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Abstract

Objective

Accumulating epidemiological studies have demonstrated that diabetes is an important risk

factor for dementia. However, the underlying pathological and molecular mechanisms, and

effective treatment, have not been fully elucidated. Herein, we investigated the effect of the

dipeptidyl peptidase-4 (DPP-4) inhibitor, linagliptin, on diabetes-related cognitive impairment.

Method

Streptozotocin (STZ)-induced diabetic mice were treated with linagliptin (3 mg/kg/24 h) for

17 weeks. The radial arm water maze test was performed, followed by evaluation of oxida-

tive stress using DNP-MRI and the expression of NAD(P)H oxidase components and proin-

flammatory cytokines and of microglial activity.

Results

Administration of linagliptin did not affect the plasma glucose and body weight of diabetic

mice; however, it improved cognitive impairment. Additionally, linagliptin reduced oxidative

stress and the mRNA expression of NAD(P)H oxidase component and TNF-α, and the num-

ber and body area of microglia, all of which were significantly increased in diabetic mice.

Conclusions

Linagliptin may have a beneficial effect on diabetes-related dementia by inhibiting oxidative

stress and microglial activation, independently of glucose-lowering.
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Introduction

The number of people with dementia is increasing with the aging of the world’s population. It

has been reported that diabetes is an independent risk factor for cognitive impairment[1,2],

and dementia has been recognised as a complication of diabetes[3]. However, its detailed path-

ogenesis remains unknown. Thus, it is important to further examine the mechanisms underly-

ing diabetes-related dementia and explore effective treatment strategies. Hyperglycaemia

causes oxidative stress, which plays a pivotal role in the development of diabetes complications

[4]. Although microglia, immune cells in the brain, are neuroprotective under normal condi-

tions, they produce proinflammatory cytokines and reactive oxygen species (ROS) when

activated by inflammation, nerve damage or infection[5]. We have recently reported that dia-

betes-related cognitive impairment is at least partially caused by oxidative stress via microglial

activation in the brain[6].

Dipeptidyl peptidase-4 (DPP-4) inhibitors are a class of drugs approved for the treatment

of type 2 diabetes[7]. DPP-4 inhibitors upregulate the incretin hormone, glucagon-like pep-

tide-1 (GLP-1), and gastric inhibitory polypeptide (GIP), which stimulate insulin secretion in

response to increased blood glucose levels[8,9]. Although previous studies have reported that

DPP-4 inhibitors improve cognitive dysfunction[10,11], the mechanism has not been fully

revealed.

In this study, we showed that the DPP-4 inhibitor, linagliptin, improved cognitive

impairment, reduced oxidative stress, and suppressed microglial activation in streptozotocin

(STZ)-induced diabetic mice, which could evaluate the effect of DPP-4 inhibitor indepen-

dently of glucose-lowering.

Materials and methods

The methods used in this paper overlap those used in a previously published article[6].

Animals

Male C57BL/6J mice were purchased from Charles River (Yokohama, Japan) and were bred

under pathogen-free conditions at the Center of Biomedical Research, Research Center for

Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University (Fuku-

oka, Japan). All protocols were reviewed and approved by the Committee on the Ethics of Ani-

mal Experiments, Graduate School of Medical Science, Kyushu University. All methods were

performed in accordance with the relevant guidelines and regulations. All efforts were made to

minimise the number of animals used and their suffering. Diabetes was induced in 7-week-old

mice by administering a single intraperitoneal injection of STZ (Sigma-Aldrich, St. Louis, MO,

USA) at a dose of 100 mg/kg in 0.1 M citrate buffer (CIT), pH 4.5. Mice given a CIT injection

alone served as non-diabetic controls. Two weeks after the injection, diabetes was confirmed

by the occurrence of hyperglycaemia (> 250 mg/dL blood glucose). At 9 weeks of age, half of

the non-diabetic mice (n = 8) and half of the diabetic mice (n = 8) were randomly chosen to

receive a powdered form diet supplemented with powdered form linagliptin (3 mg/kg/24 h)

for 17 weeks, while the remaining mice consumed a powdered form diet that did not contain

linagliptin, for the same duration. In the present study, we used powdered form diet to mix

linagliptin. A previous study[12] has shown that linagliptin (3 mg/kg/24 h) caused an approxi-

mately 1.5-fold increase in serum active GLP-1 concentration, compared with controls. At the

end of the treatment, all 26-week-old mice were anesthetized with isoflurane and sacrificed.

