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Growth is a complex trait with moderate to high heritability in livestock and must be
described by the longitudinal data measured over multiple time points. Therefore, the used
phenotype in genome-wide association studies (GWAS) of growth traits could be either the
measures at the preselected time point or the fitted parameters of whole growth trajectory.
A promising alternative approach was recently proposed that combined the fitting of
growth curves and estimation of single-nucleotide polymorphism (SNP) effects into single-
step nonlinear mixed model (NMM). In this study, we collected the body weights at 35, 42,
49, 56, 63, 70, and 84 days of age for 401 animals in a crossbred population of meat
rabbits and compared five fitting models of growth curves (Logistic, Gompertz, Brody, Von
Bertalanffy, and Richards). The logistic model was preferably selected and subjected to
GWAS using the approach of single-step NMM, which was based on 87,704 genome-
wide SNPs. A total of 45 significant SNPs distributed on five chromosomes were found to
simultaneously affect the two growth parameters of mature weight (A) andmaturity rate (K).
However, no SNP was found to be independently associated with either A or K. Seven
positional genes, including KCNIP4, GBA3, PPARGC1A, LDB2, SHISA3, GNA13, and
FGF10, were suggested to be candidates affecting growth performances in meat rabbits.
To the best of our knowledge, this is the first report of GWAS based on single-step NMM
for longitudinal traits in rabbits, which also revealed the genetic architecture of growth traits
that are helpful in implementing genome selection.
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INTRODUCTION

The domestic rabbit (Oryctolagus cuniculus) is an important livestock species in China and has been
intensively raised for producing meat, wool, and fur. The most commonly raised type is meat rabbits
in China, and the rabbit meat production reached 849,150 tons in 2016, which almost accounted for
about 60% of global production (Li et al., 2018). However, progresses on genetic selection and
improvement in rabbits have obviously lagged behind in comparison with other livestock species;
therefore, the Chinese meat rabbit industry is still largely depending on these imported breeds, such
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as the Hyla, Hycole, and Hyplus rabbits from France (Qin, 2019).
One of the important reasons is the serious lack of relevant
studies conducted in rabbits, such as the genome-wide association
studies (GWAS) and genomic selection (GS) for the economically
important traits. Recently, some pioneer studies were published
about the GWAS (Sosa-Madrid et al., 2020; Yang et al., 2020;
Bovo et al., 2021) and GS (Chen et al., 2021; Helal et al., 2021;
Mancin et al., 2021) in rabbits.

Growth is a complex and economically important trait with
moderate to high estimates of heritability in rabbits (Akanno and
Ibe, 2005; Dige et al., 2012; Soliman et al., 2014). In contrast to
traits that are collected at a single time point (such as litter size
and carcass performances), growth must be described by the
longitudinal data repeatedly measured over multiple time points.
Therefore, the relevant genetic studies on growth in livestock can
be implemented through different approaches. The first approach
is to select one or a few representative time points and subject
them to separate analysis; for instance, the GWAS of growth traits
were separately performed among multiple time points of age in
meat rabbits (Yang et al., 2020). The second approach is to fit
growth curves using nonlinear regression models and obtain the
growth curve parameters (such as mature weight and maturity
rate), and subsequently, these derived parameters are used as the
pseudo-phenotypes for association analysis. This is the classical
two-step method and has been commonly found in literature,
such as the studies in beef cattle (Crispim et al., 2015; Duan et al.,
2021). Furthermore, the two-stepmethod could be followed by an
additional step of multi-trait meta-analysis to indirectly combine
the multiple parameters together (Duan et al., 2021). Recently,
Silva et al. (2017) proposed an alternative modeling framework to
integrate the fitting of growth curves and estimation of single-
nucleotide polymorphism (SNP) effects simultaneously under
nonlinear mixed model (NMM), which was applied to pigs and
revealed to have the advantages of higher statistical power and
joint modeling of residual effects in comparison with the two-step
method. To our best knowledge, this single-step method has not
yet been applied to GWAS of growth curves in rabbits.

