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The cephalopod visual system is an exquisite example of convergence in
biological complexity. However, we have little understanding of the genetic
and molecular mechanisms underpinning its elaboration. The generation of
new genetic material is considered a significant contributor to the evolution
of biological novelty. We sought to understand if this mechanism may be
contributing to cephalopod-specific visual system novelties. Specifically,
we identified duplications in the Krüppel-like factor/specificity protein
(KLF/SP) sub-family of C2H2 zinc-finger transcription factors in the squid
Doryteuthis pealeii. We cloned and analysed gene expression of the KLF/SP
family, including two paralogs of the DpSP6-9 gene. These duplicates
showed overlapping expression domains but one paralog showed unique
expression in the developing squid lens, suggesting a neofunctionalization
of DpSP6-9a. To better understand this neofunctionalization, we performed
a thorough phylogenetic analysis of SP6-9 orthologues in the Spiralia. We
find multiple duplications and losses of the SP6-9 gene throughout spiralian
lineages and at least one cephalopod-specific duplication. This work sup-
ports the hypothesis that gene duplication and neofunctionalization
contribute to novel traits like the cephalopod image-forming eye and to
the diversity found within Spiralia.
1. Introduction
The generation of new genetic material subject to mutation is considered a sig-
nificant contributor to the evolution of biological novelty [1]. This can include
large genomic expansions and rearrangements, gene duplications and de novo
gene emergence, cis-regulatory element expansion or exon shuffling [2–4].
However, a lack of sequence data has made it difficult to assess the importance
of this mechanism in most metazoan species until recently. Cephalopods, a
group of molluscs that include squid, cuttlefish, octopus, and nautilus, have
recently benefited from genome and transcriptome sequencing and are excep-
tional subjects for the study of morphological novelty because they have
evolved a diversity of complex, class-specific traits [5–12].

Cephalopod novelties include many features traditionally associated with
vertebrates (closed circulatory system, single-chambered eyes) as well as some
defining to themselves (ink decoys and textured, camouflaging skin). Little is
known about the molecular or developmental basis of these traits, including
whether the genetic and genomic changes that underpin these novelties are
similar to the mechanisms found in better-studied species. Cephalopod gen-
omes are large, ranging between two and five gigabases [13]. Sequencing the
octopus genome found evidence of large-scale transposon-mediated gene
family expansions [10]. One of these expansions is the large C2H2 zinc-finger
superfamily of proteins, with over double the number of homologues found
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Figure 1. Domain architecture, expression, and phylogeny of KLF/SP family members (a) KLF/SP proteins are defined by a conserved triple 2-cysteine 2-histidine
(C2H2) DNA-binding domain. The Buttonhead box (Btd) distinguishes SP transcription factors from KLFs. (b) Normalized expression of KLF/SP family in the devel-
oping eye and optic lobe in D. pealeii, stages 19, 21, 23, 25, and 27 in biological triplicate (original dataset from [6]). DpSP6-9a and DpSP6-9b are highly expressed
throughout development. (c) Bayesian inference of KLF/SP phylogeny (MrBayes). Many deeper nodes are poorly supported, making it difficult to draw firm con-
clusions about the relationships of many KLF/SP subgroups. Circles represent posterior probabilities above 0.5 (white), 0.7 (grey), and 0.95 (black) on branches
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mark D. pealeii sequences in the tree.
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in vertebrates. This is consistent in the genome of the bobtail
squid, Euprymna scolopes, and in the transcriptome of the
longfin squid, Doryteuthis pealeii [6,8]. To understand the con-
tribution of C2H2 zinc-finger protein family expansion to the
evolution of cephalopod novelty, we have chosen to focus on
a sub-family with well-understood function in vertebrates
and Drosophila: the KLF (Krüppel-like factor) and SP
(specificity protein) genes [14–17].