Linagliptin was gifted by Boehringer Ingelheim (Ingelheim, Germany).
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Radial arm water maze (RAWM)

In 26-week-old mice after administration of linagliptin for 17 weeks, learning and memory

were assessed using the RAWM. For the radial maze test we used a previously described proto-

col and apparatus[6,13]. The radial-arm water maze consisted of a circular pool measuring 1

m in diameter with six arms 19 cm wide that radiated out from an open central area, with a

submerged escape platform located at the end of one of the arms. Spatial cues including a light

were present on the wall of the testing room. The escape platform was placed in a different

arm each day, forcing the mouse to use working memory to solve the task. In each trial, the

mouse started in one arm and allowed to swim for up to 1 min until reaching the platform; the

number of errors until the mouse reached the platform was recorded. The mouse was allowed

to stay on the platform for 30 s. After the fourth trial the mouse was placed in a cage for 30

min, and then returned to the maze to start the fifth trial to assess memory retention. After

three consecutive days of training, the error score was determined as the score in the fifth trial

averaged over the next 2 days of testing.

In vivo dynamic nuclear polarization (DNP)-MRI

In vivo redox imaging was performed with a custom in vivo DNP-MRI system, constructed

using the external magnet of a commercial EPR spectrometer (JES-ES20, JEOL Ltd.). The

external magnetic field B0 for EPR irradiation and MRI was fixed at 20 mT, and the radiofre-

quency of the EPR irradiation and MRI were 527.5 MHz and 793 kHz, respectively. A surface

coil (diameter: 20 mm) for EPR irradiation was made for head imaging in this study. Brain oxi-

dative stress was measured by DNP-MRI in 26-week-old mice after administration of linaglip-

tin for 17 weeks. During the procedure, the body temperature of the mice was kept at 37 ± 1

˚C with a heating pad. Animals were anaesthetised with isoflurane (4% for induction, 1–2%

for maintenance) mixed with medical air (flow rate; 750 mL/min), which flowed into a nose

cone fitted to the head. After the anaesthesia, methoxycarbonyl-PROXYL (MCP) was injected

into the tail vein at a dose of 1.3 mmol/kg body weight. Immediately after the MCP adminis-

tration, kinetic data were obtained. Pharmacokinetic DNP-MRI images were obtained at 2, 4,

7, 10, 13 min after injection. Normal MRI images were obtained without EPR irradiation. The

DNP-MRI signal change of the whole brain was used for calculating the decay rate. The proto-

col of this measurement has been described previously[14]. The scanning conditions for the in
vivo DNP-MRI experiment were as follows: power of EPR irradiation, 9 W; flip angle, 90˚; rep-

etition time (TR) × echo time (TE) × EPR irradiation time (TEPR), 500 × 40 × 250 ms; number

of averages, 1; slice thickness, 20 mm, phase-encoding steps, 32; field of view (FOV), 40 × 40

mm; and matrix size, 64 × 64 after reconstruction.

Brain lipid peroxidation

The brain levels of lipid peroxidation were estimated in whole mouse brain homogenates as

malondialdehyde (MDA) concentration using the Thiobarbituric acid reactive substances

(TBARS) assay kit (JaICA, Shizuoka, Japan) according to the manufacturer’s instructions.

Tissue processing

Tissue processing was performed according to a previous study[6,15]. The animals were anaes-

thetised with a mixture of isoflurane (4% for induction, 1–2% for maintenance) and medical

air (flow rate; 750 mL/min), which flowed into a nose cone fitted to the animal’s head. They

were then perfused transcardially with phosphate-buffered saline (PBS, pH 7.4) followed by a

fixative: a mixture of 4% paraformaldehyde (PFA) and 0.1% glutaraldehyde in 0.1 M phosphate
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buffer for immunostaining. The brains were left in situ for 3 h at room temperature, and then

removed from the skull. The brains were fixed by immersion in 4% PFA overnight at 4˚C, and

then immersed in 20% sucrose (pH 7.4) for 24 h at 4˚C. Then, 50-μm-thick sections were cut

by a vibrating microtome (CM1950; Leica Microsystems, Wetzlar, Germany). To avoid defor-

mation of the sections, they were processed free-floating with extreme caution.

