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INTRODUCTION 
 

Endometrial carcinoma (EC) is a common female 

malignant tumor, which has increasingly become a 

burden in the world and China [1]. In the past decade, 

the number of Chinese women diagnosed with EC has 

increased significantly, which may be attributed to 

higher rates of obesity, diabetes, hypertension, aging, 

early menarche, and late menopause [2]. EC comes 

from proliferative endometrium (type I, endometrioid) 

or atrophic endometrium (type II, non-endometrioid), 

which are related to estrogen [3]. However, most of the 

women diagnosed with EC are postmenopausal women 

aged 60 to 70, and 56% of women with type I were 

diagnosed after menopause, which indicates that 

estrogen is not decisive risk factor for patients with type 

I EC [4, 5]. There is an urgent need to study its 
mechanism underlying postmenopausal women with 

type I EC and to discover new prognostic molecular 

biomarkers. 
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ABSTRACT 
 

Background: Endometrial cancer (EC) is one of the most common type of female genital malignancies. The 
purpose of the present study was to reveal the underlying oncogene and mechanism that played a pivotal role 
in postmenopausal EC patients. 
Methods: Weighted gene co-expression network analysis (WGCNA) was conducted using the microarray 
dataset and clinical data of EC patients from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus 
(GEO) databases to identify significant gene modules and hub genes associated with postmenopausal status in 
EC patients. LASSO regression was conducted to build and validate the risk model. Finally, expression of hub 
gene was validated in pre- and post-menopausal EC patients in our center. 
Results: 1240 common genes were used to construct the WGCNA model. According to the WGCNA results, we 
identified a brown module with 471 genes which was significantly associated with postmenopausal status in  
EC patients. Furthermore, we constructed an 11-gene risk signature to predict the overall survival of EC 
patients. The Kaplan–Meier curve and area under the ROC curve (AUC) of this model showed high accuracy in 
prediction. We also validate the risk model in patients in our center and it also has a high accuracy. Among the 
11 genes, PKD1 was recognized as a potential biomarker in the progression of EC patients with postmenopausal 
status. 
Conclusion: Taken together, we uncovered a common PKD1-mediated mechanism underlying postmenopausal 
EC patients’ progression by integrated analyses. This finding may improve targeted therapy for EC patients. 
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Advancements in high-throughput microarray 

technology have made it possible to identify genes 

associated with EC progress using gene expression 

profiling [6], though studies using these techniques 

have assessed differentially expressed genes (DEGs) 

and have not considered the relationship between 

them. In these cases, genes with similar patterns of 

expression could be associated with each other. There 

are limitations in selecting DEGs only between 

normal and cancer samples, and we should pay more 

attention to the association between gene expression 

and clinical characteristics. Weighted gene co-

expression network analysis (WGCNA) is commonly 

used to characterize the relationships between genes 

and can identify associations that are highly correlated 

[7]. WGCNA would classify genes with similar 

functions in the same module by gene expression 

profiling, and summarize the identified modules by 

the module eigengene, relating eigengene network to 

one another and to clinical features. It has been 

commonly used to identify hub genes in the following 

cancers: clear cell renal cell carcinoma (ccRCC) [8], 

pancreatic ductal adenocarcinoma [9], and breast 

cancer [10]. 

 

Due to the limitation of experiment, the development of 

huge public transcriptome database provides an 

excellent platform for cancer research, screening 

biomarkers associated with prognosis and clinico-

pathological characteristics [11]. Machine learning 

methods have been developed using RNA-sequencing 

patterns, which can be used to develop models for 

accurate classification and prediction in medical 

settings. Different subtypes of EC are quite different  

in terms of molecular characteristics and treatments 

[12]. 

 

In the current study, we hoped to reveal the potential 

mechanism of tumorigenesis in postmenopausal women 

with type I EC. We constructed a correlation network of 

DEGs from publicly accessible resources by WGCNA, 

and identified a gene module that had a close 

association with postmenopausal status. Furthermore, 

risk model was constructed and validated in TCGA 

dataset. Finally, we analyzed the PKD1 expression 

levels in tissues from patients with premenopausal or 

postmenopausal status and explored the mechanical 

value of PKD1 in EC patients. 

