.04, the refined and general sets
with more samples were shown much higher performance with
R2 values of 0.80 and 0.70, respectively. We also trained the
models on the refined and general sets, and tested the models on
the core set, individually. The results were also promising,
outperformed previously reported results of R2 value of 0.66
using model trained on the refined set (Cang et al., 2018; Shen
et al., 2019), with R2 values of 0.70 and 0.73 using models trained
on the refined and general sets, individually (Figure 1B and
Supplementary Table 2).

Since PDBbind contains large number of kinase targets (309
kinase structures accounting 9.76% of the refined set), we wanted to
test the performance of ACNN model on a benchmarking dataset
for kinase inhibitor selectivity modeling (Wan et al., 2013). Using
the models trained on the PDBbind refined set, the calculated mean
EF20 value of 1.12 and PI value of 0.01 indicate that such ACNN
models cannot be used to predict the ranking order of the kinase
targets for a given inhibitor (Supplementary Table 3).

To study the prediction power of theACNNmodel, it is critical to
decompose the contributions of the ligands and protein from the
complex structure. Therefore, we generated two extra datasets by
FIGURE 1 | Atomic convolutional neural network performance measured by the Pearson R2 values obtained from the different PDBbind datasets using different
splitting approaches. Each dataset was split into the training, validation, and test subsets five times with different random seeds following an 80/10/10 ratio, and
studied on three different binding components, including protein-ligand complex structure (binding complex), only ligand structure (ligand alone), and only protein
structure (protein alone), individually. (A) Models trained and tested within the same set. (B) Models trained on randomly selected subsets of the refined and the
general sets (removing the core set structures) and tested on the core set. Models trained on the PDBbind datasets (C) (protein alone) and (D) (ligand alone) using
different splitting methods.
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dividing the protein-ligand complex structure (binding complex)
into ligand structure (ligand alone) and protein structure (protein
alone), individually. Strikingly, the model performance did not
change significantly on datasets of ligand alone or protein alone in
both the refined and general sets (Figure 1A, B and Supplementary
Table 1). These results indicate that the ACNN model does not
require learning protein-ligand interactions to achieve high
performance, and suggest that data biases exist in PDBbind, both
with proteins and with ligands.

Protein and Ligand Similarity Biases
in PDBbind
Li et al. reported that the protein similarity impacts the
performance of AI models (Li and Yang, 2017). Therefore, we
applied sequence-based splitting to reduce the impact of the
protein similarity between the training and test subsets. When
trained on protein alone, the R2 value was reduced from 0.84
(random splitting) to 0.63 (sequence-based splitting) in the refined
set; while it was reduced from 0.73 to 0.54 in the general set
(Figure 1C and Supplementary Table 1). In addition, we guessed
that ACNN learned the bias on ligand similarity. Therefore, we
split the PDBbind datasets based on ligand scaffold similarity, and
the performance of ACNN models was reduced significantly.
When trained on ligand alone, the R2 value was reduced from
0.71 (random splitting) to 0.48 (scaffold-based splitting) in the
refined set, and from 0.60 to 0.42 in the general set. Since similar
targets bind similar ligands, it is not surprising that protein
sequence-based splitting also significantly reduced the model
performance compared to random splitting. The R2 values were
reduced to 0.35 and 0.23 in the refined and general sets,
individually (Figure 1D and Supplementary Table 1).

To further investigate what the ACNNmodel exactly learned
from the ligand structures, we derived the atomic contributions
from the ACNN models (ligand alone) trained on the PDBbind
refined set (with structures in the core set removed) (Figure 2).
Three representative systems were chosen from the core set to
illustrate the atomic contributions of the ligands. Two protein
tyrosine phosphatase 1B (PTP1B) inhibitors had similar atomic
scores in Br atoms but different scores in S atoms, which suggests
that the ACNNmodel could predict atomic contributions based
on local atomic features (Figure 2A). However, the derived
atomic contributions differed significantly in models trained
with different random seeds, as demonstrated by the scores of
the same Br atom changing from 0.55 to −0.04 in different
models (Supplementary Figure 2). Atomic scores on the ligands
bound to the antibody Fab showed that the model could predict
one ligand (1zea) with larger molecular size but lower affinity by
assigning negative scores on atoms with potentially unfavorable
binding contributions (Figure 2B). For two acetylcholinesterase
(AChE) inhibitors with similar size, the model correctly
predicted the more potent inhibitor by identifying the
presence of specific functional groups, such as Cl atom and
ethyl group (Figure 2C). Combing the observations from those
representative systems, the ACNN model is able to learn the
correlation between atomic features and binding affinities.
However, this correlation does not have to relate to protein-
Frontiers in Pharmacology | www.frontiersin.org 5
ligand interactions and may only represent the similarity of the
ligands in PDBbind.