KLF/SP genes comprise a family of related transcription
factors found within the Holozoa characterized by a con-
served triple C2H2 zinc-finger DNA-binding domain at the
C-terminus. The SP proteins are restricted to the Metazoa
and are defined by a Buttonhead box (Btd), a putative trans-
activating domain, and usually an SP box located at the
N-terminus (figure 1a; electronic supplementary material,
figure S1) [18]. SP1 was the first eukaryotic transcription
factor identified. Since the discovery of SP1, KLF/SP proteins
have been implicated in diverse developmental, cellular,
and homeostatic processes [19,20]. They have known roles
as both transcriptional activators and repressors in neural
development, angiogenesis, osteogenesis, muscle, digestive,
and renal physiology, as well as in cancer progression
[19–26]. The KLF/SP triple C2H2 domain binds to GC/GT
boxes in DNA and its biochemical function is conserved
across distantly related species [27]. Partial functional redun-
dancy is often observed in overlapping paralog expression,
suggesting that the context of expression is important for
KLF/SP functional diversity rather than molecular differ-
ences [28]. There are 17 KLF and 9 SP genes in mice and 5
KLF and 3 SP genes in Drosophila with variable numbers
identified in other vertebrates and ecdysozoans [29,30]. How-
ever, the phylogeny and function of this group of genes is
poorly understood in the Spiralia. Analysis of previously
published RNA-seq data in the squid D. pealeii [6] shows
an enrichment of KLF/SP family members in the developing
visual system, including the eye and optic lobe tissues, where
image processing occurs (figure 1b) [31]. The visual system
is a compelling subject for the study of biological novelty
because it demonstrates significant innovations in coleoid,
or soft-bodied, cephalopods [32–34].

Cephalopods are one of four groups of animals, including
vertebrates, pancrustaceans, and arachnids, that have inde-
pendently evolved a highly acute visual system [35]. Coleoid
cephalopod eye morphology is physically similar to the ver-
tebrate eye, composed of a single chamber with a lens and a
cup-shaped retina (electronic supplementary material, figure
S2). This complex organ evolved within Cephalopoda and is
convergent with other camera-type eyes. The cephalopod
lens is a lineage-specific morphological novelty that allows
for high spatial resolution by precisely focusing light on the
retina [36–38]. The cephalopod eyes develop from two pla-
codes on either side of the embryo early in development.
These placodes are then internalized by a lip of cells to form
the optic vesicles. The posterior of the optic vesicle will gener-
ate the retina and the anterior will form the lens and anterior
segment of the eye. At hatching, the neural retina is composed
of two morphologically identifiable cell types: photoreceptors,
which synapse directly on the optic lobe, and support cells. The
anterior segment of the eye is composed of multiple popu-
lations of lens-generating or lentigenic cells. The lens is
segmented into an anterior lens segment and a posterior lens
segment. The lentigenic cells are arranged circumferentially
around the lens and selectively contribute to each segment
(electronic supplementary material, figure S2) [6,39,40]. Each
population of lentigenic cells extends long processes that
wrap around each other to form the lens fibres [39,40]. Gene
expression studies and staged RNA-seq data of the develop-
ing eye and optic lobe have been published but we have
little understanding of the molecular contributors to lens
development in cephalopods [6,34,39,41–47].

Our goal in this study is to illuminate if gene duplications
in the KLF/SP transcription factor family may be associated
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with visual system innovations in the cephalopod. Here, we
identify duplications of the KLF/SP family of genes specific
to cephalopods by generating a new phylogeny using
recent genomic and transcriptomic data across Spiralia. To
better understand the evolutionary history of one of these
cephalopod duplications we focused on the SP6-9 homol-
ogues, which are enriched in the RNA-seq time course of
the eye and optic lobe development. Our results show that
the SP6-9 gene has undergone multiple duplications and
losses within Spiralia including a cephalopod-specific dupli-
cation. We cloned and performed in situ hybridization on
members of the KLF/SP family to assess their expression in
the squid visual system. Our study showed lens-specific
expression of a single paralog of the DpSP6-9 gene identify-
ing a potential neofunctionalization. This work supports the
hypothesis that gene duplication plays an important role in
the evolution of novelty and diversity found in the Spiralia.
.B
287:20202055
2. Material and methods
(a) Animal husbandry
Egg sacs were obtained from the Marine Biological Laboratory,
Woods Hole, Massachusetts. Embryos were kept in flowing
seawater at the MBL or at 20°C in artificial sea water.

