Wongia gen. nov. (*Papulosaceae*, *Sordariomycetes*), a new generic name for two root-infecting fungi from Australia

Wanporn Khemmuk^{1,2}, Andrew D.W. Geering^{1,2}, and Roger G. Shivas^{2,3}

¹Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, GPO Box 267, Brisbane, Queensland, 4001, Australia

²Plant Biosecurity Cooperative Research Centre, LPO Box 5012, Bruce, ACT 2617, Australia

³Plant Pathology Herbarium, Department of Agriculture and Fisheries, Ecosciences Precinct, Dutton Park 4102, Australia; corresponding author e-mail: roger.shivas@daf.qld.gov.au

Abstract: The classification of two root-infecting fungi, *Magnaporthe garrettii* and *M. griffinii*, was examined by phylogenetic analysis of multiple gene sequences. This analysis demonstrated that *M. garrettii* and *M. griffinii* were sister species that formed a well-supported separate clade in *Papulosaceae* (*Diaporthomycetidae*, *Sordariomycetes*), which clusters outside of the *Magnaporthales*. Wongia gen. nov, is established to accommodate these two species which are not closely related to other species classified in *Magnaporthe* nor to other genera, including *Nakataea, Magnaporthiopsis* and *Pyricularia*, which all now contain other species once classified in *Magnaporthe*.

Key words:

Ascomycota Cynodon Diaporthomycetidae multigene analysis one fungus-one name molecular phylogenetics root pathogens

Article info: Submitted: 5 July 2016; Accepted: 7 October 2016; Published: 11 October 2016.

INTRODUCTION

The taxonomic and nomenclatural problems that surround generic names in the *Magnaporthales* (*Sordariomycetes*, *Ascomycota*), together with recommendations for the suppression and protection of some of these names, were explained by the *Pyricularia/Magnaporthe* Working Group established under the auspices of the International Commission on the Taxonomy of Fungi (ICTF; Zhang *et al.* 2016). One of these generic names, *Magnaporthe*, was proposed for suppression by Zhang *et al.* (2016) because *Magnaporthe* is congeneric with *Nakataea* (Hara 1939) as the types of both genera, *Magnaporthe salvinii* (syn. *Leptosphaeria salvinii*) and *Nakataea sigmoidea* (syn. *Helminthosporium sigmoideum*) are conspecific(Krause & Webster 1972, Luo & Zhang 2013).

Magnaporthe was morphologically characterised by having dark perithecia with long necks immersed in host tissue, unitunicate asci, and 4-celled fusiform hyaline to pale brown ascospores (Krause & Webster 1972). Subsequently, seven species were assigned to Magnaporthe based on morphology, namely, M. salvinii (Krause & Webster 1972), M. grisea (Barr 1977), M. rhizophila (Scott & Deacon 1983), M. poae (Landschoot & Jackson 1989), M. oryzae (Couch & Kohn 2002), and M. garrettii and M. griffinii (Wong et al. 2012). Most of these species belong to other genera, specifically Magnaporthiopsis, Nakataea, and Pyricularia (Luo & Zhang 2013). The two exceptions are the Australian ectotrophic species, M. garrettii and M. griffinii, which infect roots of some turf grasses (Wong et al. 2012). One of these species, *M. griffinii*, was found by Klaubauf *et al.* (2014) to be distant from *Sordariomycetes* based on ITS sequences (GenBank JQ390311, JQ390312).

This study aims to resolve the classification of *M. garrettii* and *M. griffinii* using molecular sequence data from the type specimens. Four loci from the nuclear genome namely, ITS) and the large subunit (LSU) of rDNA, translation elongation factor 1-alpha (TEF1), and the largest subunit of RNA polymerase II (RPB1) were selected for analysis.

MATERIALS AND METHODS

Fungal cultures and DNA extraction

Dried specimens of the holotypes of *Magnaporthe garrettii* (DAR 76937) and *M. griffinii* (DAR 80512) were borrowed from the Plant Pathology Herbarium, New South Wales Agriculture (DAR). Dried perithecia were excised with a needle and soaked in extraction buffer overnight at 65 °C before extraction of DNA with an UltraClean® Microbial DNA Isolation Kit (MoBIO Laboratories) as per the manufacturer's instructions. An additional culture of *M. griffinii* (BRIP 60377) was grown on PDA for 6 wk before enough mycelium was produced for DNA extraction.