Property Bias in DUD-E
Although the accurate prediction of ligand binding affinities is the
ultimate goal of molecular docking, the practical value of structure-
based virtual screening is to enrich the active compounds in the top
ranked subset. Generally, the success of a virtual screeningmethod is
evaluated by its capacity to discriminate known active compounds
from a background of decoy molecules. However, Sieg et al. (2019)
reported that the distributions of MW beyond 500 Da between
actives and decoys in DUD-E were mismatched (Supplementary
Figure 3). Indeed, only using six properties as features, RF achieved a
meanEF1 of 22.2 and ameanAUCof 0.73 in randomCVonDUD-E
(Figure 3A). Therefore, we compiled theDUD-E(MW ≤ 500) dataset to
remove this specific MW bias (Supplementary Figure 4). A mean
EF1 of 15.4 and amean AUC of 0.71 was achieved in randomCV on
DUD-E(MW ≤ 500), more importantly, amean EF1 of 5.14 and amean
AUCof 0.66was achieved in cross-class CV, which indicates that the
model cannot use property bias to achieve high performance in
cross-class CV on the DUD-E(MW ≤ 500).

Topology Bias in DUD-E
In DUD and DUD-E, the actives and decoys against the same
target are dissimilar on topology and can be easily differentiated
based on fingerprint (von Korff et al., 2009; Venkatraman et al.,
2010;Hu et al., 2012; Lagarde et al., 2015; Kearnes et al., 2016; Sieg
et al., 2019). However, whether the actives and decoys can be
differentiated in cross-target CV based on fingerprint remains
unclear, due to the mixed property bias and topology bias. By
avoiding the use of property bias, we may study the independent
contribution of topology bias onDUD-E. As shown inFigure 3B,
using RF with molecular fingerprint (FP) as features, a mean
AUCof 0.91 and ameanEF1 of 32.75 in randomCVwas obtained
onDUD-E. Themodel achieved amean AUC of 0.86 and amean
EF1 of 15.33 in cross-class CV on the DUD-E(MW ≤ 500). These
results indicate that themodel can still use topology bias inDUD-
E even after avoiding the property bias.

To investigate the topology bias in the DUD-E dataset, we
calculated the relative frequency of bit set on each bit (2,048 bits)
for actives and decoys in DUD-E(MW ≤ 500) and the bit
f r equenc i e s o f Z INC12 compounds a s r e f e r ence
(Supplementary Figure 5). Eighty-four bits with absolute log2
fold change ≥ 1 and mean relative frequency ≥ 0.03 were selected
as representative bits (Supplementary Figure 6). About half of
bit frequencies of actives and decoys are located on the opposite
side of the bit frequencies of ZINC12 compounds, for example,
the most populated bit 1,452 representing an aryl-alkyl ether
group (Figure 4). This indicates that the topology distribution of
decoys is strikingly different to actives. The rest of representative
bits have relatively close frequencies between decoys and
ZINC12 compounds, while larger differences between actives
and ZINC12 compounds exist, such as bit 235 (representing six-
membered aromatic ring) and bit 352 (representing aromatic
ring with a sp2-hybridized carbon substituent). This further
demonstrates that topology bias is not only caused by using
February 2020 | Volume 11 | Article 69
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FIGURE 3 | Performance of RF on the DUD-E datasets using (A) six properties or (B) topology fingerprints. Note that the DUD-E(MW ≤ 500) dataset was compiled by
removing actives with MW (only including heavy atoms) greater than 500 and their associated decoys. The cross-class CV split the dataset into three folds based on
target classes, and the random CV randomly split targets with the same fold sizes as in cross-class CV.
FIGURE 2 | Atomic contributions derived from the ACNN model (ligand alone) on three representative systems chosen from the PDBbind core set, including
(A) protein tyrosine phosphatase 1B (PTP1B) inhibitors, (B) ligands bound to the antibody Fab and (C) acetylcholinesterase (AChE) inhibitors. The ACNN model
(ligand alone) was trained on the refined set (removing the core set structures) and tested on the core set. Each row shows two ligands from the same protein target
with different binding affinities (pKi or pKd) (predictive values included inside the parentheses). The first column shows the superimposed ligand structures using the
binding pocket alignment approach. The second and third columns show atomic contributions of each ligand. The size of the balls represents the absolute values of
atomic scores. The atomic scores of selected atoms are labeled explicitly. The atoms with black spheres have negative scores. The molecular images were
generated using UCSF Chimera (Pettersen et al., 2004).
Frontiers in Pharmacology | www.frontiersin.org February 2020 | Volume 11 | Article 696
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fingerprint as a decoy filter, but also resulted from the different
topology distribution between actives and ZINC12 compounds.
Therefore, the DUD and DUD-E datasets are not suitable for
training models which directly or indirectly utilize the
compound topological information.
DISCUSSION AND CONCLUSIONS