(b) Cloning and in situ hybridization
Genes were identified using a previously assembled and published
transcriptome [6]. RNA was extracted from pooled stages of
embryos using Trizol. cDNA libraries were generated using iScript
according to the manufacturer’s instructions (Bio-Rad). Primers
used for cloning gene fragments are found in electronic supplemen-
tary material, table S1. PCR product size was confirmed by
electrophoresis and then cloned into pGEM-T Easy and Sanger
sequenced (Promega). Sense and antisense probes were generated
from plasmid using digoxygenin-labelled ribonucleoside tri-phos-
phate (rNTPs) (Roche). In situ hybridization was performed as
previously described [6]. Embryos were embedded and cryosec-
tioned as previously described [6]. Whole-mount embryos were
imaged using a Zeiss Axio Zoom and sectioned embryos were
imaged using a Zeiss Axioskop 2.

(c) Phylogenetic analysis
The metazoan KLF/SP family member trees were generated from
amino acid sequences using previous alignments [29,30], and
NCBI BLAST searches in additional spiralians and basal deuteros-
tomes. We required that sequences had three C2H2 domains with
the following 88 amino acid architecture: C-X4-C-X12-H-X3-H-X7-
C-X4-C-X12-H-X3-H-X7-C-X2-C-X12-H-X3-H, where X can be any
amino acid. Additionally, we confirmed the presence of a
conserved aspartic acid residue at position 44 (D44) [30]. Non-
metazoan, opisthokont KLF sequences were used as outgroups.
Amino acid sequences were truncated and concatenated to
include conserved activator/repressor motifs (SID, R2, R3, SP-
box, Btd, and C2H2) if present. All sequences were aligned
using MUSCLE and trees were visually inspected in Geneious
[48]. We constructed maximum-likelihood (ML) and Bayesian
trees run on the FASRC Cannon cluster supported by the FAS
Division of Science Research Computing Group at Harvard Uni-
versity. To generate an ML tree, we used PTHREADS RAxML v.
8.2.10 run with default options and the PROTGAMMAAUTO
model of amino acid substitution [49]. The best-scoring substi-
tution model under the gamma model of rate heterogeneity was
the LG model with fixed base frequencies. We resampled the
tree with 1000 rapid bootstrap replicates and 500 best ML tree
searches. For Bayesian analysis, we used MrBayes v. 3.2.6 [50]
with default settings except the following: 10 million Markov
chain Monte Carlo (MCMC) generations, with 1.5 million gener-
ations of burn-in, five heated chains per run, and 0.1 heating
temperature. Stationarity was assessed by the convergence of
the two runs using an average standard deviation of split frequen-
cies which reached 0.042.

We identified SP6-9 sequences for our spiralian tree by
reciprocal BLAST of available spiralian transcriptomes and gen-
omes. We used full-length amino acid sequences for the SP6-9
trees when possible and used SP1-5 sequences as outgroups. We
allowed the RAxML software to identify the best-scoring protein
substitution model (PROTGAMMAAUTO) for our dataset and
the JTT model with fixed base frequencies under the gamma
model of rate heterogeneity was used. RAxML and MrBayes
were otherwise implemented as above on the spiralian SP6-9 align-
ment. In the Bayesian analysis, the average standard deviation of
split frequencies reached 0.096 after 10 million generations.

We built the cephalopod-only SP6-9 tree using the cephalopod
amino acid sequences from our spiralian tree with vertebrate and
D. pealeii SP1-5 sequences as outgroups. We aligned sequences in
Muscle and implemented MrBayes as described above, for 565
000 generations until the average standard deviation of split
frequencies was consistent at 0.019.

For the Mollusca and Annelida SP6-9 only trees, we trimmed,
filtered, and assembled basally branching annelid and mollusc
transcriptomes according to the Harvard FAS Informatics
best practices, a publicly available pipeline found here:
https://informatics.fas.harvard.edu/best-practices-for-de-novo-
transcriptome-assembly-with-trinity.html. We used reciprocal
BLAST to identify potential SP6-9 orthologues, aligned only sub-
group specific sequences, and implemented MrBayes as above,
with 4 chains in each of 2 runs, and 4 million generations. Align-
ment and nexus tree files may be found in supplementary data
(electronic supplementary material, data S9–S12)

(d) Analysis of SP6-9 synteny
Using publicly available spiralian genomes, we identified genomic
coordinates and intron/exon boundaries of SP6-9 paralogs. We
used all available cephalopod genomes. To assess synteny in
other spiralians, we used chromosome-level assemblies with the
exception of annelidswhich lack a chromosome-level assembly [51].