In this context, we collected the individual growth records
fromweaning at 35 days of age (DOA) to finishing at 84 DOA in a
commercial crossbred population of meat rabbits. Subsequently,
the fitting of growth curves and GWAS were simultaneously
analyzed using a single-step NMM to identify the prospective
candidate variants, genes, and biological processes associated
with growth trajectory. These results could be helpful in
understanding the biological mechanisms underlying growth
and implementing GS of growth traits in rabbits.

MATERIALS AND METHODS

Animals and Phenotypes
One commercial crossbred population of meat rabbits, by
crossing 22 Kangda5 rabbits (_) with 53 Californian rabbits
(\), was subjected to collection of phenotypic records, which
was described in our previous study (Yang et al., 2020). In brief,
individual body weight (BW) was initially measured for 461
rabbits at seven time points, including 35, 42, 49, 56, 63, 70,

and 84 DOA, respectively. At each time point, the phenotypic
records were set to missing values if they deviated by more than
three standard deviations (SD) from the population mean. As the
short time intervals were measured, the individual BW was
allowed to be slightly decreased (<5%) between two
consecutive time points; otherwise, the latter record was set to
missing value. The individuals that have more than two missing
values at the seven time points were also removed, after which 405
individuals remained. No pedigree information is available for
this population.

Genotypes and Quality Controls
For the initial SNP set that was generated from specific-locus
amplified fragment sequencing approach (Yang et al., 2020), we
reapplied more strict criterion of quality control (QC) using the
filtering expression of “QualByDepth (QD) < 2.0 || FisherStrand
(FS) > 60.0 || RMSMappingQuality (MQ) < 40.0” intrinsically
implemented in GATK software v4.2 (McKenna et al., 2010). A
total of 6,721,762 SNPs were obtained and subjected to
additional QC steps using PLINK software v1.9 (Chang et al.,
2015), which required the genotype missing rate lower than 0.1,
individual missing rate lower than 0.2, minor allele frequency
(MAF) higher than 0.05, and no extreme deviation from
Hardy–Weinberg equilibrium (i.e., only retained SNPs with
p > 1.0E−08). Furthermore, the missing genotypes were
imputed using Beagle software v5.1 with default parameters
(Browning et al., 2018). Using PLINK software v1.9 (Chang
et al., 2015), the tightly linked SNPs were further discarded if the
linkage disequilibrium (LD) values were higher than 0.9. Finally,
87,704 SNPs were used for GWAS among 401 individuals (215
males and 186 females), and these SNPs were distributed among
all 21 rabbit autosomes (OCU). To investigate population
structure, principal component analysis (PCA) was
performed based on the finally included genotypes using
PLINK software v1.9 (Chang et al., 2015).

Modeling of Growth Curves
Five nonlinear regression models were evaluated for fitting the
growth curves (Koya and Goshu, 2013), including the logistic of
wt � A[1 + b exp(−Kt)]−1, Gompertz of
wt � A exp[ − b exp(−Kt)], Brody of wt � A[1 − b exp(−Kt)],
Von Bertalanffy of wt � A[1 − b exp(−Kt)]3, and Richards of
wt � A[1 ± b exp(−Kt)]m. Among them, wt is the individual
BW at time t; and the parameter A, K, and b are the mature
weight, maturity rate, and time-scale parameter, respectively.
Furthermore, m is the shape parameter in Richards model.
The fitting of growth curves was performed using the nlme
package of R (Heisterkamp et al., 2017), and the model with
the best goodness of fit was selected according to the Akaike
information criterion (AIC) (Akaike, 1974) and Bayesian
information criterion (BIC) (Schwarz, 1978).