 

MATERIALS AND METHODS 
 

Data collection 

 

The Cancer Genome Atlas (TCGA) UCSC XENA 

(https://xena.ucsc.edu/) and the Gene Expression 

Omnibus (GEO) database were used to obtain clinical 

data and gene expression profiles. Affymetrix Human 

Gene 2.0 ST Array was used to process the GSE17025 

dataset. The level of TCGA gene expression was 

measured as Transcripts per million reads (TPM). The 

data of this study are from GEO and TCGA public 

databases. 

 

Identifications of differentially expressed genes 

(DEGs) 

 

The GSE17025 expression profile was normalized and 

analyzed using R software and the limma package, 

while the TCGA EC dataset was normalized and 

analyzed using R software and the edge R package. Cut-

off criteria were considered the |log2 Fold Change 

(log2FC)| >1 and adjusted p-value <0.05. 

 

Construction of WGCNA and module preservation 

 

We applied the WGCNA to construct the gene co-

expression network and identify the co-expression 

modules in R software [7]. In this study, we selected the 

minimum size (genome) 30 for the gene tree, the cutting 

line of 0.25 for the module tree, and combined some 

modules. We assessed how similar the module 

eigengenes (MEs) were, identified a cut line for the 

module dendrogram, and merged certain modules to 

better understand the module. 

 

Identification of clinically significant modules 

 

Real hub genes were selected by drawing a Venn 

diagram which combining the module, DEGs in GEO 

database (p < 0.05, log2FC>1), and DEGs in TCGA 

database (p < 0.05, log2FC>1) together. The 

expression similarity of different samples is used to 

identify the WGCNA, while the relationship between 

the external clinicopathological information and the 

gene modules is used to identify clinically significant 

modules. Finally, gene modules that were highly 

correlated with certain clinical features were chosen 

as modules of interest for further analysis. Functional 

and pathway enrichment analysis of significant 

module was conducted according to the methods 

previously reported [13]. P < 0.05 was set as the cut 

off criterion. 

 

Construction and evaluation of the postmenopausal 

related prognostic model 

 

LASSO regression analysis was performed to select 

essential prognostic genes by the “glmnet” R package. 

We listed the formula of the risk score for the predicting 
patients’ survival as follow: 
 

i iRisk score n (Coefi x )=  =   

https://xena.ucsc.edu/
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Coefi represented the coefficient and xi represented the 

expression level of hub genes. Subsequently, risk scores 

were calculated by the formula and gene expression for 

each patient. Then patients were divided into two 

groups (high- and low-risk) according to the median 

value of risk score. In these two subgroups, the 

clinicopathological features and gene expression 

profiles of each patient were displayed by "pheatmap" 

and "survival" R packages. The Kaplan-Meier survival 

analysis was conducted to compare the overall survival 

(OS) rate of the two subgroups by “survival” package of 

R (P < 0.05). The accuracy of the risk model was 

further evaluated by receiver operating characteristic 

(ROC) curve. 

 

We validated possible uses of the predictive risk model 

and performed a survival analysis within our cohorts, 

and we obtained RNA-seq expression and clinical data 

from 30 patients that underwent surgery in the 

Department of Obstetrics and Gynecology, Nanjing 

First Hospital. Thirty samples without neoadjuvant 

therapy and who underwent surgical resection between 

January 2019 and December 2021 from patients in our 

center were selected. RNA isolation and reverse 

transcription-quantitative PCR were both conducted 

according to previously described methods [13]. The 

Institutional Ethics Committee (Human Research) of 

our hospital approved our research, and we obtained 

informed consent from all participants. 