Immunofluorescence procedure

Immunofluorescence was performed as previously described[6,15]. The cerebral cortex sec-

tions were incubated with 1.0% bovine serum albumin in PBS containing 0.3% Triton-X 100

and 0.05% sodium azide for 30 min at room temperature. Then, they were incubated for 3

days at room temperature with rabbit polyclonal anti-ionised calcium binding adaptor protein

1 (Iba1) antibody (1:10,000; Wako, Pure Chemical industries, Osaka, Japan). They were then

incubated with fluorescein isothiocyanate (FITC)-conjugated donkey anti-goat IgG antibodies

(1:300; Jackson ImmunoResearch Laboratories) for 12 h at 4˚C in a dark chamber. Next, the

sections were counterstained with Hoechst 33258 (Invitrogen, Carlsbad, CA, USA) in PBS for

15 min in a dark chamber. After washing with PBS, the sections were mounted in Vectashield

(Vector laboratories, Peterborough, UK) and examined.

Cell counting and cell body area analysis of Iba1-positive cells

Twenty Z-stack images were acquired at a thickness of 40 μm separated by 2-μm intervals and

converted to one Z-projection image. The images for cell counting and cell body area measure-

ments of Iba1-positive cells were examined using a fluorescence microscope (model BZ-9000,

Keyence, Osaka, Japan). We counted the Hoechst 33258-stained nuclei of Iba1-positive micro-

glia using the Cell Counter plugin of ImageJ 1.44 (NIMH; Bethesda, MD, USA). The body area

of Iba1-positive cells was examined using a fluorescence microscope (model BZ-9000, Key-

ence, Osaka, Japan). The average cell number and body area of four images were used as one

data.

RNA extraction and quantitative RT-PCR

Total RNA was isolated from whole brain using SV Total RNA Isolation System (Promega,

Madison, WI, USA) following the instructions provided with the kit. The mRNA was ampli-

fied by quantitative RT-PCR using GoTaq Master Mix (Promega). The mRNA levels were

quantified by real-time RT-PCR using a Roche Light Cycler 480 iCycler system (Roche Diag-

nostics, Tokyo, Japan). The mRNA expression levels of each gene were normalised to the

expression level of the housekeeping gene, β-actin. The specific primers for the target genes

and housekeeping gene are shown in Supplemental Experimental procedures (S1 Table).

Statistical analysis

Statistical analysis was performed with Student’s t-test or one-way analysis of variance

(ANOVA) with Fisher’s protected least significant difference (PLSD) test. P� 0.05 was consid-

ered statistically significant. Results are presented as mean ± SEM.

Results

Linagliptin improves cognitive impairment in diabetic mice

In STZ-induced diabetic mice, the body weight was significantly decreased, and the blood

glucose level was significantly higher compared with the control mice (Fig 1). Linagliptin did

not affect the body weight and the blood glucose level (Fig 1). To investigate the effects of
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linagliptin on learning and memory, we tested their performance in the RAWM. RAWM com-

bines elements of a radial-arm maze and a Morris water maze, taking advantage of simple

motivation provided by immersion into water together with the benefits of scoring errors. In

STZ-induced diabetic mice, the mean number of errors in the acquisition trials (trials 3 and 4)

and retention trial (trial 5) was higher compared with the control mice, but there was no differ-

ence between the control mice and the linagliptin-treated STZ-induced diabetic mice (Fig 2).

In the linagliptin-treated STZ-induced diabetic mice, the mean number of errors in the acqui-

sition trial (trial 4) was lower compared with the STZ-induced diabetic mice (Fig 2). These

data indicated that the STZ-induced diabetic mice developed impaired working memory and

learning, and linagliptin improved these cognitive impairments.

Effects of linagliptin treatment on oxidative stress

We and others have reported that oxidative stress in the brain is associated with diabetes-

related cognitive impairment[6,16]. We recently reported that dynamic nuclear polarization-

magnetic resonance imaging (DNP-MRI) was useful for evaluating diabetic complication[17].

Thus, we evaluated oxidative stress in the brain of diabetic mice using in vivo DNP-MRI.