Genome-Wide Association Studies
The logistic was selected as best model (see Results section) and
therefore used for the GWAS of growth curves through single-
step NMM following Silva et al. (2017). This method fitted the
two biological meaningful parameters of growth curves (i.e., A
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and K) through the NMM. Therefore, the null model (M0)
without considering SNP effect was defined as follows:

wit � μA + Sex + PC + εAi

1 + μb exp[ − (μK + Sex + PC + εKi)t] + eit,

wherewit is the BW of the individual i at time t; μA, μK, and μb are
the general means for parameter A, K, and b, respectively; Sex
and PC are the fixed effects of sex and five principal components
(PC) of genotype matrix (PC1, PC2, PC3, PC4, and PC5),
respectively; εAi and εKi are the specific residuals for parameter
A andK of individual i; and eit is a general residual of individual i
at time t, assumed with eit ∼ N(0, σ2e ). The assumed (co)variance
structures of εAi and εKi were as follows:

[ εAi

εKi

] ∼ N(0,[ σ2A σA,K
σA,K σ2K

]),
where σ2A, σ

2
K, and σA,K are the specific residual variances and

covariance for parameter A and K.
According to Silva et al. (2017), the SNP effects could be

further integrated into the null model through three different
ways. First, the SNP effects are assumed to simultaneously affect
both A and K parameters, and this full model (M1) was given as
follows:

wit � μA + Sex + PC + SNP + εAi

1 + μb exp[ − (μK + Sex + PC + SNP + εKi)t] + eit,

where SNP is fixed effects. Alternatively, the SNP effects
independently affect either A (M2) or K (M3), and their
models were, respectively, given as follows:

wit � μA + Sex + PC + SNP + εAi

1 + μb exp[ − (μK + Sex + PC + εKi)t] + eit,

wit � μA + Sex + PC + εAi

1 + μb exp[ − (μK + Sex + PC + SNP + εKi)t] + eit.

The fitting of these four NMM was performed using the nlme
package of R (Heisterkamp et al., 2017). Based on the likelihood
ratio test (LRT), the statistical significance of SNP effects could be
deduced by comparing the specific alternative hypotheses (i.e., the
model of M1, M2, or M3) with the null hypothesis of M0,
respectively. The derived LRT statistics are assumed to follow
χ2 distribution with n degrees of freedom, where n is the
difference of the number of parameters between the two

models compared. To address the multiple comparison
problem, the false discovery rate (FDR) method was employed
for computing the adjusted p-values using the qvalue package of R
(Storey et al., 2004). As a result, SNP was statistically significant
with FDR <0.05.

Functional Analysis
In this study, the QTLs were empirically defined as
chromosomal regions of ±100 kb around the significant SNPs
(i.e., a total of 200-kb genomic region was selected). The
candidate genes within QTL, including protein encoding and
long non-coding RNAs (lncRNA), were retrieved using the
biomaRt R package (Smedley et al., 2015). The OryCun2.0
assembly was used as the reference genome (https://www.
ncbi.nlm.nih.gov/genome/?term�rabbit). For all the candidate
genes, the functional enrichments were conducted using the
DAVID tool (Huang et al., 2009), including the Gene Ontology
(GO) terms (The Gene Ontology Consortium, 2019) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
(Kanehisa et al., 2019). The default parameters and method
of multiple testing correction were used for computing p–values,
and the threshold of 0.05 was set.

RESULTS

Descriptive Statistics
For the 401 finally included individuals, the descriptive
statistics of BW at the seven time points are shown in
Table 1, and their normal distributions were visually
checked at every time points (Supplementary Figure S1).
The 87,704 SNPs were distributed among 21 autosomes with
the mean (±SD) of 24,099 ± 59,103 bp for their pairwise
physical distances and 0.256 ± 0.133 for MAF, respectively
(Supplementary Figure S2).

TABLE 1 | The descriptive statistics of body weight at the seven time points.

Days of age Number of records Body weight (g)

Min Max Mean SD

35 399 456 1,120 788.05 122.65
42 398 741 1,327 1,012.73 112.42
49 401 874 1,657 1,244.87 136.78
56 401 972 2,005 1,474.96 179.96
63 381 974 2,354 1,706.96 235.45
70 371 1,050 2,726 1,948.76 285.08
84 363 1,487 2,888 2,238.13 285.29

Note. SD, standard deviation.