 

In vitro validation of hub genes 

 

Total protein of different types of tissues were 

extracted and used for western blot as described earlier 

[6]. Total RNA was extracted from tissues using 

TRIzol reagent (Tiangen, China). We used the 

PrimeScript RT-polymerase (Vazyme, China) to 

reverse-transcribe cDNAs to the mRNA of interest. 

Real-time quantitative RT-PCR (qRT-PCR) was 

conducted using SYBR-Green Premix (Vazyme, 

China) with specific PCR primers (Thermo Fisher 

Scientific, USA). GAPDH was taken as an internal 

control. The relative expression of the target gene was 

calculated using the 2−ΔΔCt method. qRT-PCR was 

performed according to the manufacturer’s instructions. 

 

Statistical analysis 

 

Statistical differences in the expression of hub genes in 

the normal and tumor samples were analyzed using a 

two-tailed student’s t-test in both the TCGA and GEO 

databases. All statistical tests and graphing were 

performed using R software and GraphPad prism 7.0. 
All analyses were conducted three times and 

represented data form three separate experiments. P 

value <0.05 was considered statistically significant. 

RESULTS 
 

Identification of DEGs in GEO and TCGA 

databases 
 

A brief study design was shown in Figure 1. The DEGs 

in both of the GEO and TCGA datasets were analyzed 

respectively using p < 0.05 and |log2FC| >1 as the cutoff 

criteria. The volcano maps of the DEGs in the two 

groups were constructed using the R package. Based on 

the screening guidelines, 4163 DEGs were acquired, 

consisting of 1900 up-regulated genes and 2263 down-

regulated genes from EC tissues compared with normal 

endometrial tissues in TCGA dataset (Figure 2A, 2B). 

What’s more, we found a total of 2461 DEGs in the 

normal endometrial tissue in GSE17025, including 1487 

downregulated and 974 upregulated genes (Figure 2C, 

2D). In total, 1240 common genes are acquired by Venn 

diagram (Figure 2E). 

 

WGCNA and identification of key modules 
 

We constructed co-expression network by TCGA 

dataset including 545 EC samples associated with 

whole clinical information. When constructing co-

expression network with “WGCNA” software package, 

the expression value of the first 25% DEG is included. 

In our study, β = 4 (scale free R2 = 0.89) was selected as 

the soft-thresholding power to ensure a scale-free 

network (Figure 3A–3C). All selected genes were 

classified using the dissimilarity measure based on 

topological overlap matrix (TOM), which is based on 

the dynamic tree cutting algorithm and divides the tree 

into eight modules marked with different colors 

(Figure 3D). We identified the relationship between 

each module and the EC clinical information, with a 

particular emphasis on postmenopausal status 

(Figure 3E). Pearson’s correlation coefficient was used 

to assess the association between the co-expression 

modules in this study. Modules with various gene 

clusters were labeled in the topological overlap heatmap 

using different colors, with blue indicating a negative 

relationship and red indicating a positive relationship 

(Figure 3F). Then 1000 genes were randomly selected 

for the heatmap. Results of the clustering analysis 

indicated that the hierarchical clustering of the module 

eigengenes was representative of the modules. The 

dendrogram branches were clustered according to the 

eigengene relationships (Figure 3G). 
 

First, modules with a greater MS were considered to 

have more connection with patients in postmenopausal 

status. However, most of the correlations were between 
low and moderate (R2 < 0.5), and the MS of the brown 

module (R2 = 0.83, P = 4e-18) was found to be higher 

than that of the rest of the modules. Therefore, the 
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brown module with postmenopausal status was 

identified as the clinically significant module, which 

was extracted for further analysis. 

 

GO and pathway enrichment analysis of hub genes 

in brown module 

 

GO and KEGG enrichment analysis were used to explore 

the function and pathways of the hub genes. The brown 

module, which consisted of 471 genes, was mainly 

associated with the following subclasses of GO 

classification (Figure 4A): calcium ion binding, 

translational initiation, integral component of plasma 

membrane, and cell adhesion. KEGG pathway analysis 

showed that top enriched terms were P53 signaling 

pathway, cell adhesion molecules, T cell receptor signaling 

pathway, and chemical carcinogenesis (Figure 4B). These 

suggested that brown module genes were closely related to 

the calcium channel and cell adhesion. 

