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Abstract

Background

High-grade inflammation may play a pivotal role in the pathogenesis of left ventricular (LV)

dysfunction. Evidence to support a role of systemic inflammation in mediating impaired LV

function in experimental models of rheumatoid arthritis (RA) remains limited. The aim of the

present study was to determine the effects of high-grade systemic inflammation on LV dia-

stolic and systolic function in collagen-induced arthritis (CIA).

Methods

To induce CIA, bovine type-II collagen emulsified in incomplete Freund’s adjuvant was

injected at the base of the tail into 21 three-month old Sprague Dawley rats. Nine-weeks

after the first immunisation, LV function was assessed by pulsed Doppler, tissue Doppler

imaging and Speckle tracking echocardiography. Cardiac collagen content was deter-

mined by picrosirius red staining; circulating inflammatory markers were measured using

ELISA.

Results

Compared to controls (n = 12), CIA rats had reduced myocardial relaxation as indexed by

lateral e’ (early diastolic mitral annular velocity) and e’/a’ (early-to-late diastolic mitral annu-

lar velocity) and increased filling pressures as indexed by E/e’. No differences in ejection

fraction and LV endocardial fractional shortening between the groups were recorded. LV

global radial and circumferential strain and strain rate were reduced in CIA rats compared to

controls. Higher concentrations of circulating inflammatory markers were associated with

reduced lateral e’, e’/a’, radial and circumferential strain and strain rate. Greater collagen

content was associated with increased concentrations of circulating inflammatory markers

and E/e’.
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Conclusion

High-grade inflammation is associated with impaired LV diastolic function and greater myo-

cardial deformation independent of haemodynamic load in CIA rats.

Introduction

Heart failure with a preserved ejection fraction (HFpEF) accounts for more than 50% of all

heart failure cases and is associated with an increased morbidity and mortality [1]. There are

currently no effective treatment strategies for HFpEF [2], which highlights the need for a better

understanding of its pathophysiology. Impaired left ventricular (LV) diastolic function has

been proposed as a pre-clinical measure that underlies the pathophysiology of, and frequently

progresses to HFpEF [3]. The multiple aetiologies of diastolic dysfunction and the heterogene-

ity of HFpEF [4, 5] underscore the need for further investigations.

Hypertension, diabetes mellitus and obesity comprise traditional cardiovascular risk factors

that are associated with diastolic dysfunction [6]. However, these metabolic abnormalities fail to

account for all changes in diastolic function [7]. A systemic pro-inflammatory state has been pro-

posed as a mediator for the causal molecular or biochemical mechanisms of diastolic dysfunction

in persons exposed to metabolic risk factors [8]. In this regard, diseases that are associated with

chronic high-grade inflammation including rheumatoid arthritis (RA), markedly exacerbate the

risk for developing diastolic dysfunction and HFpEF compared to the general population [9, 10].

In cross-sectional studies, inflammatory markers including interleukin 6 (IL-6) [11] and tumour

necrosis factor-α (TNF-α) [12] levels were independently associated with impaired diastolic

function in RA. Although there is some controversy, treatment with biological disease modifying

anti-rheumatic agents aimed at reducing inflammation has shown improvements in cardiac

function in patients with RA [13]. However, there is currently limited evidence to support a role

of inflammation in impaired diastolic function in experimental models of RA.

Chronic systemic inflammation is also associated with heart failure with a reduced ejection

fraction (HFrEF) in the general population [14]. Higher levels of inflammatory cytokines

adversely affect systolic function and heart failure severity [14], and independently predict

mortality in HFrEF [15]. In cross-sectional RA studies, inflammation was not related to

reduced ejection fraction [16, 17]. Recently, velocity, displacement, and deformation imaging

(strain and strain-rate) as estimated by speckle-tracking echocardiography (STE) were docu-

mented to represent valuable tools in the comprehensive and reliable assessment of myocardial

systolic function [18–21]. Interestingly, impaired myocardial deformation in the presence of a

normal ejection fraction was reported in RA [22–24]. Myocardial deformation is related to

inflammation [25, 26], disease activity and/or severity in RA [17, 23, 24]. Until recently, the

lack of high-sensitive imaging has limited the use of STE in small animal models. Hence, the

effects of high-grade inflammation on STE estimated myocardial function have not been stud-

ied in experimental models of RA. In the present study, we assessed the effects of high-grade

inflammation on diastolic and systolic function and myocardial deformation and motion as

estimated by pulsed and tissue Doppler indices, M-mode echocardiography and STE, respec-

tively, in collagen-induced arthritis (CIA).