(e) Character mapping duplications and losses of SP6-9
Cartoon cladograms were made by manually combining the most
current hypotheses of relationships among Spiralia, Annelida, and
Mollusca [52–61]. For simplicity, we only include branches for
which we have data. We then mapped gains and losses to find
the most parsimonious hypothesis. In the cases of Rotifera, Seden-
taria, and Hypsogastropoda, we override maximum parsimony in
favour of the phylogenetic signal we see from our gene trees.
3. Results and discussion
(a) Analysis of Doryteuthis pealeii Krüppel-like factor/

specificity protein homologs
We identified DpKLF/SP genes in a previously published
D. pealeii transcriptome from reciprocal BLAST [6]. Time
course developmental expression in the eye and optic lobe
of these putative DpKLF/SP genes is shown in figure 1b [6].
Each DpKLF/SP amino acid sequence has the conserved
triple C2H2 domain and the DpSP sequences have the requi-
site Btd box (electronic supplementary material, figure S1a).
We also find previously identified transactivation and
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repressor domains in these D. pealeii sequences, including the
SID, PVDLS, R2, and R3 repressor domains and the 9aaTAD
transactivating domain (electronic supplementary material,
figure S1b) [30].

To validate the putative DpKLF/SP genes from our dataset,
we constructed phylogenetic trees with representative basal
metazoan and bilaterian KLF/SP family members (electronic
supplementary material, table S2). Previous phylogenetic
analyses either omitted or had limited sampling within the
Spiralia [29,30]. This gene family presents a challenge for phy-
logenetic analysis due to the highly divergent N-terminal
regions and the highly conserved but short C2H2 domains
[17,30,62]. To produce the alignment, we concatenated any
conserved activator and repressor motifs, the C2H2 domain,
and Btd box. A summary of the Bayesian tree generated for
this gene family is labelled and coloured by major subgroups
supported by posterior probabilities (figure 1c). ML methods
never generated a treewith support for all previously identified
KLF/SP groups (electronic supplementary material, data S2).
In our Baysian tree, we find support for sub-families: KLF15,
KLF1-8+12, KLF9/13, KLF10/11, SP1-4, and SP5-9. Within
Spiralia, we find most taxa have one KLF15 representative,
four KLF1-8+12 members, a single KLF9/13 member, one
SP1-4, and three SP5-9 members.

Our tree supports subgroup clades but the addition of
understudied taxa does not resolve 1 : 1 orthology for many
sequences. We found one D. pealeii KLF15 and three KLF1-8+
12 family members. Within the KLF1-8+12 sequences,
previously identified jawed vertebrate subgroups KLF5,
KLF6/7, andKLF3/8/12 arewell-supported, but the vertebrate
KLF1/2/4 group was not resolved [15,63,64]. We cannot confi-
dently assign orthology to many protostome KLF1-8+12
sequences. KLF6/7 is an exception and contains representatives
from all metazoan lineages except Spiralia. KLF5 is not sup-
ported as a monophyletic group. We find a vertebrate KLF5
clade and an invertebrate KLF5 clade, which includesD. pealeii.
Additionally, despite only finding support for a vertebrate
KLF3/8/12 clade, which is defined by a conserved PVDLS
domain, there are Drosophila and spiralian sequences with a
PVDLS domain. Cephalopods have two KLF1-8+12 sequences
and one KLF5. Aside from DpKLF5, the D. pealeii KLFs in this
subgroup are too divergent to confidently assess orthology, so
we name them DpKLF1-1 and DpKLF1-2.

KLF9/13 sequences have been previously identified in
manymetazoan taxa but only the vertebrate clade is supported
in our tree (figure 1c) [30,65]. Although not monophyletic,
we hypothesize that the polytomies neighbouring the
vertebrate clade are KLF9/13 which includes sequences that
have been identified in previous phylogenies [30]. Interest-
ingly, spiralians and Nautilus are represented, but no other
cephalopod has a KLF9/13 sequence, suggesting a loss in
Coleoid cephalopods. KLF10/11 was previously reported to
be avertebrate-specific gene, butwith the addition ofmore pro-
tostome taxa, we identify a highly supported monophyletic
KLF10/11 group, with a cephalopod-specific duplication
(figure 1c). D. melanogaster does not possess a KLF10/11
gene, but orthologues are found in Tribolium, Limulus, Daphnia,
and multiple spiralian sequences.