FIGURE 1 | Fitting of growth curves using the four nonlinear regression
models.
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Fitted Growth Curves
The growth curves of all individuals were successfully fitted using
the four candidate models of logistic (AIC � 35,667.62 and BIC �
35,697.32), Gompertz (AIC � 35,699.36 and BIC � 35,729.06),
Brody (AIC � 35,830.33 and BIC � 35,860.03), and Von
Bertalanffy (AIC � 37,737.74 and BIC � 37,767.44), whereas
the model of Richards did not converge and was therefore
excluded for comparison (Figure 1; Supplementary Table S1).
Among the four NMM successfully fitted, the logistic model
showed the best goodness of fit with the lowest values of AIC and
BIC, and was selected for the following GWAS. The estimates of
parameter A and K of the logistic growth curves were 2,615.45
and 0.054, respectively. Furthermore, the growth curves of
females and males were separately fitted, which also supported
the logistic model having the best goodness of fit and similar
growth parameters (Supplementary Table S1). There were only
small differences for the A and K parameters estimated between
males and females.

Association Analyses
Based on the PCA results (Supplementary Figure S3), no obvious
population stratification was observed in this population studied.
The first five PCs explained about 58.9% of total variability, which
were included in the NMM as fixed effects with alleviated
convergence problems. A total of 45 significant SNPs were
revealed to simultaneously affect both parameter A and K,
which were distributed among five chromosomes, OCU2,
OCU4, OCU9, OCU11, and OCU19 (Figure 2; Table 2).
Among them, the highest numbers of significant SNPs were
observed on OCU2 (N � 41), and the three most significant
SNPs were located on OCU2 (p � 5.98E−08), OCU4 (p �
7.51E−08), and OCU2 (p � 2.22E−07), respectively. All the 45
significant SNPs were clustered into 24 QTLs, and three of their
QTLs (OCU2: 13.67–13.99 Mb, OCU2: 21.86–22.25 Mb, OCU2:
22.45–22.77Mb) were identified based on three or more SNPs
(Table 2). When considering the SNP effect separately for either
parameter A or K, no significant SNP was identified at the

FIGURE 2 |Manhattan plots of genome-wide association analysis (GWAS) for mature weight (A), maturity rate (K). (A) The Manhattan plot of both the parameter A
and K. (B) The Manhattan plot of the parameter A. (C) The Manhattan plot of the parameter K. The dashed line of red indicates a 5% FDR-corrected threshold and the
significant single-nucleotide polymorphisms (SNPs) are represented by triangles.
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predefined threshold (Figure 2). However, some suggestive
associations were also observed (with p lower or close to
1.0E−05), such as the SNPs on OCU2, OCU3, OCU11, and
OCU19 for parameter A, and OCU8 and OCU11 for parameter K.

Candidate Genes and Functional Analyses
Within the 24 candidate QTLs regarding the significant SNP
effects on both parameter A and K, a total of 19 protein-coding
and 12 lncRNA positional candidate genes were identified
(Table 2). Of these, four [LIM domain-binding 2 (LDB2),

potassium voltage-gated channel interacting protein 4
(KCNIP4), TAFA chemokine like family member 1 (TAFA1),
and G protein subunit alpha 13 (GNA13)] and one [ATPase
phospholipid transporting 8A1 (ATP8A1)] candidate genes were
found to have the significant SNPs located on intron and 3′-
untranslated region (3′-UTR), respectively. Furthermore, three
protein-coding genes located on OCU2 were supported by more
than one significant SNPs, including the peroxisome proliferator-
activated receptor gamma coactivator-1 alpha (PPARGC1A),
ATPase phospholipid transporting 8A1 (ATP8A1), and shisa

TABLE 2 | Significant SNPs, QTLs, and candidate genes simultaneously affect both parameter A and K of the logistic growth curve in rabbits.