Methods

Animals and experimental design

All experimental procedures were performed in accordance with the Guide for the Care and

Use of Laboratory Animals, Eighth Edition, updated by the US National Research Council
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Committee in 2011 and were approved by the Animal Ethics Screening Committee (AESC) of

the University of the Witwatersrand (AESC number: 2017/03/21C). Thirty-three, three-

month-old male Sprague Dawley rats (480-510g) were studied. Rats were housed individually

in cages in a temperature-controlled room with a 12-hour light-dark cycle and allowed free

access to food and water. During the two week acclimatisation period, blood pressure (BP) was

measured twice a week and body weight, paw thickness and articular index scores were mea-

sured once a week. Following acclimatisation, rats were randomly assigned to the control

group (CNTRL, n = 12) that had no intervention, or the collagen induced arthritis group

(CIA, n = 21) that were exposed to high-grade inflammation. Body weight, paw thickness,

articular index scores and BP were measured once a week for nine weeks. Echocardiography

was performed and blood samples were obtained at the end of the nine week study period.

Arthritis induction and assessment

Experimental arthritis was induced in rats as previously described [27]. Briefly, bovine type II

collagen (Chondrex cat. #20021, Redmond, WA, USA) was dissolved in 0.05M acetic acid by

gently stirring overnight at 4˚C. Equal amounts of dissolved bovine type II collagen (2mg/ml)

and incomplete Freund’s adjuvant (Chondrex cat. #7002, Redmond, WA, USA) were mixed

using an electric homogenizer. The arthritis-inducing emulsion was prepared immediately

before immunisation. Under general anaesthesia, rats were immunised with 0.2ml (200μg) of

the emulsion by a subcutaneous injection at the base of the tail. To ensure a high incidence

and severity of arthritis, a 0.1ml (100μg) booster injection was administered seven days after

the first immunisation. Control rats received a subcutaneous injection of 0.1ml (100 μg) of

0.05M acetic acid at the base of the tail. To quantitatively evaluate the severity of arthritis, rat

paws were scored using a previously described five-point scoring system [28] where 0 = no

swelling or focal redness (normal); 1 = slight swelling and/or focal redness; 2 = low-to-moder-

ate oedema, 3 = pronounced oedema with reduced paw function; 4 = excessive oedema with

deformity and joint rigidity. The cumulative score for the two hind paws of each rat (maxi-

mum score of 8) were used to represent the overall disease severity. As the rat paw arthritis

score only provides a subjective quantification of inflammation, hind paw thickness at the

ankle and tarsometatarsal joints were measured once every week using a digital calliper as

another measure of arthritis severity.

Non-invasive blood pressure measurements

Blood pressure was measured weekly using the tail-cuff technique (Biopac Systems, Santa Bar-

bara, CA, USA). Each rat was placed in a restrainer with a cuff attached to a heated tail. Mea-

surements were taken at midday to avoid diurnal variation.

Echocardiography

Nine weeks after the first immunisation, rats were anaesthetised with an intraperitoneal injec-

tion of ketamine (100mg.kg-1) and xylazine (5mg.kg-1). Echocardiography was performed by

an experienced observer, according to the American Society of Echocardiography conventions

[29] with the rat in the left lateral decubitus position using a high resolution ultrasound probe

(10 MHz) coupled to an echocardiogram (Siemens, Acuson SC2000, Diagnostic ultrasound

system; Siemens Medical Solutions, USA, Inc.). LV dimensions were determined using two-

dimensional directed M-mode echocardiography in the parasternal long axis view during

three consecutive beats. LV end systolic (LVESD) and end diastolic (LVEDD) internal diame-

ters and septal (IVST) and posterior wall thickness (PWT) were measured in systole and dias-

tole. Relative wall thickness (RWT) was calculated as (IVST + PWT in diastole)/LVEDD [30].
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LV diastolic function was determined from the mitral valve inflow patterns using pulsed

Doppler imaging. In the apical 4-chamber view, the early (E) and late (A) diastolic inflow

velocity were obtained with the sample volume placed at the mitral valve leaflet tip and

expressed as E/A as a marker of relaxation. To determine diastolic function using tissue Dopp-

ler imaging (TDI), peak myocardial tissue lengthening velocities during early (e’) and late (a’)

diastole were recorded at the lateral mitral annulus in the apical four-chamber view. Data were

expressed as e’ (an index of myocardial relaxation), e’/a’ (an index of myocardial stiffness) and

E/e’ (an index of LV filling pressure).