The SP family is strongly supported in the tree and the
phylogeny shows two SP groups, SP1-4 and SP5-9, neither
with strong support (figure 1c). Protostomes, including
cephalopods, have one SP1-4 family member, with the excep-
tion of D. pealeii, which is unique in having two. SP5 and
SP6-9 groups were not resolved, unlike in other trees with
less spiralian sampling. Spiralia have variable numbers of
SP5-9 genes, typically between 3 and 4.

The addition of spiralian taxa to the KLF/SP gene family
tree reveals a pattern of spiralian-specific gains and losses in
nearly every major KLF/SP group. This complex evolution-
ary trajectory differs from the majority of ecdysozoans and
basal deuterostomes which have not significantly expanded
their KLF/SP repertoires (figure 1c), and may be responsible
for difficulties in assigning orthology [30,66]. As is the case
for other gene families with a very small highly conserved
region, to better resolve this difficult tree, it is necessary to
focus our inquiry on specific gene families and to narrow
our phylogenetic sampling where full-length sequences
may help. We decided to focus on the SP6-9 group as it has
undergone a duplication event, DpSP6-9a and DpSP6-9b,
and is enriched in the eye and optic lobe RNA-seq
time course.

(b) Phylogenetic analysis of the SP6-9 amino acid
sequences in Spiralia

Our large KLF/SP tree did not have sufficient support to ident-
ify SP5 and SP6-9 as distinct groups. To confirm orthology of
our cephalopod sequences, we generated spiralian-specific
SP6-9 trees. This sub-family shares much more sequence iden-
tity within Spiralia, therefore, when possible, alignments of
full-length amino acid sequences were made to construct ML
and Bayesian trees (electronic supplementary material, figure
S3). Our Bayesian tree resolved SP5 as a monophyletic group
within SP6-9 but our ML tree shows support for an SP6-9
group to the exclusion of SP1-5 (electronic supplementary
material, figure S3). Previous work supports the conclusion
of our ML tree but we proceed with a cephalopod-specific
tree to confirm the SP5 and SP6-9 clades (see section e). We
recovered three cephalopod SP6-9 paralogs, although we did
not find SP6-9c in the D. pealeii transcriptome. We discovered
single orthologues in Brachiopoda, Gastrotricha, Nemertea,
and aculiferan molluscs, two paralogs in Rotifera, Platyhel-
minthes, Bryozoa, Phoronida, Gastropoda, Scaphopoda, and
Bivalvia, and one to three copies in Annelida. We find
modest support for monophyletic clades of SP6-9 orthologues
in each spiralian lineage, but no support for deeper
phylogenetic relationships between SP6-9 orthologues.

(c) Expression analysis of Krüppel-like factor/specificity
protein homologues in Doryteuthis pealeii

Little is known about the function of the KLF/SP genes in the
Spiralia, so we cloned and performed in situ hybridization
studies in D. pealeii on multiple members of the family,
including KLF5, SP1-4, and SP5. We analysed gene
expression at stages 19, 21, 23, 25, and 27 in whole-mount
(electronic supplementary material, figure S4–S6) [67].

KLF5 is expressed in yolk nuclei, in a salt and pepper
pattern across the cerebral ganglion, in arm IV (tentacle),
and the dorsal gill at stage 19 through 23. Later in develop-
ment (stage 25), KLF5 is still found in the arms and
expands to the funnel and mantle tissue. At stage 27, the
expanded epidermal expression is detected (electronic
supplementary material, figure S4). SP1-4a is found ubiqui-
tously expressed from stage 19 until stage 27, consistent
with vertebrate and arthropod expression (electronic
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supplementary material, figure S5) [29] reviewed in [68]. The
second member of the SP gene family assessed, SP5, has
dynamic expression in D. pealeii including high expression in
the optic lobe at stage 23 (electronic supplementary material,
figure S6). In all stages, low expression is seen in the retina,
and anterior segment expression is seen at stage 27.
(d) Paralog-specific expression of the DpSP6-9 genes
To understand the consequence of gene duplication, we also
performed expression studies for both DpSP6-9 paralogs.
DpSP6-9a and DpSP6-9b have significant overlap in their
expression with notable differences. Both DpSP6-9a and
DpSP6-9b show expression on the medial side of the placode
at stages 19 and 21 (figures 2b,c,g,h and 3a–i). The expression
is also seen in the gills and the limbs in D. pealeii (figures 2
and 3). SP6-9 is part of a limb gene regulatory network
found in vertebrates and ecdysozoans [69–75]. Recent findings
have shown SP6-9a (SP8/9a) expressed early in cuttlefish limb
outgrowth [12]. Both paralogs are also expressed in the anterior
chamber organ from stage 19 through to stage 27, a tissue cur-
rently hypothesized to control ocular pressure but without a
well-understood function [76].