PCR amplification

The primer pairs ITS1/ITS4 (White *et al.* 1990), RPB-Ac/ RPB-Cr (Castlebury *et al.* 2004, Matheny *et al.* 2002), LR5/ LROR and EF1983F/2218R (Schoch *et al.* 2009) were

© 2016 International Mycological Association

Non-commercial: You may not use this work for commercial purposes. No derivative works: You may not alter, transform, or build upon this work.

You are free to share - to copy, distribute and transmit the work, under the following conditions:

Attribution: You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work). Non-commercial: You may not use this work for commercial purposes.

For any reuse or distribution, you must make clear to others the license terms of this work, which can be found at http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode. Any of the above conditions can be waived if you get permission from the copyright holder. Nothing in this license impairs or restricts the author's moral rights.

Table 1. Collection details and GenBank accession numbers of isolates included in this study.

Species	Voucher ¹	Substrate	Locality	GenBank accession no. ²			
				ITS	LSU	RPB1	TEF1
Annulusmagnus triseptatus	CBS 128831	Decayed wood	France		GQ996540		
Bambusicularia brunnea	CBS 133599 [⊤]	Sasa sp.	Japan	KM484830	KM484948	KM485043	
Barretomyces calatheae	CBMAI 1060 [™]	Calathea Iongifolia	Brazil	GU294490			
Brunneosporella aquatica	HKUCC 3708	Submerged wood	Hong Kong		AF132326		
Budhanggurabania cynodonticola	BRIP 59305 [⊤]	Cynodon dactylon	Australia	KP162134	KP162140	KP162143	KP162138
Buergenerula spartinae	ATCC 22848 [™]	Spartina alterniflora	-	JX134666	DQ341492	JX134720	JX134692
Calosphaeria pulchella	CBS 115999	Prunus avium	France		AY761075		
Camarops ustulinoides	AFTOL-ID 72	-	-		DQ470941	DQ471121	DQ471050
Coniochaeta ligniaria	NRRL 30616	Soil	-		AY198388		
Cordana pauciseptata	CBS 121804	-	Spain		HE672160		
Cryphonectria havanensis	CBS 505.63	Eucalyptus saligna	Russia		AF408339		
C. parasitica	ATCC 38755	Castanea dentata	USA	Genome ³	Genomeª	Genome ³	Genome ³
Diaporthe eres	CBS 109767	Acer campestre	Austria		AF408350		
Diaporthe phaseolorum	ATCC 64802	-	-		AY346279		
Fluminicola coronata	HKUCC 3717	-	Hong Kong		AF132332		
Gaeumannomyces oryzinus	CBS 235.32	Oryza sativa	USA	JX134669	JX134681	JX134723	JX134695
Harknessia eucalypti	CBS 342.97	Eucalyptus regnans	Australia		AF408363		
Lecythophora luteoviridis	CBS 206.38	-	Switzerland		FR691987		
Magnaporthiopsis agrostidis	BRIP 59300 [⊤]	Agrostis stolonifera	Australia	KT364753	KT364754	KT364755	KT689623
M. poae	ATCC 64411	Triticum aestivum	USA	JF414836	JF414885	JF710433	JF710415
Nakataea oryzae	ATCC 44754	Oryza sativa	Japan	JF414838	JF414887	JF710441	JF701406
Neurospora crassa	MUCL 19026	-	-		AF286411		
Ophioceras leptosporum	CBS 894.70	Dead stem	UK	JX134678	JX134690	JX134732	JX134704
O. dolichostomum	CBS 114926	Rotten wood	China	JX134677	JX134689	JX134731	JX134703
O. commune	YMF1.00980	Rotten wood	China	JX134675	JX134687	JX134729	JX134701
Ophiostoma floccosum	AU55-6 in G	<i>Pinus</i> sp.	Canada		AF234836		
O. stenoceras	AFTOL-ID 1038	-	-		DQ836904		
Papulosa amerospora	AFTOL-ID 748	-	-		DQ470950	DQ471143	DQ471069
Pseudophialophora eragrostis	RUTTP- CM12m9 [™]	<i>Eragrostis</i> sp.	USA	KF689648	KF689638	KF689618	KF689628
Pseudopyricularia kyllingae	CBS 133597 [⊤]	Kyllinga brevifolia	Japan	KM484876	KM484992	KM485096	
Pyricularia grisea	M 83	<i>Digitaria</i> sp.	USA	JX134671	JX134683	JX134725	JX134697
P. oryzae	70-15	-	USA	Genome⁴	Genome⁴	Genome⁴	Genome⁴
Togniniella acerosa	CBS 113648	Decayed wood	New Zealand		AY761076		

Table 1. (Continued).