LV pump and myocardial systolic function was determined by calculating LV ejection frac-

tion (EF) using the Teichholz method [30] and LV endocardial fractional shortening (FSend)

using the equation LV (EDD-ESD)/EDD [30], respectively. To further evaluate systolic func-

tion Speckle tracking Doppler was used to obtain B-mode images to determine LV strain,

strain rate, velocity and displacement in the parasternal short axis view (circumferential or

rotational). B-mode video loops were selected based upon image quality and well-defined

endocardial and epicardial borders with no substantial image artefacts. An average of at least

five consecutive heartbeats was used to minimize beat-to-beat variability for all measurements.

The endocardium and epicardium were traced semi-automatically using vendor’s software.

The traces were manually adjusted to ensure adequate tracking of the endocardial and epicar-

dial borders. Tracked images were processed in a frame-by-frame manner for strain measure-

ments. Strain, strain rate, velocity and displacement were calculated in the radial and

circumferential planes. Segmental analyses were performed on the short-axis images with the

left ventricle being split into the following regions: anterior septal, anterior, lateral, posterior,

inferior and septal regions. The average global strain values were obtained from six indepen-

dent anatomical segments of the left ventricle.

Serum concentrations of inflammatory markers

Rats were sacrificed with an intraperitoneal injection of ketamine 200 mg.kg-1 and xylazine 10

mg.kg-1 followed by thoracotomy. After thoracotomy, blood was sampled and allowed to clot

for 2 hours at room temperature. Blood was centrifuged and serum was collected and stored at

-80˚C until assayed. Serum concentrations of tumor necrosis factor alpha (TNF-α), interleukin

6 (IL-6), interleukin 1β (IL-1β) and C-reactive protein (CRP) were measured by ELISA using

commercially available ELISA kits according to the instructions of the manufacturer

(Elabscience Biotechnology Co. Ltd, Wuhan, China). Each sample was measured in duplicate.

The lower detection limit for TNF-α, IL-6, IL-1β and CRP were 78.13 pg/ml, 62.50 pg/ml, 31.2

pg/ml and 0.31 ng/ml respectively, all with coefficients of variation of<10%.

Total collagen content

Cardiac tissue samples were fixed in 10% buffered formalin and routinely processed for paraf-

fin embedding. Five μm thick tissue sections were deparaffinised, rehydrated and stained with

a 0.1% Sirius Red solution dissolved in aqueous saturated picric acid for 60 min at room tem-

perature. After washing in acidified water, slides were dehydrated and mounted with DPX

mounting. The tissue sections were analysed using a Zeiss Axioskop 2 Plus microscope

equipped with a Zeiss AxioCam (Zeiss, Peabody, MA, USA). Tissue sections viewed under

bright-field and polarized light were obtained with a 10x objective lens (x100 magnification).

Using ImageJ software, the collagen area fraction was calculated for each tissue section by

dividing the collagen area by the total tissue area.
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Statistical analysis

Data are expressed as means ± SD. Data analysis was performed using SAS software version

9.4 (SAS Institute Inc., Cary, North Carolina, USA). Unpaired, two-tailed t-tests were per-

formed to determine differences in echocardiographic measures and inflammatory markers

between the CIA and control groups. Associations between diastolic and systolic function

parameters and inflammatory markers were determined by Pearson’s correlation coefficients.

A P value< 0.05 was considered statistically significant.

Results

Characterization of experimental model

The onset of arthritis in the CIA group occurred within 21–28 days after the first immunisa-

tion. Clear signs of inflammation including erythema, oedema and joint rigidity were observed

in the CIA group (Fig 1A). Compared to the control group, the CIA group showed a signifi-

cantly higher arthritis score (Fig 1B) four weeks after immunisation that persisted for the dura-

tion of the study. CIA rats also showed increased swelling at the tarsometatarsal joint (Fig 1C)

from week five to week nine and increased swelling at the ankle joint (Fig 1D) from week four

until week nine after the primary immunisation.

Body weight, blood pressure and inflammatory markers

Table 1 shows the body weight, blood pressure and inflammatory markers of the control and

CIA groups. Nine weeks after the primary immunisation, there were no significant differences

in body weight, systolic or diastolic blood pressure between the groups (all p>0.05). Serum

concentrations of TNF-α, IL-1β, IL-6 and CRP were significantly higher in the CIA group

compared to the control group (all p<0.0001).