 

Establishment and validation of a postmenopausal 

related prognostic signature 

 

For screening out the potentially prognostic biomarkers 

for patients with postmenopausal status, LASSO 

regression was conducted. LASSO analyses identified 

11 genes significantly associated with prognosis: PKD1, 

PCDHB15, PRND, TBC1D8B, ZNF578, SLC26A4, 

CACNA1D, CPEB1, CYP46A1, EPPK1, and 

KBTBD12 (Figure 5A, 5B). According to the results of 

LASSO regression analysis, we used the coefficients 

(Table 1) to construct the prognostic model as following: 

 

 
 

Figure 1. The flowchart of the study design.
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risk score = (PKD1 × 0.13192805) − (PCDHB15 × 

0.082172079) − (PRND × 0.026889625) − (TBC1D8B × 

0.093931462) − (ZNF578 × 0.048951829) + (SLC26A4 × 

0.209421425) + (CACNA1D × 0.372518929) + (CPEB1 

× 0.045936749) + (CYP46A1 × 0.039213661) + (EPPK1 

× 0.019827739) − (KBTBD12 × 0.025230047). The 

patients were then ranked, in ascending order, according 

to the parameter, after which they were classified into 

 

 
 

Figure 2. Screening of common differentially expressed genes (DEGs) of TCGA and GEO databases. (A) Volcano plot of DEGs 

between EC and normal endometrial samples in TCGA database. (B) Bar plot for DEGs of dysregulated genes in TCGA database. Red bar, up-
regulated mRNA, blue bar, down-regulated mRNA. (C) Volcano plot of DEGs between EC and normal endometrial samples in GSE17025. (D) 
Bar plot for DEGs of dysregulated genes in GSE17025. (E) Venn diagram of DEGs between TCGA and GEO databases, the blue circle 
represents for total number of DEGs in TCGA, and the pink circle represents for total number of DEGs in GSE17025, the overlapped part is 
used for further analysis. 
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low-risk and high-risk groups based on the median risk 

values. We further analyzed the relationship between 

the 11 genes (Figure 5C). We found that they were 

significantly relevant, especially between PKD1 and 

ZNF578, PKD1 and SLC26A4, CACNA1D and 

ZNF578, SLC26A4 and PRND. In addition, the 

expression of 11 genes in TCGA dataset in low-risk 

and high-risk patients was also confirmed in the 

heatmap. The expression profiles of the prognostic 

genes showed that PKD1, SLC26A4, CACNA1D, 

 

 
 

Figure 3. Weighted gene correlation network (WGCNA) on the RNA-seq database and selection of hub genes. (A, B) 

Screening and validation of the soft threshold. (C) Checking the scale free topology when β = 4. The x-axis demonstrates the logarithm of 
whole network connectivity, while the y-axis shows the logarithm of the corresponding frequency distribution. (D) Clustering dendrogram 
of common DEGs in EC tissues. (E) Correlation between modules and postmenopausal status. (F) Correlations between different modules. 
(G) Heatmap depicts the Topological Overlap Matrix (TOM) of genes selected for WGCNA. Light color represents lower overlap and deep 
color represents higher overlap. 
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CPEB1, CYP46A1, and EPPK1 were highly expressed 

in the high-risk subgroup. We observed significant 

differences in the high- and low-risk groups related to 

peritoneal cytology, histology, menopause, tumor LNM, 

recurrence, grade, age, stage, and death status (Figure 

5D). The dot plot displays the ranked risk score and 

survival status of each individual, with notable 

differences between the groups in terms of overall 

survival (OS) (Figure 5E, 5F). Kaplan-Meier curve 

analysis indicated that the OS of the high-risk group 

was significantly shorter than that of the low-risk group 

(P = 1.827e−05, Figure 5G). Analysis of the ROC curve 

indicated that the area under the ROC curve (AUC) of 

the prognostic HRGs model for OS was 0.729 (Figure 

5H). These results demonstrated that the menopause-

related risk signature had a high precision in the 

prediction of EC patients. 