DNP-MRI is a newly developed non-invasive technique for imaging the redox status in living

animals by the Overhauser effect[18]. DNP-MRI visualises the tissue redox status by quantify-

ing the intensity of free radicals reacted with nitroxyl radicals. Because the nitroxyl radical,

MCP, is a redox sensitive contrast agent in brain imaging[14,19,20], we chose it as the redox-

sensitive contrast agent for our study. As the administered MCP reacts with in vivo-produced

ROS and is consumed, the oxidative stress is accelerated, MCP is consumed quickly and the

decay rate of the image intensity increases. In the STZ-induced diabetic mice’s brain, the decay

rate was significantly higher than that in the control mice, indicating that oxidative stress in

the diabetic brains was elevated. However, in the linagliptin-treated diabetic mice, the decay

Fig 1. Body weight and blood glucose. Changes in body weight (A) and blood glucose (B) between 9 and 26 weeks of age in control mice (white

circles), linagliptin-treated control mice (black circles), diabetic mice (white boxes) and linagliptin-treated diabetic mice (black boxes). Results are

expressed as the mean ± SEM (n = 8); N.S., not significant.

https://doi.org/10.1371/journal.pone.0228750.g001
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rate was lower, indicating that the enhanced oxidative stress in the diabetic brains was sup-

pressed by linagliptin administration (Fig 3A and 3B). Additionally, we evaluated brain MDA

levels, a naturally occurring product of lipid peroxidation and representative indicator of oxi-

dative stress[21]. MDA levels were markedly increased in the STZ-induced diabetic mice,

which was reduced by linagliptin (Fig 3C).

Effect of linagliptin on microglial activity and mRNA expression of NAD

(P)H oxidase components and proinflammatory cytokines

Microglia continuously monitor the brain environment[22,23]. In response to brain injury or

immunological stimuli, microglia are readily activated, leading to proliferation and morpho-

logical changes[24]. Because we have recently reported that microglia are activated in diabetes-

related cognitive impairment[6], we examined their cell number and body area using antibod-

ies against Iba1, which is a protein restricted to microglia/macrophages[25] that is upregulated

in activated microglia[26]. In STZ-induced diabetic mice, the number and body area of

Fig 2. The effect of linagliptin on cognitive impairment. The mean number of errors in the radial arm water maze

(RAWM). Four consecutive acquisition trials (trials 1–4) were followed after 30 min by a retention trial (trial 5). Bars

represent means ± SEM (n = 8); �P< 0.05 vs. control, †P< 0.05 vs. linagliptin-treated diabetic mice (ANOVA). N.S.,

not significant.

https://doi.org/10.1371/journal.pone.0228750.g002
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Iba1-positive microglia were significantly increased in the cerebral cortex compared with the

control mice; this increase was reduced by linagliptin (Fig 4). Because activated microglia

release superoxide radicals via NAD(P)H oxidase[27], we examined the expression of NAD(P)

H oxidase components in the diabetic mice’s brain. As shown in Fig 5, compared with the con-

trol, the mRNA levels of the NAD(P)H oxidase components, gp91phox and p22 phox, were

markedly increased in the STZ-induced diabetic mice, which was reduced by linagliptin.

These results suggest that linagliptin improved cognitive impairment by suppressing NAD(P)

H oxidase-mediated oxidative stress. Additionally, activated microglia produce the proinflam-

matory cytokines, tumour necrosis factor-alpha (TNF-α) and interleukin-1beta (IL-1β), which

are thought to play a major role in inducing neuronal injury[28]. Therefore, we examined

proinflammatory cytokines in the diabetic mice’s brain. As shown in Fig 5, the mRNA levels of

TNF-α and IL-1β were markedly increased in the STZ-induced diabetic mice. However, the

increase in TNF-α was reduced by linagliptin. These data suggest that linagliptin improved

cognitive impairment by suppressing the activity of microglia, which induce NAD(P)H oxi-

dase-mediated oxidative stress and proinflammatory cytokines’ expression.

Fig 3. Effect of linagliptin on oxidative stress in the brain. (A) Time-dependent DNP-MRI images of methoxycarbonyl-PROXYL in the head region.