Cardiac weight and geometry

Table 2 shows the cardiac geometry of the control and CIA groups. Although the control

group had similar heart weights as the CIA group (p>0.05) at termination, the (mean ± SD)

Fig 1. Macroscopic observation of joint swelling in collagen-induced arthritis (CIA) rats. (A) Photographs of hind

paws, (B) arthritis scores, (C) paw thickness at the tarsometatarsal joint and (D) paw thickness at the ankle joint in

control and CIA rats nine weeks after the primary immunisation. Open circles represent the control group (n = 12)

and closed circles represent the CIA (n = 21) group (unpaired t-test). Data presented as mean ± SD. �P< 0.05 versus

control group; ��P< 0.01 versus control group; ���P< 0.0001 versus control group.

https://doi.org/10.1371/journal.pone.0230657.g001
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heart weight indexed to body weight (control: 2.42 ± 0.20; CIA: 2.63 ± 0.26, p = 0.02), LV

weight (control: 0.95 ± 0.09 g; CIA: 1.03 ± 0.12 g, p = 0.04) and LV weight/ indexed to body

weight (control: 1.74 ± 0.12; CIA: 1.97 ± 0.26, p = 0.01) were significantly higher in the CIA

group compared to the control group. The posterior wall thickness in systole (mean ± SD;

control: 2.00 ± 0.02 mm; CIA: 2.30 ± 0.03 mm, p = 0.03) and diastole (mean ± SD; control:

2.90 ± 0.03 mm; CIA: 3.14 ± 0.03 mm, p = 0.002) were higher in the CIA group compared to

controls, which resulted in an increased relative wall thickness in the CIA group (mean ± SD;

control: 0.59 ± 0.10 mm; CIA: 0.69 ± 0.09 mm, p = 0.01).

Left ventricular diastolic function

Table 2 shows that compared to the control group, the CIA group had reduced lateral e’

(mean ± SD; control: 4.51 ± 0.81 cm/s; CIA: 3.45 ± 0.39 cm/s, p<0.0001) and e’/a’

(mean ± SD; control: 1.42 ± 0.22; CIA: 1.04 ± 0.26, p = 0.0002) and a higher E/e’ (mean ± SD;

control: 31.78 ± 10.42; CIA: 39.45 ± 7.34, p = 0.04). There were no significant differences in E

or E/A between the groups (both p>0.05).

Left ventricular systolic function

There were no differences in stroke volume (p = 0.31), ejection fraction (p = 0.71) or endocar-

dial fractional shortening (p = 0.60) between the groups (Table 2). Global radial strain

(mean ± SD; control: 11.82 ± 1.02%; CIA: 9.68 ± 1.15%, p<0.0001), global circumferential

strain (mean ± SD; control: -26.40 ± 1.38%; CIA: -21.86 ± 4.74%, p = 0.01), global radial strain

rate (mean ± SD; control: 2.10 ± 0.41 1/s; CIA: 1.71 ± 0.19 1/s, p = 0.003) and global circumfer-

ential strain rate (mean ± SD; control: -3.61 ± 0.47 1/s; CIA: -3.10 ± 0.20 1/s, p = 0.001) were

significantly reduced in the CIA group compared to the control group (Table 2). Global radial

velocity (mean ± SD; control: 1.37 ± 0.25 cm/s; CIA: 1.09 ± 0.25 cm/s, p = 0.01) and global

rotational velocity (mean ± SD; control: 54.47 ± 9.05 degree/s; CIA: 44.66 ± 8.59 degree/s,

p = 0.01) were significantly reduced in the CIA group compared to the control group, however

global radial displacement and global circumferential displacement were similar between the

groups (both p>0.05; Table 2).

In segmental analysis in the short-axis radial strain, circumferential strain, radial strain rate

and circumferential strain rate were predominantly impaired at the anterior-septal, anterior

and septal LV segments in the CIA group compared to controls (all p<0.05; S1 Table). In the

lateral LV segment, only circumferential strain (p = 0.02) and radial strain rate (p = 0.05) were

Table 1. Body weights, tail cuff blood pressure and inflammatory markers in controls and collagen induced arthritis rats.