 

The risk signature mentioned above was further validated 

in the clinical cohort in our center (Supplementary Table 

1). We conducted the RNA level sequencing of 30 EC 

patients and calculated the risk score of each patient with 

the formula mentioned above. EC patients in the cohort 

were divided into low- and high-risk groups based on the 

median risk score as before. Expression of PKD1 was 

compared between patients with pre- and postmenopausal 

status (Supplementary Figure 1A). Kaplan-Meier survival 

curves showed that patients with low risk scores had a 

longer OS, which was consistent with the predicted 

survival results of the risk model (p = 0.031) 

(Supplementary Figure 1B). 

 

Verification of expression of PKD1 in database and 

in vitro 

 

We further validated the expression of PKD1 in different 

clinicopathological characteristics of EC patients in 

TCGA database. The results indicated that PKD1 was 

highly expressed in cancer tissue, grade 3, positive lymph 

node metastasis, positive peritoneal cytology, and 

recurrence groups (Figure 6A–6E). Patients were divided 

into two cohorts according to median value of PKD1. 

The results indicated that the expression of PKD1 was 

significantly associated with patient prognosis (Figure 

6F). The analysis showed that PKD1 was statistically 

different in worse outcomes of EC patients. GSEA results 

showed that high expression of PKD1 was enriched in 

apoptosis, and low expression of PKD1 was enriched in 

B cell receptor signaling pathway, endometrial cancer, 

mTOR signaling pathway, and VEGF signaling pathway 

(Supplementary Figure 2). The immune infiltration was 

significant diverse in different expression of PKD1 

(Supplementary Figure 3). To further explore the 

expression of PKD1 in different menopause status, we 

performed the qPCR and western blot (WB) validation in 

clinical specimens following the steps described above. 

As shown in Figure 7A, 7B, the expression levels of 

PKD1 in postmenopausal patients was more than that in 

the premenopausal patients in EC group. These results 

indicated that PKD1 may play a pivotal role in EC 

especially in postmenopausal women. 

 

DISCUSSION 
 

The purpose of the present study was to screen out gene 

modules and hub genes that played a pivotal role in EC 

patients with postmenopausal status by WGCNA and 

LASSO analysis using the resources in TCGA and GEO 

databases. In this study, we identified a 471-gene 

module that had significant association with post-

menopausal status by bioinformatics method and further 

revealed an 11-gene risk signature in this cluster. These 

risk model might act as an essential part in EC patients 

with postmenopausal status. 

 

 
 

Figure 4. Functional analysis of common DEGs from TCGA and GSE17025 datasets. (A) GO analysis showing the differentially 
expressed postmenopausal related genes. (B) The significantly enriched pathways of the DEGs determined by KEGG analysis. Abbreviations: 
GO: gene ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes. 
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Figure 5. Identification of postmenopausal related prognostic signature in EC patients. (A) Plots of the ten-fold cross-validation 

error rates. (B) LASSO coefficient profiles of the eleven postmenopausal related genes. (C) Spearman correlation analysis with the selected 
11 genes. (D) Heatmap and clinicopathological features of high- and low-risk groups. The samples are ordered by risk score, and the score 
decreases from left to right. (E, F) Risk score distribution in low- and high-risk groups. (G) Kaplan-Meier survival analysis of the low and 
high-risk group. (H) Time-dependent ROC curves for overall survival prediction for EC patients. 
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Table 1. Eleven postmenopause-associated genes and corresponding coefficient values. 