(B) The signal intensity decay rates of methoxycarbonyl-PROXYL in the brain. (C) Malondialdehyde (MDA) levels measured using the thiobarbituric

acid-reactive substances (TBARS) assay in whole brain homogenates. Bars represent means ± SEM. Control mice (n = 5); linagliptin-treated control

mice (n = 4); diabetic mice (n = 6); linagliptin-treated diabetic mice (n = 8). �P< 0.05, ��P< 0.01.

https://doi.org/10.1371/journal.pone.0228750.g003
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Discussion

DPP-4 inhibitors are a new class of antihyperglycemic agents[7], which increase the level of

active GLP-1 and GIP in the peripheral blood. We initially found that linagliptin improved

cognitive impairment in diabetic mice independent of the glucose-lowering effect (Figs 1 and

2). A previous study has shown that a DPP-4 inhibitor improved cognitive dysfunction by

increasing the GLP-1 concentration in the brain[10,11]. Recently, Nakaoku et al. also reported

that linagliptin ameliorates high-fat induced cognitive decline in tauopathy model mice[29].

Fig 4. Effect of linagliptin on brain microglia in diabetic mice. Cerebral cortex sections were immunostained with anti-Iba1 antibodies. (A, E)

Control mice, (B, F) linagliptin-treated control mice, (C, G) diabetic mice and (D, H) linagliptin-treated diabetic mice. The cell number (I) and body

area (J) of Iba1-positive cells in the brains. Bars represent means ± SEM (n = 8). �P< 0.05, ��P< 0.01.

https://doi.org/10.1371/journal.pone.0228750.g004
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Several studies have demonstrated that GLP-1 alleviated learning and memory dysfunction

[30] and that a GLP-1 analogue and GIP analogue prevented memory impairments[31,32].

Additionally, it has been reported that GLP-1 and GIP inhibit microglial activation[32,33] and

that linagliptin increased plasma active GLP-1 and GIP levels[12,34]. In the present study, we

showed that linagliptin decreased the cell number and body area of microglia in the diabetic

brain. Taken together, the DPP-4 inhibitor, linagliptin, may improve cognitive dysfunction by

inhibiting microglial activation via increased GLP-1 and GIP levels. While GLP-1 and GIP are

major substrates of DPP-4, DPP-4 also cleaves other substrates including stromal cell-derived

factor 1 (SDF1α), which may have improved cognitive dysfunction, at least in part, in the pres-

ent study; however, further studies are necessary to confirm this hypothesis. In addition, recent

study showed that linagliptin did not modulate cognitive decline of patients with type 2 diabe-

tes mellitus over a median treatment duration of 2.5 years[35]. Thus, further long-term follow-

up study is necessary.

Oxidative stress has been considered to be a factor contributing to the development of dia-

betes and its complications[4,36]. As we have reported that oxidative stress and inflammation

by activated microglia lead to cognitive impairment in diabetic mice[6], we evaluated the effect

of linagliptin treatment on oxidative stress and proinflammatory cytokines. Consistent with

our previous report[6], oxidative stress and TNF-α expression were increased in the brain of

diabetic mice, and this effect was ameliorated by linagliptin. We have previously shown that

microglia release superoxide radicals via NAD(P)H oxidase[27]. In the current study, we

showed that linagliptin decreased the high mRNA expression of gp91phox and p22 phox,

which are major component of NAD(P)H oxidase, in diabetic mice. These data suggest that

linagliptin may decrease oxidative stress in the brain by limiting the upregulation of NAD(P)H

oxidase expression in microglia. Additionally, we and others have reported that DPP-4 inhibi-

tors have direct antioxidative effects in vivo and in vitro[37–39]. DPP-4 inhibitors cannot pass

through the blood-brain barrier (BBB) under normal conditions[7], however, diabetes causes

BBB dysfunction[40]. Therefore, it is possible that linagliptin can pass through the BBB and

Fig 5. Effect of linagliptin on the mRNA expression of NAD(P)H oxidase components and proinflammatory cytokines in the brain. gp91phox,

p22, TNF-α and IL-1βmRNA levels were measured by real-time RT-PCR and normalised against the β-actin levels. Results are expressed as

means ± SE. (n = 8). �P< 0.05, ��P< 0.01.

https://doi.org/10.1371/journal.pone.0228750.g005
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directly alleviate oxidative stress in the brain of diabetic mice; however, further studies are nec-

essary to examine permeability of BBB in STZ-induced diabetic mice.

In conclusion, we showed that the DPP-4 inhibitor, linagliptin, improved cognitive dys-

function, at least in part, by decreasing oxidative stress and inhibiting microglial activation in

a diabetes model mouse. These findings provide new insight into the efficacy of linagliptin in

diabetes-related dementia. The effectiveness of linagliptin should be further confirmed in

human trials.
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