Control(n = 12) CIA(n = 21) P

Sample (n) 12 21

Body weight (g) 549 ± 56 529 ± 57 0.35

Blood pressure

Systolic blood pressure (mm Hg) 133 ± 3 137 ± 13 0.40

Diastolic blood pressure (mm Hg) 92 ± 5 94 ± 6 0.38

Inflammatory markers

Tumor necrosis factor-α (pg/ml) 277.9 ± 88.1 645.9 ± 128.8 <0.0001

Interleukin-6 (pg/ml) 100.4 ± 72.9 377.8 ± 92.6 <0.0001

Interleukin-1β (pg/ml) 104.5 ± 55.4 245.5 ± 51.3 <0.0001

C-reactive protein (ng/ml) 0.2 ± 0.3 1.0 ± 0.4 <0.0001

Data expressed as means ± SD. CIA, collagen induced arthritis

https://doi.org/10.1371/journal.pone.0230657.t001
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reduced in the in the CIA group compared to controls (S1 Table). Strain or strain rate were

not different between the groups in the posterior or inferior segments (all p>0.05; S1 Table).

S2 Table shows that radial velocity was significantly reduced at the anterior septal (p = 0.02),

anterior (p = 0.05) and septal (p = 0.03) LV segments in the CIA group compared to controls.

Rotational velocity was significantly reduced at the anterior septal (p = 0.004) and anterior

(p = 0.04) LV segments. There were no differences in the radial or circumferential displace-

ment in any of the segments between the groups (S2 Table).

Total collagen content

Fig 2A shows greater collagen accumulation in CIA rats compared to controls as evidenced by

the increased red staining of cardiac tissue sections visualized under bright-filed microscopy.

Fig 2B shows cardiac tissue sections under polarized light, where large collagen fibres appear

orange or yellow and thin fibres appear green. The total collagen content was significantly

greater in the CIA group compared to controls (mean ± SD; control: 2.45 ± 0.71%; CIA:

8.62 ± 3.39%, p = 0.01; Fig 2C).

Table 2. Left ventricular geometry, diastolic and systolic function in controls and collagen induced arthritis rats.

Control (n = 12) CIA (n = 21) P

Cardiac geometry

Heart weight (g) 1.32 ± 0.10 1.38 ± 0.13 0.17

Heart weight/body weight x 103 2.42 ± 0.20 2.63 ± 0.26 0.02

Right ventricular weight (g) 0.28 ± 0.05 0.27 ± 0.06 0.38

LV weight (g) 0.95 ± 0.09 1.03 ± 0.12 0.04

LV weight/body weight x 103 1.74 ± 0.12 1.97 ± 0.26 0.01

LV end diastolic diameter (mm) 6.95 ± 0.07 6.65 ± 0.07 0.25

LV end diastolic posterior wall thickness (mm) 2.00 ± 0.02 2.30 ± 0.03 0.002

LV end systolic diameter (mm) 4.15 ± 0.05 3.90 ± 0.07 0.28

LV end systolic posterior wall thickness (mm) 2.90 ± 0.03 3.14 ± 0.03 0.03

Relative wall thickness (mm) 0.59 ± 0.10 0.69 ± 0.09 0.01

Left ventricular diastolic function

E (cm/s) 133 ± 17 134 ± 15 0.83

E/A 1.95 ± 0.35 1.75 ± 0.29 0.14

e’ (cm/s) 4.51 ± 0.81 3.45 ± 0.39 <0.0001

e’/a’ 1.42 ± 0.22 1.04 ± 0.26 0.0002

E/e’ 31.78 ± 10.42 39.45 ± 7.34 0.04

Left ventricular systolic function

Stroke volume (ml) 0.59 ± 0.19 0.53 ± 0.15 0.31

Ejection fraction (%) 75.71 ± 7.75 76.95 ± 9.61 0.71

Endocardial fractional shortening (%) 40.07 ± 6.41 41.52 ± 8.56 0.60

Global radial strain (%) 11.82 ± 1.02 9.68 ± 1.15 <0.0001

Global circumferential strain (%) -26.40 ± 1.38 -21.86 ± 4.74 0.01

Global radial strain rate (1/s) 2.10 ± 0.41 1.71 ± 0.19 0.003

Global circumferential strain rate (1/s) -3.61 ± 0.47 -3.10 ± 0.20 0.001

Global radial velocity (cm/s) 1.37 ± 0.25 1.09 ± 0.25 0.01

Global circumferential velocity (degree/s) 54.47 ± 9.05 44.66 ± 8.59 0.01

Global radial displacement (mm) 0.70 ± 0.15 0.66 ± 0.17 0.55

Global circumferential displacement (degree) 1.28 ± 0.25 1.10 ± 0.31 0.16

Data expressed as means ± SD. CIA, collagen induced arthritis; LV, left ventricular

https://doi.org/10.1371/journal.pone.0230657.t002
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Associations between inflammatory markers, cardiac geometry and

collagen content

Fig 3 shows that relative wall thickness was related to increased circulating inflammatory

marker concentrations (TNF-α: r = 0.45; p = 0.009, IL6: r = 0.44; p = 0.01, IL-1β: r = 0.39;

p = 0.03, CRP: r = 0.40; p = 0.02). LV weight indexed to body weight was related to increased