Despite their similar expression patterns, these paralogs
do show differences in their domains. DpSP6-9a shows
enriched expression in regions hypothesized to form the cer-
ebral ganglion and the palliovisceral ganglion (figure 2c) and
DpSP6-9b shows unique expression in the mantle at stage 23
until hatching (figure 2i–k). Major differences in expression
are found in the developing eye. At stage 19, the expression
of DpSP6-9a extends in all lip cells around the developing
placode, while DpSP6-9b expression is restricted from the
lip, with the exception of the most medial cells (figure 3a–e).
At stage 21, the lip cells have fused in the anterior of the optic
vesicle. At this stage, DpSP6-9a is expressed in the anterior
segment and DpSP6-9b is significantly reduced in the anterior
segment (figure 3a,f–i). This difference in expression is
maintained through to stage 27. At stages close to hatching,
DpSP6-9a is in the tertiary lentigenic cells in the anterior
segment (figure 3t) [39,40].

This significant difference in expression suggests that
SP6-9a plays a role in lens development while SP6-9b does
not. Vertebrate and Drosophila homologues of SP6-9 do not
have an association with visual system development but do
showexpression in the central nervous system [75,77,78]. How-
ever, SP6-9 expression in the retinamay be ancestral in spiralian
visual systems as SP6-9 is required for eye cup regeneration in
the flatworm Schmidtea mediterranea in conjunction with the
transcription factor Dlx [79]. The evolution of novel expression
domains is characteristic of neofunctionalization after dupli-
cation [80]. In finding this paralog-specific expression
correlated with a cephalopod novelty (the lens), we wanted
to further investigate this duplication event.
(e) Cephalopod SP6-9 sequence evolution and synteny
To understand the molecular changes in the cephalopod SP6-9
genes correlated with divergent expression and to confirm our
SP6-9/SP5 orthology, we constructed a Bayesian treewith only
cephalopod members (figure 4a). This tree shows support for
separate SP5 and SP6-9 groups. It also shows SP6-9a and
SP6-9b as sister groups to the exclusion of SP6-9c in all cepha-
lopods. This relationship between paralogs includes Nautilus,
which do not have a lens. In addition, a long branch leads to
cephalopod SP6-9a, but within this group sequences are
highly similar. This contrasts with relatively shorter branches
leading to both SP6-9b and SP6-9c clades, but increased
sequence divergence within each group across cephalopod
lineages (figure 4a). The similarity of cephalopod SP6-9a
sequences includes the lensless Nautilus, which does not
express any SP6-9 homologue in its eye [43]. Together this
suggests that coding sequence evolution has not altered the
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ancestral molecular function of SP6-9a. Instead, SP6-9a may
perform a similar biochemical function among cephalopods,
but its novel recruitment to the anterior segment is likely a
result of a cis-regulatory change. Wnt is a well-studied regula-
tor of SP6-9 homologues in both vertebrates and arthropods,
and may play a role regulating this new expression domain
in cephalopods [72,73,81–83].