Species	Voucher ¹	Substrate	Locality	GenBank accession no. ²			
				ITS	LSU	RPB1	TEF1
Wongia garrettii	DAR 76937 [⊤]	Cynodon dactylon	Australia	KU850474		KU850469	KU850467
W. griffinii	DAR 80512 [⊤]	Cynodon dactylon × transvaalensis	Australia	KU850473	KU850471		
W. griffinii	BRIP 60377	Cynodon dactylon × transvaalensis	Australia	KU850472	KU850470	KU850468	KU850466

¹AFTOL: Assembling the Fungal Tree of Life; ATCC: American Type Culture Collection, Manassas, VA; BRIP: Plant Pathology Herbarium, Department of Agriculture and Forestry, Queensland, Australia; CBMAI: Coleção Brasileira de Microrganismos para Ambiente e Indústria, Paulinia, Brazil; CBS: CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands; DAR: Plant Pathology Herbarium, Orange Agriculture Institute, NSW, Australia; F: Field Museum Mycology Herbarium, Chicago, IL; G: Culture Collection of the Wood Science Department, University of British Columbia, Vancouver, BC, Canada; HKUCC: Hong Kong University Culture Collection; MUCL: Mycothèque de l'Université Catholique de Louvain, Louvain-Ia-Neuve, Belgium; NRRL: American Research Service (ARS) culture collection, Beltsville, MD; RUTPP = Rutgers Mycological Herbarium, New Brunswick, NJ; YMF: Yunnan Microbiological Fermentation Culture Collection Center, Kunming, Yunnan, China.

²GenBank accession numbers of sequences newly generated in this study are in bold.

³ Joint Genome Institute, Walnut Creek, CA.

⁴Broad Institute, Cambridge, MAA.

^T Type specimen or ex-type culture.

used to amplify ITS, RPB1, LSU, and TEF1 sequences, respectively. PCR amplifications were conducted in a 20 μ l reaction volume containing 1 μ l of 5-10 ng DNA, 10 μ l of high fidelity Phusion DNA Polymerase (New England Biolabs), 1 μ l of primers (10 μ M) and 7 μ l of sterile water with the thermal cycling program as follows: 98 °C for 30s, 30 cycles of 98 °C for 10 s, 58–62 °C for 30 s and 72 °C for 1 min, and a final extension of 72 °C for 10 min. PCR products were sent to Macrogen (Korea) for direct sequencing using the amplification primers.

Phylogenetic analysis

All sequences were assembled with Sequencher v. 5.1 (Gene Codes, Ann Arbor, MI). Alignments were generated for individual loci using MAFFT v. 6.611 (Katoh & Toh 2008), and then the alignments concatenated for the phylogenetic analyses. DNA sequences were deposited in GenBank with the accession numbers listed in Table 1 and the final curated alignment deposited in TreeBASE under accession no. ID 19968. Phylogenetic trees were reconstructed with two phylogenetic criteria, Maximum likelihood (ML) and Bayesian Inference (BI). ML was carried out with RAxML v. 7.2.6 using GTRGAMMA as the model of evolution (Stamatakis 2006), choosing the rapid bootstrap analysis (command -f a) with a random starting tree and 1000 maximum likelihood bootstrap replications. BI was done with MrBayes v. 3.1.2 (Ronquist et al. 2012), utilizing four parallel MCMC chains, which were allowed to run for 10 million generations, with sampling every 1000 generations and saving trees every 5 000 generations. The cold chain was heated at a temperature of 0.25. All phylogenetic trees were visualized using FigTree (Morariu et al. 2009).

RESULTS

Molecular phylogeny

The phylogenetic trees recovered from the ML and BI analyses had identical topologies and were well-supported by bootstrap and posterior probabilities (Fig. 1). The analyses comprised 36 taxa belonging to eight orders and two families in the subclass Diaporthomycetidae (Sordariomycetes). Camarops ustulinoides (Boniliales, Sordariomycetes) was used as the outgroup (Table 1). The phylogenetic analysis revealed Magnaporthe garrettii (DAR 76937) and M. griffinii (DAR 80512) as sister species that formed a distinct wellsupported (100/1.0) monophyletic clade in Papulosaceae that sat outside Magnaporthales. The analysis provided moderate support (67/0.93) for placement of M. garrettii and M. griffinii in Papulosaceae, which has not yet been assigned to any order of Diaporthomycetidae. Based on this analysis, a new generic name is established here to accommodate M. garrettii and M. griffinii.