TNF-α (r = 0.44; p = 0.01) and there was a trend toward significance with IL-6 (r = 0.34;

p = 0.06). Increased collagen content was associated with higher serum concentrations of

TNF-α (r = 0.76; p = 0.005) and IL-6 (r = 0.70; p = 0.01) and there was a trend towards signifi-

cance with IL-1β (r = 0.57; p = 0.07) and CRP (r = 0.58; p = 0.06).

Fig 2. Total collagen content in cardiac tissue of control and collagen-induced arthritis (CIA) rats. Representative

Picrosirius red stained micrographs imaged at x100 magnification viewed in (a) bright-field and under (b) polarized

light. (c) Total collagen content (% area fraction) calculated from Picrosirius red stained sections. Data presented as

mean ± SD; unpaired t-test, ��P< 0.05 versus control group; n = 6 per group. Scale bar = 20μm.

https://doi.org/10.1371/journal.pone.0230657.g002
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Fig 3. Associations of cardiac geometry and total collagen content with inflammatory cytokines. TNF-α, tumor

necrosis factor alpha; IL-6, interleukin 6; IL-1β, interleukin 1 beta; CRP, C-reactive protein. Open circles represent the

correlation coefficient (r) and horizontal lines represent the 95% confidence intervals (Cl) (Pearson’s correlation).

https://doi.org/10.1371/journal.pone.0230657.g003
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Associations between inflammatory markers and diastolic function

Fig 4 shows the associations between circulating inflammatory marker concentrations and

markers of diastolic function. Reduced e’ was associated with higher serum concentrations of

TNF-α (r = -0.54; p = 0.001), IL-6 (r = -0.57; p = 0.0007), IL-1β (r = -0.53; p = 0.002) and CRP

(r = -0.48; p = 0.006). Reduced e’/a’ was associated with higher serum concentrations of TNF-

α (r = -0.44; p = 0.01), IL-6 (r = -0.49; p = 0.005), IL-1β (r = -0.46; p = 0.008) and CRP (r =

-0.39; p = 0.03, Fig 4). There was no association between E/A and serum concentrations of

TNF-α (r = - 0.22; p = 0.28), IL-6 (r = - 0.14; p = 0.50), IL-1β (r = -0.17; p = 0.42), or CRP (r =

-0.09, p = 0.67; Fig 4). There was a trend toward an association between E/e’ and serum con-

centrations of TNF-α (r = 0.36; p = 0.07), and IL-6 (r = 0.37; p = 0.06) (Fig 4).

Associations between inflammatory markers and systolic function

There were no significant associations between serum concentrations of inflammatory mark-

ers and ejection fraction (TNF-α: r = 0.22; p = 0.22, IL-1β: r = 0.19; p = 0.28, IL-6: r = 0.20;

p = 0.26, CRP: r = 0.17; p = 0.37) or endocardial fractional shortening (TNF-α: r = -0.19;

p = 0.29, IL-β: r = -0.19; p = 0.30, IL-6: r = -0.14; p = 0.45, CRP: r = -0.08, p = 0.65).

Fig 5 shows that greater myocardial deformation was associated with higher levels of circu-

lating inflammatory markers. Reduced radial strain was associated with higher serum concen-

trations of TNF-α (r = -0.70; p<0.0001), IL-6 (r = -0.70; p<0.0001), IL-1β (r = -0.60; p = 0.001)

and CRP (r = -0.71; <0.0001; Fig 5). Reduced (less negative) circumferential strain was associ-

ated with higher serum concentrations of TNF-α (r = 0.46; p = 0.03) and IL-1β (r = 0.40;

p = 0.05; Fig 5). No significant associations were shown between circumferential strain and IL-

6 (r = 0.35; p = 0.08) or CRP (r = 0.38; p = 0.07) concentrations (Fig 5). Reduced radial strain

rate was associated with higher TNF-α (r = -0.48; p = 0.01), IL-6 (r = -0.51; p = 0.008), IL-1β (r

= -0.55; p = 0.004) and CRP (r = -0.52; p = 0.007) concentrations (Fig 5). Reduced (less nega-

tive) circumferential strain rate was associated with higher serum concentrations of TNF-α
(r = 0.59; p = 0.002), IL-6 (r = 0.63; p = 0.007), IL-1β (r = 0.69; p = 0.0001) and CRP (r = 0.61;

p = 0.001; Fig 5). There were no associations between markers of myocardial motion (velocity

and displacement) and circulating inflammatory markers (S1 Fig).