State-of-the-art AI technologies represent a new paradigm in
virtual screening with both opportunities and challenges for
future improvement. The differences in different AI models
mainly come from two aspects: one is the training dataset, and
the other is the characterization method. At present work, we
focused on analyzing the biases in two widely applied datasets
for protein-ligand interactions. The former is represented by
PDBbind, a collection of experimentally determined protein-
ligand complex structures with known binding affinities, which
is reliable, but the amount of data is small and arguably suffers
from the data redundancy caused by the protein and ligand
similarity. Our systematic investigation of ACNNmodels on the
PDBbind datasets led to a surprising observation that the model
performance was not correlated with learning essential protein-
ligand interactions. Even the models trained on ligands or
proteins performed as well as trained on complexes, while
data splitting based on the similarity (protein sequence or
ligand scaffold) clustering reduced the performance
significantly. This suggests that the model performance may
rely on the similarity of atomic features existing in the training
and test subsets. It is expected that the rapidly increased amount
Frontiers in Pharmacology | www.frontiersin.org 7
of protein-ligand binding and structural data will improve the
generality of the models by sampling the much larger and
diverse chemical space.

DUD-E has become a common dataset for evaluating structure-
based virtual screeningmethods, whichwere designed to benchmark
enrichment performance by prioritizing the actives among a large
amount of property-match but topology-dissimilar decoymolecules.
As evidenced at present study, the topology bias is difficult to avoid
when train on DUD-E. Therefore, care must be taken when using
DUD-E for training AI models to predict protein-ligand
interactions. However, DUD-E can still serve as an independent
dataset to test the prediction power of AImodels without using it for
training. The use of fingerprint for selecting topological dissimilar
decoys in the DUD andDUD-E datasets introduces topology bias in
cross-target, and even cross-class CV. If we want to perform cross-
target CV on DUD-like datasets for benchmarking AI models, the
decoys shall be selected not only dissimilar to actives of a specific
target, but also similar to actives of the other targets. Therefore, it is
desirable to develop a more sophisticated approach for DUD-like
decoy selection by depleting the topology bias, and such dataset may
serve as a general-purpose benchmarking dataset to assess the
enrichment performance of different virtual screening approaches
(including AI models).

Nevertheless, it is encouraging that ACNN models have shown
powerful capability for learning correlations hidden in structural
data. Using the same neural network structure, ACNN was able to
learn the structural similarities between ligands and between
proteins. Even after protein sequence similarity clustering, ACNN
still performed well in predicting ligand binding affinities. It is likely
that ACNN model is well suitable for analysis of protein binding
pocket, and it can be applied in protein pocket similarity analysis and
protein pocket druggability prediction.

In summary, sufficiently large and unbiased datasets are
desirable to fully exploit the potential of AI models for protein-
ligand interactions. In addition to the guidelines proposed by Sieg
et al. (2019), we can envision extra practical guidelines in
developing and applying AI-based models. First of all, target
structure-based methods do not guarantee that the performance
of predicting ligand binding affinities is correlatedwith the learning
of protein-ligand interactions. Vice versa, we demonstrated that
ACNN models trained on the PDBbind datasets did not learn the
essential protein-ligand interactions. Therefore, control
experiments of training on the free ligands (ligand alone) and the
free proteins (protein alone) can facilitate our understanding of
what the AImodels learned from the complex structures. Secondly,
PDBbind is probably still going to be the best quality and the most
accessible dataset for benchmarking protein-ligand interactions.
However, it is necessary to evaluate the model performance by
splitting datasets based on protein sequence and ligand scaffold
similarity. Redundancy reduction increases the level of difficulty in
model training, but will definitely improve the robustness ofmodel
transferability. Lastly, protein-ligand binding follows the laws of
physics. The interpretability of AI models is critical for studying
protein-ligand binding interactions, and visualization of atomic
contributions decomposed from the models shall be engaged in
extracting human understandable insights.
FIGURE 4 | Significantly changed bits between actives and decoys on DUD-E

(MW ≤ 500). Eighty-four bits with absolute log2 fold change ≥ 1 between the
actives and decoys and mean relative frequency ≥ 0.03 were selected as
representative bits from the Morgan fingerprints (2,048 bits). The bits were
sorted by frequencies of ZINC12 compounds. The chemical features of three
selected bits are presented, and the chemical features of all 84 bits are
summarized in Supplementary Table 4.
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