TAXONOMY

Wongia Khemmuk, Geering & R.G. Shivas, **gen. nov.** MycoBank MB817529

Etymology: Named after the eminent Australian mycologist and plant pathologist, Percy T.W. Wong (University of Sydney), who first studied and classified these fungi.

Diagnosis: Differs from all other genera in the subclass *Diaporthomycetidae* in having non-amyloid apical rings in the asci with 3-septate ascospores that have dark brown middle cells and pale brown to subhyaline shorter distal cells.

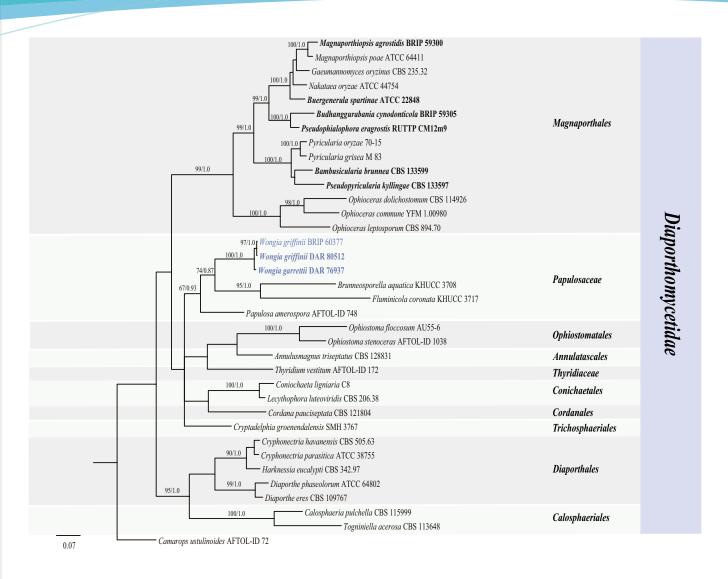


Fig. 1. Phylogenetic tree obtained from a maximum likelihood analysis of the combined ITS/LSU/RPB1/TEF1 alignment. The bootstrap support values from 1 000 replicates and posterior probabilities obtained in Bayesian analysis are indicated at the nodes. The scale bar indicates the expected changes per site. Ex-type cultures of species are indicated in **bold**.

Type species: Wongia garrettii (P. Wong & M.L. Dickinson) Khemmuk *et al.* 2016

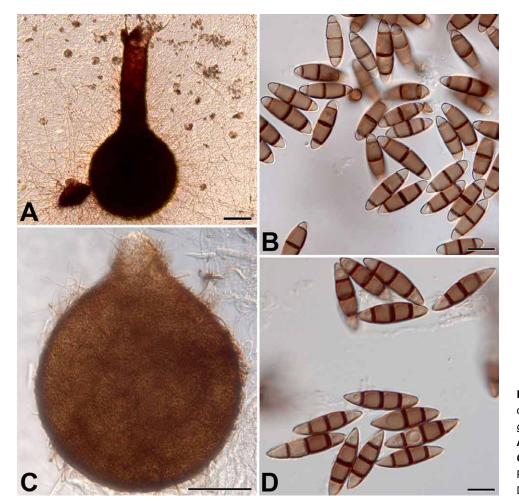
Classification: Ascomycota, Sordariomycetes, Diaporthomycetidae.

Description: Mycelium comprised of brown, straight or flexuous hyphae, with simple hyphopodia. Ascomata perithecial, superficial and immersed, mostly solitary or sometimes aggregated in small groups, globose, black, ostiolate, with a long or short neck, perithecial wall composed of textura epidermoidea, external cell much darker. Paraphyses thinwalled, hyaline, filiform, septate.

Asci unitunicate in structure, cylindrical, mostly straight, short stalked, tapered towards a rounded apex, with a light refractive, non-amyloid apical ring, 8-spored. *Ascospores* uniseriate, cylindrical to fusiform, straight or slightly curved with rounded ends, 3-septate, middle cells dark brown and distal cells pale brown to subhyaline and shorter.