Chromosomes SNP
position
(bp)

p Locations QTL region
(bp)

Candidate genes

OCU2 7,392,553 1.06E−05 Intron 7,292,553–7,492,553 LDB2
8,791,893 2.88E−05 Intergenic 8,691,893–8,891,893 ENSOCUG00000035404a

10,501,993 3.52E−06 Intergenic 10,401,993–10,691,957 None
10,591,957 2.98E−07 Intergenic
11,378,860 2.94E−05 Intron 11,278,860–11,478,860 PACRGL and KCNIP4
13,386,997 5.63E−06 Intergenic 13,286,997–13,486,997 GBA3
13,488,329 3.69E−06 Intergenic 13,388,329–13,588,329 ENSOCUG00000031640a

13,770,022 2.93E−05 Intergenic 13,670,022–13,985,731 ENSOCUG00000031081a and ENSOCUG00000034770a

13,775,984 9.13E−07 Intergenic
13,847,789 1.60E−06 Intergenic
13,885,731 2.86E−05 Intergenic
14,218,502 2.09E−05 Intergenic 14,118,502–14,318,502 None
14,381,825 1.39E−05 Intergenic 14,281,825–14,488,318 PPARGC1A
14,388,318 4.97E−06 Intergenic
15,540,704 8.39E−06 Intergenic 15,440,704–15,640,704 CCDC149, LGI2, ENSOCUG00000029972a, ENSOCUG00000037097a, and

ENSOCUG00000037279a

19,348,590 2.04E−05 Intergenic 19,248,590–19,448,590 None
19,519,932 3.07E−06 Intergenic 19,419,932–19,619,932 None
21,766,582 1.53E−05 Intergenic 21,666,582–21,866,582 None
21,961,157 2.03E−05 Intergenic 21,861,157–22,251,345 ENSOCUG00000039621a

21,961,341 2.61E−06 Intergenic
21,991,030 8.43E−06 Intergenic
22,076,402 7.17E−06 Intergenic
22,080,992 2.06E−05 Intergenic
22,082,402 6.76E−06 Intergenic
22,151,345 3.50E−06 Intergenic
22,287,659 1.54E−06 Intergenic 22,187,659–22,387,659 None
22,552,417 5.98E−08 Intergenic 22,452,417–22,774,072 ENSOCUG00000032798a

22,559,081 4.80E−07 Intergenic
22,559,709 2.22E−07 Intergenic
22,559,791 4.18E−06 Intergenic
22,585,579 2.37E−07 Intergenic
22,597,775 7.40E−07 Intergenic
22,628,803 6.92E−07 Intergenic
22,632,153 1.45E−06 Intergenic
22,674,072 4.67E−07 Intergenic
24,405,104 2.30E−05 Intergenic 24,305,104–24,505,104 None
31,443,212 1.89E−05 Intergenic 31,343,212–31,566,952 ATP8A1 and SHISA3
31,466,952 3.82E−07 3′-UTR
58,261,249 2.21E−05 Intergenic 58,161,249–58,361,249 None
65,306,234 1.18E−05 Intergenic 65,206,234–65,496,063 LOC100358067
65,396,063 1.74E−05 Intergenic

OCU4 19,121,968 7.51E−08 Intergenic 19,021,968–19,221,968 ENSOCUG00000038375a

OCU9 35,523,218 1.48E−06 Intron 35,423,218–35,623,218 TAFA1
OCU11 64,951,640 1.05E−05 Intergenic 64,851,640–65,051,640 ENSOCUG00000037935a, ENSOCUG00000029125,

ENSOCUG00000037904a, and FGF10
OCU19 52,159,278 1.15E−05 Intron 52,059,278–52,259,278 RGS9, ENSOCUG00000036189, GNA13, AMZ2, SLC16A6, and ARSG

alncRNA; 3′’-UTR, 3′-untranslated region; SNP, single-nucleotide polymorphism.
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family member 3 (SHISA3) gene. Two lncRNA genes
(ENSOCUG00000039621 and ENSOCUG00000032798) had
seven and nine significant SNPs that were located on
intergenic regions, respectively. The detailed information of
these positional candidate genes is shown in Supplementary
Table S2.

For these positional candidate genes, 19 biological processes of
GO terms were significantly enriched (p < 0.05, Supplementary
Table S3). However, no significant KEGG pathway was found.
Four genes of GNA13, ATP8A1, LDB2, and fibroblast growth
factor 10 (FGF10) were observed in eight GO terms that were
mainly involved in the cell development, such as the biological
processes of “regulation of cell migration” and “regulation of cell
motility.” Furthermore, both LDB2 and FGF10 were enriched in
the five GO terms that have the functional implications into
growth, such as the biological processes of “somatic stem cell
population maintenance” and “maintenance of cell number.”