Discussion

In the present study, CIA in adult, male Sprague Dawley rats caused impaired LV relaxation

(decreased e’) and increased LV stiffness (decreased e’/a’) and LV filling pressures (increased

E/e’). The diastolic abnormalities were noted despite a normal blood pressure and unaltered

mitral inflow patterns (E/A). Although LV chamber pump function (ejection fraction) and

contractility (fractional shortening) were preserved, CIA rats demonstrated early myocardial

dysfunction as indexed by myocardial deformation (radial and circumferential strain and

strain rate). Elevated inflammatory cytokines were associated with impaired diastolic function

(e’ and e’/a’), increased collagen content and global radial and circumferential strain and strain

rate. The present findings suggest that, independent of load, LV diastolic function and myocar-

dial deformation are adversely affected when exposed to high-grade inflammation in rats.

Previous cross-sectional studies have reported impaired diastolic function in RA patients

with adverse inflammatory profiles [10–12, 14]. Accordingly, the present study showed that

TDI-determined e’, an index of myocardial relaxation, was reduced in CIA rats compared to

controls and was associated with increased circulating inflammatory markers. However, no

changes in pulsed Doppler markers of diastolic function (E/A) were observed in CIA rats com-

pared to controls. In contrast, one study showed impaired early diastolic filling velocity (E) in

female CIA rats [31]. No other markers of diastolic function were assessed in the respective
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Fig 4. Associations between left ventricular diastolic function markers and circulating inflammatory markers.

TNF-α, tumor necrosis factor alpha; IL-6, interleukin 6; IL-1β, interleukin 1 beta; CRP, C-reactive protein. Open

circles represent the correlation coefficient (r) and horizontal lines represent the 95% confidence intervals (Cl)

(Pearson’s correlation).

https://doi.org/10.1371/journal.pone.0230657.g004
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Fig 5. Associations between left ventricular myocardial deformation (strain and strain rate) and circulating

inflammatory markers. TNF-α, tumor necrosis factor alpha; IL-6, interleukin 6; IL-1β, interleukin 1 beta; CRP, C-

reactive protein. Open circles represent the correlation coefficient (r) and horizontal lines represent the 95%

confidence intervals (Cl) (Pearson’s correlation).

https://doi.org/10.1371/journal.pone.0230657.g005
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investigation [31]. The discrepancies may be explained by the onset, severity and duration of

the different arthritic protocols used in the latter and current studies.

Besides impaired active relaxation, passive myocardial stiffness contributes to the pathogen-

esis of diastolic dysfunction [4, 5]. Hypertension has been linked to increased myocardial col-

lagen content, collagen cross linking and myocardial fibrosis which leads to diastolic

dysfunction [32–34]. However recent studies indicate that hypertension cannot fully account

for the development of diastolic dysfunction in RA patients [7, 11]. Similar to previous studies

in the CIA rat model [35, 36], no differences in blood pressure were observed between the CIA

and control groups in the current investigation. However, CIA rats have increased ventricular

stiffness, as indexed by a reduced e’/a’, and increased collagen LV content, both of which have

been associated with increased circulating inflammatory markers. The current study is thus

the first to demonstrate associations between inflammatory markers with increased cardiac

remodeling (collagen content), impaired myocardial relaxation and increased passive stiffness,

independent of load (blood pressure), in an animal model of RA.

Growing evidence suggests that inflammatory cytokines mediate several cellular changes

that cause abnormalities in myocardial relaxation. First, inflammation has been shown to

impair the active calcium-dependent processes involved in myocardial relaxation [37, 38].