Wongia garrettii (P. Wong & M.L. Dickinson) Khemmuk, Geering & R.G. Shivas, comb. nov.

(Fig. 2A–B)
MycoBank MB817530
Basionym: Magnaporthe garrettii P. Wong & M.L. Dickinson, Australasian Plant Pathology 41: 326 (2012).


Type: **Australia**: *South Australia*: Adelaide, Colonel Light Gardens Bowling Club, on *Cynodon dactylon*, 30 Oct. 2004, *M.L. Dickinson* (DAR 76937 – holotype).

Description and illustration: Wong et al. (2012).

Wongia griffinii (P.Wong & A.M. Stirling) Khemmuk, Geering & R.G. Shivas, comb. nov.

(Fig. 2C–D) MycoBank MB817531

Basionym: Magnaporthe griffinii P. Wong & A.M. Stirling, Australasian Plant Pathology **41**: 327 (2012).

Type: **Australia**: *Queensland*: Coolum, Hyatt Coolum Golf Club, on *Cynodon dactylon* × *transvaalensis,* 13 Mar. 2008, *M. Whatman* (DAR 80512 – holotype).

Description and illustration: Wong et al. (2012)

Other specimens examined: **Australia**: New South Wales: Cobbitty, on Cynodon dactylon, 19 Apr. 2013, *G. Beehag*, (BRIP 60378). *Queensland*: Brisbane, on on Cynodon dactylon × transvaalensis, Jan. 2000, A.M. Stirling (BRIP 60377).

DISCUSSION

Magnaporthe is a synonym of Nakataea as their respective type species, Magnaporthe salvinii and Nakataea sigmoidea, refer to the same species (Krause & Webster 1972, Luo & Zhang 2013, Klaubauf *et al.* 2014, Zhang *et al.* 2016). This led us to re-examine two Australian species, *M. garrettii* and *M. griffinii*, pathogenic on roots of couch (*Cynodon dactylon*) and hybrid couch (*C. dactylon* × *transvaalensis*) (Wong *et al.* 2012). We establish *Wongia* here to accommodate these two species, based on molecular and morphological analysis.

Multigene analyses placed *W. garrettii* and *W. griffinii* in *Papulosaceae* (*Diaporthomycetidae*, *Sordariomycetes*; Maharachchikumbura *et al.* 2015) with moderate bootstrap support (Fig. 1). The *Papulosaceae* has not yet been Fig. 2. Morphological features of *Wongia* species. A–B. *W. garrettii* (DAR 76937 – holotype).
A. Perithecium. B. Ascospores.
C–D. *W. griffinii* (BRIP 60378). C. Perithecium. D. Ascospores. Bars: A, D = 100 μm; B, D = 10 μm.

placed in an order within Sordariomycetes (Winka & Erikson 2000). Wongia is the fourth genus to be placed in Papulosaceae, along with Brunneosporella (Ranghoo & Hyde 2001), Fluminicola (Wong et al. 1999). and Papulosa (Kohlmeyer & Volkmann-Kohlmeyer 1993). Most members in this family are found on submerged wood in freshwater habitats and grow slowly in culture on potato dextrose agar (Ranghoo & Hyde 2001). Wongia garrettii and W. griffinii are morphologically different from other genera of Papulosaceae in having non-amyloid apical rings in the asci using Melzer's reagent, while others have amyloid apical rings (Winka & Eriksson (2000). The long perithecial necks of W. garrettii differentiate it from W. griffinii (Wong et al. 2012), which also has larger ascospores (24-35 x 6-9 μm) than W. garrettii (19–25 x 5–7 μm) (Wong et al. 2012). Asexual morphs have not been found in either W. garrettii or W. griffinii in nature or in cultures grown on artificial media under laboratory conditions (Wong et al. 2012).

ACKNOWLEDGEMENTS

We acknowledge support of the Australian Government's Cooperative Research Centres Program (project no. PBCRC62082), and the Plant Pathology Herbarium, New South Wales Agriculture (DAR), for lending us the type specimens of the two species for sequencing.