Metabolic associated gene Coefficient 

PKD1 0.13192805 

PCDHB15 −0.0821721 

PRND −0.0268896 

TBC1D8B −0.0939315 

ZNF578 −0.0489518 

SLC26A4 0.20942142 

CACNA1D 0.37251893 

CPEB1 0.04593675 

CYP46A1 0.03921366 

EPPK1 0.01982774 

KBTBD12 −0.02523 

Risk score  
Low: <3.63 

High: ≥3.63 

 

WGCNA had been used to distinguish related hub gene, 

biological pathway and tumor therapeutic target for 

complex diseases, such as familial genetic disease [14], 

Alzheimer’s disease [15], and many types of cancers 

[16, 17]. Co-expression network analysis as a powerful 

tool is also applied to study EC. Several modules and 

 

 
 

Figure 6. Expression and survival validation of PKD1 in TCGA database. Expression of PKD1 in different clinicopathological 

features. (A) Normal and cancer tissues. (B) Different grade. (C) Positive and negative lymph node metastasis. (D) Positive and negative 
peritoneal cytology. (E) Different recurrence status. (F) Kaplan-Meier survival plot of low and high expression of PKD1 according to the 
median value. 
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genes revealed by WGCNA analysis were reported to 

have an influence on pathological traits such as grade, 

stage, and prognosis [18, 19]. Other researches 

involved postmenopausal status belonged to clinical 

epidemiological investigation [20]. These studies either 

concentrated on pathological features associated genes 

or epidemiological characteristics of postmenopausal 

patients, but did not proclaim the mechanism that had 

an effect on postmenopausal EC patients. 

 

According to the current literature, our findings 

identified the brown module, and further GO/KEGG 

analysis indicated that the biological mechanism of the 

brown module was closely associated with “calcium 

ion binding”, “P53 signaling pathway”, and “Cell 

adhesion molecules”. Calcium ion, especially calcium 

channel was correlated with risk and prognosis in EC 

[21]. Different cancers were linked to the expression 

of different calcium channels, such as TRPM7 in 

breast cancer [22] and TRPM4 in prostate cancer [23]. 

Previous study found that calcium ion and TRPV4 was 

required for calcium influx and contributes broadly to 

the development of endometrial cancer [24]. Calcium 

channel might also involve in tumorigenesis in 

postmenopausal EC patients. What’s more, p53 is 

thought to be an important tumor suppressor that 

influences multiple crucial biological processes, 

including apoptosis, cell-cycle arrest, and DNA repair 

[25]. More than 60% of patients with endometrial 

cancer develop TP53 mutations [12]; and mutant p53 

proteins may not only abolish their tumor-suppressive 

functions, but also acquire oncogenic functions [26]. 

Cell adhesion could contribute to the invasive behavior 

of EC cells, and the underlying mechanism was related 

to TGFβ1-MEK-ERK1/2-integrin αvβ3 signaling 

pathway [27]. 

 

Protein kinase D1 (PKD1) is a serine threonine kinase 

and an important regulator of many kinase signal 

transduction pathways [28]. Previous studies have 

shown that PKD1 promoted breast cancer cell 

proliferation and estrogen independence [29, 30]. PKD1 

is a serine/threonine kinase encoded by the PRKD1 

gene [31], which can regulate various biological 

processes, including cell proliferation, survival, 

movement, Golgi tissue and membrane transport [32, 

33]. In addition, endometrial cancer and breast cancer 

were both estrogen-mediated cancer. However, the 

underlying signaling mechanisms in EC are largely 

unknown. Some studies have shown that PKD1 

stimulates NFκB, an important transcription factor 

involved in a variety of cellular mechanisms that plays a 

role in increasing the proliferation and growth rate of 

pancreatic cancer [34]. PKD1 had also been reported to 

be involved in the Notch signaling pathway [35]. 

During the transgenic model induced by KRAS12D, the 

expression of PKD1 contributes to the formation of 

precancerous lesions, indicating that PKD1 plays an 

essential role in the origination and progression of 

cancer cells [36]. Our study suggested that PKD1 was 

overexpressed in postmenopausal women compared 

with premenopausal women in protein and RNA levels. 