Additionally, inflammatory cytokines mediate hypertrophic remodelling and myocardial

fibrosis through regulation of collagen synthesis and matrix metalloproteinase activity of car-

diac fibroblasts [39, 40]. Moreover, recent findings support a role for systemic inflammation

in the hypophosphorylation of the cytoskeletal protein titin, which contributes to passive

myocardial stiffness [41]. Both collagen and titin phosphorylation contribute to passive myo-

cardial stiffness [42]. Previous studies documented that myocardial stiffness [43], collagen

content [44] and impaired relaxation [45] each relate to increased LV filling pressures. In the

present study, inflammatory markers tended to relate to increased filling pressure without

reaching significance (p = 0.06 to 0.14), suggesting that increased filling pressure may not

directly relate to inflammation in the CIA rat model and may be explained by the extra-cellu-

lar matrix driven passive stiffness and calcium dependent relaxation abnormalities induced

by inflammation. Taken together, the present findings support the recent suggestions that

inflammation forms an important part of the pathophysiological mechanisms leading to

myocardial remodelling and diastolic dysfunction [8]. Future studies have to investigate the

cellular and molecular mechanisms involved in the inflammation-induced diastolic abnor-

malities in CIA rats.

In previous cross-sectional RA studies, inflammatory cytokines have been associated with

increased myocardial deformation [22, 23, 25, 26]. Similar to findings in RA patients [22, 23,

25, 26], the present study showed that LV systolic myocardial deformation (radial and circum-

ferential strain and strain rate) and myocardial motion (circumferential rotation rate and

radial velocity) were impaired in the CIA group despite a normal pump function and contrac-

tility. Myocardial deformation, but not contractility, was associated with increased circulating

inflammatory cytokine concentrations. However, the present findings contrast with impaired

contractility, as assessed by conventional approaches, in an in vivo mouse model of collagen

antibody induced arthritis [46]. While the collagen antibody induced arthritis model shares

many characteristics with CIA, the differences in onset and severity of inflammation as well

as duration of the studies may explain the differences in contractility between these two stud-

ies. Although relaxation and contractility are impaired, ejection fraction may be preserved in

HFpEF because of the hypertrophied myocardial wall [47]. In addition, concentric cardiac

remodelling increases myocardial tissue stress and strain [47]. In the present study, concentric

remodelling, as observed by increased relative wall thickness, may have ensured the mainte-

nance of ejection fraction while increasing myocardial strain.
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In the present CIA investigation, myocardial deformation and motion were consistently

reduced in the anterior septal, anterior and septal LV myocardial segments. The lateral LV

segment was affected to a lesser extent whereas the inferior and posterior walls were unaltered.

Previous studies have shown that the septal wall has a greater sensitivity to fibrosis [48] and

increased septal myocardial stress has been associated with early structural remodelling in

patients with HFpEF [49]. To the best of our knowledge, the present study is the first to dem-

onstrate associations between inflammatory markers with early myocardial deformation in an

animal model of RA. Although conventional echocardiography and TDI are considered reli-

able methods in assessing pump function and contractility, these procedures lack sensitivity in

detecting subtle myocardial changes [19, 20]. STE may provide a more sensitive alternative to

identify early myocardial contractile changes in RA.

The current study presents with limitations. Although associations were demonstrated

between circulating inflammatory markers and impaired cardiac function, the direct casual

effect of inflammation on impaired cardiac function can only be implied. Future studies have

to determine whether inflammation alters the cellular mechanisms responsible for the changes

in LV function seen in the current study, and whether immunosuppressive drugs restore the

inflammation-induced cardiac impairments. Secondly, non-invasive approaches rather than

catheter-based systems were used to assess diastolic function in the present study. However,

tissue Doppler indices of diastolic function were previously shown to correlate well with inva-

sively measured LV relaxation, stiffness and filling pressures [42]. Thirdly, the present study

focused on short-axis circumferential and radial STE analyses. Although longitudinal STE

analyses may have provided additional information on LV myocardial deformation and

motion, circumferential STE analyses are highly reliable in the assessment of LV function [21].

Fourthly, circulating CRP levels were measured using a standard ELISA CRP assay kit which

may not be sensitive enough to detect lower CRP levels, especially for low concentrations of

CRP. Lastly, the effects of CIA on cardiac function were assessed in male rats. Future studies

may determine whether inflammation impairs cardiac function in female rats.

In conclusion, the present study showed that high-grade inflammation is associated in vivo
with impaired LV diastolic function and greater subclinical myocardial deformation, indepen-

dent of blood pressure. These findings add to the evidence that systemic inflammation may

mediate myocardial remodelling leading to diastolic dysfunction and myocardial deformation.

Considering the lack of adequate pharmacological therapy for the management of HFpEF, fur-

ther research should determine the effect of anti-inflammatory substances in the prevention

and management of HFpEF.
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