REFERENCES

- Barr ME (1977) Magnaporthe, Telimenella, and Hyponectria (Physosporellaceae). Mycologia 69: 952–966.
- Castlebury LA, Rossman AY, Sung GH, Hyten AS, Spatafora JW (2004) Multigene phylogeny reveals new lineage for *Stachybotrys chartarum*, the indoor air fungus. *Mycological Research* **108**: 864–872.
- Couch BC, Kohn LM (2002) A multilocus gene genealogy concordant with host preference indicates segregation of a new species, *Magnaporthe oryzae*, from *M. grisea*. *Mycologia* **94**: 683–693.
- Hara K (1939) The Diseases of the Rice-plant. 2nd edn. Gifu: Japanese Society for Fungi.
- Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. *Briefings in Bioinformatics* **9**: 286–298.
- Klaubauf S, Tharreau D, Fournier, E, Groenewald JZ, Crous PW, *et al.* (2014) Resolving the polyphyletic nature of *Pyricularia* (*Pyriculariaceae*). *Studies in Mycology* **79**: 85–120.
- Kohlmeyer J, Volkmann-Kohlmeyer B (1993) Two new genera of *Ascomycotina* from saltmarsh *Juncus*. *Systema Ascomycetum* **11**: 95–106.
- Krause RA, Webster RK (1972) The morphology, taxonomy, and sexuality of the rice stem rot fungus, *Magnaporthe salvinii* (*Leptosphaeria salvinii*). *Mycologia* **64**: 103–114.
- Landschoot PJ, Jackson N (1989) *Magnaporthe poae* sp. nov., a hyphopodiate fungus with a *Phialophora* anamorph from grass roots in the United States. *Mycological Research* **93**: 59–62.
- Luo J, Zhang N (2013) *Magnaporthiopsis*, a new genus in *Magnaporthaceae* (*Ascomycota*). *Mycologia* **105**: 1019–1029.
- Maharachchikumbura SN, Hyde K, Jones EBG, McKenzie EC, Huang SK, *et al.* (2015) Towards a natural classification and backbone tree for *Sordariomycetes*. *Fungal Diversity* **72**: 199–301.
- Matheny PB, Liu YJ, Ammirati JF, Hall BD (2002) Using RPB1 sequences to improve phylogenetic inference among mushrooms (*Inocybe*, *Agaricales*). *American Journal of Botany* **89**: 688–698.
- Morariu VI, Srinivasan BV, Raykar VC, Duraiswami R, Davis LS (2009) Automatic online tuning for fast Gaussian summation. In: Advances in Neural Information Processing Systems 21: 22nd Annual Conference on Neural Information Processing Systems 2008 (Proceedings of a meeting held 8-10–December 2008, Vancouver) (Koller D, Schuurmans D, Bengio Y, Bottou L, eds): 1113–1120. Neural Information Processing Systems.

- Ranghoo VM, Tsui CKM, Hyde KD (2001) Brunneosporella aquatica gen. et sp. nov., Aqualignicola hyalina gen. et sp. nov., Jobellisia viridifusca sp. nov. and Porosphaerellopsis bipolaris sp. nov. (ascomycetes) from submerged wood in freshwater habitats. Mycological Research 105: 625–633.
- Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, et al. (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542.
- Schoch CL, Crous PW, Groenewald JZ, Boehm EWA, Burgess TI, et al. (2009) A class-wide phylogenetic assessment of Dothideomycetes. Studies in Mycology 64: 1–15.
- Scott DB, Deacon JW (1983) Magnaporthe rhizophila sp. nov., a dark mycelial fungus with a Phialophora conidial state, from cereal roots in South Africa. Transactions of the British Mycological Society 81: 77–81.
- Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. *Bioinformatics* **22**: 2688–2690.
- White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics.
 In: *PCR Protocols: a guide to methods and applications* (Innis M, Gelfand D, Shinsky J, White T, eds): 315–322. San Diego: Academic Press.
- Winka K, Eriksson OE (2000) Papulosa amerospora accommodated in a new family (Papulosaceae, Sordariomycetes, Ascomycota) inferred from morphological and molecular data. Mycoscience 41: 97–103.
- Wong PTW, Dong C, Stirling AM, Dickinson ML (2012) Two new Magnaporthe species pathogenic to warm-season turf grasses in Australia. Australasian Plant Pathology 41: 321–329.
- Wong SW, Hyde KD, Jones EBG (1999) Ultrastructural studies on freshwater ascomycetes, *Fluminicola bipolaris* gen. et sp. novo. *Fungal Diversity* 2: 189–197.
- Zhang N, Luo J, Rossman AY, Aoki T, Chuma I, et al. (2016) Generic names in Magnaporthales. IMA Fungus 7: 155–159.

252