The mechanisms underlying PKD1 were associated 

with apoptosis, B cell receptor signaling pathway, 

endometrial cancer, mTOR signaling pathway, and 

VEGF signaling pathway. Together, these results 

suggest that PKD1 could be a potential therapeutic 

target in EC. 

 

There were several risk signatures and biomarkers for 

predicting the prognosis of EC patients in different 

features aspects [37–39]. One study constructed a 5 cell 

cycle-related genes signature to evaluate prognosis of 

EC patients, and the AUC of 5-year survival reached to 

0.733 [40]. A separate study found that gene signature 

models related to immunity in both EC and cervical 

cancer are effective at assessing patient prognosis and 

risk, which justifies future research into immunology 

[41]. However, as to the feature of postmenopausal 

status, there were no such risk models. Therefore, our 

 

 
 

Figure 7. Relative expression of PKD1 in 5 pairs of pre- and post-menopausal patients in our center for (A) protein level and (B) RNA level. 

Pre, premenopausal status, Post, postmenopausal status. 
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signature was the first model associated with 

postmenopausal status and the validation proved to be 

highly precise in predicting OS in EC patients. 

Additionally, we used 30 patients from our center to 

validate the risk model. Our results demonstrate that 

this risk model is valuable for both clinical diagnosis 

and prognosis, while PKD1 could serve as a hub gene 

involved in EC progression. 

 

To the best of our knowledge, there are no studies 

exploring the influence of menopausal status of EC, and 

this model helped us to recognize a new promising 

biomarker, PKD1 for EC from a clinical perspective. 

Additionally, this study reported a variety of 

bioinformatics methods that expose PKD1 as a novel 

therapeutic target for the treatment of EC patients, and 

validated with our own samples in RNA and protein 

levels, highlighting the potential of this molecular for 

therapeutic candidate discovery. 

 

However, there are several limitations in our study. First 

of all, this is a retrospective study, and this risk 

signature is developed from two online databases, but 

not our own samples, and this risk model should be 

further validated by large-group sequencing. Secondly, 

our study assesses menopause in EC patients, though 

other clinicopathological characteristics are important 

during oncological pathologies. These must be 

integrated and studied to better understand 

tumorigenesis and its progression in EC patients. Lastly, 

the specific mechanism regulating PKD1 in EC cells 

must be further studied both in vitro and in vivo, and 

how it affects metastasis in EC patients requires further 

attention. 

 

CONCLUSION 
 

In conclusion, we performed a WGCNA approach 

integrating TCGA and GEO databases, and constructed 

a gene co-expression network to reveal a post-

menopausal specific module and potential molecular 

mechanism underlying the tumorigenesis for EC. 

Furthermore, an 11-gene signature is constructed and 

validated. Finally, PKD1 was identified as potential 

biomarker that played a key role in the progression of 

EC with postmenopausal status. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Validation of the risk model. (A) Expression of PKD1 (B) Survival curve of patients in our center. 

 

 

 

 
 

Supplementary Figure 2. KEGG analysis of gene set enrichment analysis (GSEA) in high- and low- expression of PKD1 groups. 
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Supplementary Figure 3. Analysis of 22 immune cell in low- and high-expression of PKD1 groups. 
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Supplementary Table 
 

Supplementary Table 1. Clinicopathological baseline of 30 patients in our center. 

Variables N (%) 

Age   

<60 18 (66.7) 

>60 12 (33.3) 

Grade   

1–2 19 (63.3) 

3 11 (36.7) 

FIGO stage  

I 17 (56.7) 

II–IV 13 (43.3) 

Menopausal status  

Pre-menopause  13 (43.3) 

Post-menopause 17 (56.7) 

Recurrence   

Recurrence-free 15 (50.0) 

Recurrence  15 (50.0) 

Myometrial invasion  

Negative  18 (66.7) 

Positive 12 (33.3) 

Living status   

Alive  22 (73.3) 

Dead  8 (26.7) 

 

 