DISCUSSION

Growth traits have considerable economic implications in meat
rabbit industry. For Gabali rabbits in Egypt, the heritability
estimates were 0.19, 0.23, 0.16, and 0.14 for BW at 4, 8, 12,
and 16 weeks of age (Soliman et al., 2014), which suggested a
moderate heritability for these growth traits. The estimated
heritability of individual BW ranged from 0.11 at 9 weeks of
age to 0.43 at 6 weeks of age in New Zealand White and
Dutch breeds of rabbits (Akanno and Ibe, 2005). The
moderate to high heritability (from 0.266 to 0.540) was
similarly estimated using both Sire Model and Animal Model
in New Zealand White rabbits (Dige et al., 2012). Abou Khadiga
et al. (2008) conducted the genetic evaluation in crossbred
population of Spanish synthetic maternal line V and Egyptian
Baladi Black, and found that growth traits were significantly
affected by direct genetic effects. Furthermore, the genotype ×
environment interaction was also observed for affecting growth
performances in growing rabbits (Zeferino et al., 2011). Together,
these studies indicated that the improvement of growth traits by
genetic selection is much feasible in rabbits. However, the
relevant studies in rabbits, such as genomic evaluation and
GWAS, have largely lagged behind in comparison with other
livestock species (Jonas and Koning, 2015). Therefore, in this
study, we performed the association analyses for individual BW at
different growth time points using the genome-wide variants. As
a relatively limited number of rabbits were included in the present
study, however, the increased detection power of GWAS would
be expected using larger datasets in future studies.

Like milk production traits in dairy livestock, the individual
growth has been preferably described by longitudinal records
measured over multiple time points. In practices, the phenotypic
records at one or a few time points could be representatively selected
and analyzed. However, an alternative approach is to fit the whole
growth trajectory using nonlinear regressionmodels and then use the
derived model parameters for describing individual growth
performance. In an early study (Ptak et al., 1994), three nonlinear
models of Von Bertalanffy, Gompertz, and logistic were compared

for fitting the growth in purebred and crossbred rabbits, and found
that the Von Bertalanffy gave the best fit. The Gompertz growth
curves were fitted and used in analyzing the effect of selection for
growth rate on growth curves in rabbits (Blasco et al., 2003). Recently,
Ding et al. (2019) fitted the growth curves using the logistic,
Gompertz, and Von Bertalanffy models for crossbred population
of California rabbit × New Zealand white rabbit and suggested that
the most accurate model was logistic. In this study, the logistic was
chosen as the best model to describe the growth trajectory of our
crossbred population that was generated by crossing Kangda5 rabbits
with Californian rabbits, which was consistent with the results of
Ding et al. (2019). Therefore, the selection of the best model to fit the
growth curve in rabbits would be breed or population dependent,
which should be specifically compared in each study.

In livestock and poultry, mature weight and maturity rate are
the two important parameters for describing growth performance;
some individuals have higher maturity rate but smaller mature
weight, and vice versa. Therefore, to identify genes or causal
mutations independently affecting the mature weight and
maturity rate is essential for implementing precision
improvement of genetic selection. Using the estimated growth
parameters as pseudo-phenotypes in GWAS of growth traits in
Brahman cattle, a large number of significant SNPs were identified
to be associated with mature weight and maturity rate, respectively
(Crispim et al., 2015). A similar GWAS was recently reported for
growth traits of Chinese Simmental beef cattle, which also revealed
different SNPs for the two parameters (Duan et al., 2021). Silva
et al. (2017) proposed an alternative method to combine the fitting
of growth curves and estimation of SNP effects into one single-step
NMM, and to apply to growth traits in pigs with an improved
statistical power observed. In this study, we also employed the
single-step NMM approach for GWAS of growth traits in a
crossbred population of rabbits and found that all the
significant SNPs simultaneously affected the two parameters of
mature weight and maturity rate. The absence of SNPs
independently associated with either mature weight or maturity
rate would indicate the specific genetic architecture of growth
performance for this studied population. Also, the number of
significant SNPs identified in this study was also higher than
our former observation (Yang et al., 2020) that was alternatively
performed through the separate association analysis with BW at
different time points. However, no growth curve parameter was
estimated and used as pseudo-phenotype of association analysis by
Yang et al. (2020), which would disable the direct comparison.