Defining relationships among SP6-9 orthologues and para-
logs is difficult with phylogenetic methods alone, sowe sought
additional evidence to assess their evolutionary history. We
evaluated gene architecture and synteny in spiralian SP6-9
paralogs (figure 4b, electronic supplementary material, table
S3). We found multiple instances of spiralian SP6-9 genes
that were intronless, including all cephalopod SP6-9b and
SP6-9c sequences. In addition, cephalopods share synteny
across all SP6-9 paralogs. This includes SP6-9b, SP6-9c, and
SP6-9a in sequential order, in the same 50 to 30 direction,
within 1.5 Mb of each other in all cephalopod genomes inves-
tigated so far. We also find that SP6-9a is the only paralog in
cephalopods found to have introns. SP6-9 duplicates in other
spiralians are on the same chromosome, but do not show the
obvious synteny found within cephalopods (figure 4b). These
tandem, intronless paralogs suggest two duplication events
via retrotransposition early in the cephalopod lineage and
maintained in the genome [84]. Retrotransposition is an impor-
tant contributor to insertion events and structural variation in
both vertebrate and arthropod species [85,86]. This may be
an unusual case in cephalopods; however, despite the fact
that the octopus genome is enriched in transposon activity,
recent analyses have shown retrotransposon-derived genomic
elements only make up 2–8% of molluscan genomes, as
opposed to 35–52% in vertebrates [10,51,87–89].
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( f ) Character mapping duplications and losses of SP6-9
From our SP6-9 trees, assigning specific lineage duplications
and losses is difficult without support from a species phylo-
geny. We wanted to clarify if these SP6-9 duplications were
cephalopod-specific and therefore needed to better understand
the relationship of SP6-9 paralogs across Spiralia. We first esti-
mated the number of SP6-9 duplicates at the base of Mollusca
and Annelida. Our spiralian SP6-9 trees did not give strong
support for deeper nodes, so we assembled additional tran-
scriptomes with a particular focus on basal branching annelid
and molluscan lineages, and generated Bayesian SP6-9 trees
specific to each group (electronic supplementary material,
figures S7 and S8). Wemapped themost parsimonious patterns
of duplication and loss onto the current species tree
[52–57,90,91] (figure 5a). We infer that the ancestral spiralian
had a single SP6-9 orthologue and multiple independent
duplications occurred in Rotifera, Platyhelminthes, Annelida,
Mollusca, and the lineage leading to Phoronida & Bryozoa.

Within annelids, the Serpulidae, Clitellata, Apitellidae, and
Echiura have three paralogs while basally branching members
of Sedentaria, Sabellidae, and Orbiniidae, as well as all other
annelid groups have one (figure 5b, electronic supplementary
material, figure S3). Within Sedentaria, we do not find support
for 1 : 1 orthologues of SP6-9 sequences. Instead two paralogs
of Clitellata are supported in a clade with a single Echiura/
Capitellidae/Serpulidae orthologue, while another SP6-9
clade contains two Echiura/Capitellidae/Serpulidae paralogs
and a single Clitellata orthologue. This pattern suggests two
duplications at the base of the Sedentaria lineage followed by
a loss and then another duplication in Clitellata (figure 5b,
electronic supplementary material, figures S3 and S7).
Within molluscs, the most parsimonious hypothesis
supports a duplication at the base of Conchifera and a
second duplication in Cephalopoda (figure 5c) [52,54,56,57].
Aculiferan species had either one SP6-9 homologue, or no
SP6-9 transcriptwas found (electronic supplementarymaterial,
tables S2, S4 and figure S8). All bivalves and gastropods have
two paralogs with the exception of Protobranchia which has
one SP6-9 orthologue. This supports a lineage-specific loss,
with the understanding that transcriptomic sampling may be
incomplete (figure 5c, electronic supplementary material,
figure S3, pink). Within Gastropoda, the Hypsogastropoda
have two SP6-9 paralogs but they fall within a single well-
supported gastropod SP6-9 clade (electronic supplementary
material, figure S3). Genomic evidence confirms the loss of
one gastropod paralog and duplication of gastropod SP6-9-1
within the Hypsogastopoda lineage (figure 5c, electronic
supplementary material, figure S3, green). The cephalopod-
specific SP6-9 duplication and its relationship with a novel
lens sit within a broader dynamic pattern of gene gain and
loss in Spiralia. Ultimately, further research in this major
branch of the animal tree will shed light on whether these
patterns are in part responsible for the vast morphological
diversity found in this group.
4. Conclusion
The cephalopod eye and optic lobe together is a remarkable
example of a sophisticated biological system and the lens is
one of its most apparent novelties. In this study, we identified
at least one cephalopod-specific gene duplication of the SP6-9
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gene as supported by similar gene expression, synteny, gene
architecture, and phylogenetics. SP6-9a differs from SP6-9b in
its robust expression in the lentigentic cells in the developing
cephalopod anterior segment. This is the first study connect-
ing a cephalopod-specific gene duplication to a visual system
neofunctionalization. It opens the door to many mechanisms
for elaboration: the evolution of new lens-specific cis-regulat-
ory targets, or even the redeployment of canonical regulatory
networks in the anterior segment of the cephalopod eye. This
study highlights the exciting opportunities within Spiralia to
address fundamental questions underlying the evolution
of novel phenotypes, including the consequences of gene
duplication and loss, as well as changes in cis-regulation.
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