Around the significant SNPs identified in this study, we found
some candidate genes that have the functional implications on
growth traits in literature. Among them, the KCNIP4, a member
of the family of voltage-gated potassium channel-interacting
proteins, was found to be located within the QTL between the
21 and 67 cM regions of chromosome 6 that was associated with
birth weight in Zandi sheep (Esmailizadeh, 2010; Mohammadi
et al., 2020). Pasandideh et al. (2018) also suggested that the
KCNIP4 gene was involved in the regulation of muscle growth
and fat deposition in sheep. In chicken, Jin et al. (2015) found that
KCNIP4 was located nearest to a significant SNP associated with
the BW of 10 and 14 weeks of age. A nearby gene of GBA3
(glucosylceramidase beta 3) is related to hydrolyze beta-galactose
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and beta-glucose (Dekker et al., 2011), and was further found to
be significantly associated with BW traits in sheep (Al-Mamun
et al., 2015). In this study, one significant SNP was detected in the
intron of LDB2, which is a transcriptional regulator (Johnsen
et al., 2009) and was found to affect the growth traits of BW and
average daily gain in chicken (Gu et al., 2011; Wang et al., 2019)
and of BW in Nanjiang Yellow sheep (Guo et al., 2018).

Another important candidate gene is PPARGC1A, which was
found in pigs to regulate the lipid deposition (Li et al., 2014b),
composition of muscle fiber (Lee et al., 2012), and abdominal fat
content (Stachowiak et al., 2007). Several SNPs have been
identified in PPARGC1A gene to be associated with adult BW
and average daily gain in Nanyang cattle (Li et al., 2014a), yearling
weight in Nelore cattle (Fonseca et al., 2015), and birth weight and
calf birth weight in Iranian Holstein cattle (Pasandideh, 2020).
Furthermore, Chen et al. (2020) found a 17-bp InDel mutation
within the 11th intron of PPARGC1A gene in sheep, which was
associated with the BW. Both GNA13 and SHISA3 could affect
individual growth as they are involved in the biological regulation
of osteoclastogenesis and bone development (Wu et al., 2017;
Murakami et al., 2019). Furthermore, we observed that the FGF10
gene located on OCU11 was significantly associated with both
mature weight and maturity rate. Previous studies revealed that
FGF10 could promote the proliferation and differentiation of
adipocyte through the Ras/MAKP pathway (Konishi et al., 2006),
and regulate adipogenesis in muscle tissue of goats (Xu et al.,
2018) and Tibetan chickens (Zhang et al., 2018). We did not find
the relevant publication in literature about functional
implications for the 12 candidate lncRNA genes found in
this study.

The post-GWAS functional studies are necessary for fine
mapping the causal genetic variants and dissecting the
underlying biological mechanism (Gallagher and Chen-Plotkin,
2018). Therefore, these candidate genes found in this study could
be preferably selected in future studies to investigate their
functional mechanisms affecting the individual growth in
rabbits. On the other hand, these significant SNPs and
genomic regions could be incorporated into the genomic
prediction models with an improved accuracy, by using the
weighted genomic best linear unbiased prediction (Zhang
et al., 2016) or Bayesian (van den Berg et al., 2020) approaches.

CONCLUSION

In the crossbred population of meat rabbits, we employed the
nonlinear mixed model to simultaneously fit growth curves and
estimate SNP effects at the genome-wide level. The significant

SNPs on five chromosomes (OCU2, OCU4, OCU9, OCU11, and
OCU19) were found to simultaneously affect the mature weight
and maturity rate, which further revealed some suggestive
candidate genes, including the KCNIP4, GBA3, PPARGC1A,
LDB2, SHISA3, GNA13, and FGF10. These obtained results are
useful to increase our knowledge about growth mechanisms in
rabbits, and could be used for improving the accuracy of genomic
selection in this population.
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