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Abstract

Human bocaviruses (HBoV) are highly prevalent human infections whose pathogenic potential remains unknown. Recent
identification of the first non-human primate bocavirus [1] in captive gorillas raised the possibility of the persistent nature of
bocavirus infection. To characterize bocavirus infection in humans, we tested intestinal biopsies from 22 children with
gastrointestinal disease for the presence of HBoV DNA. Four HBoV-positive tissue samples were analyzed to determine
whether viral DNA was present in the linear genomic, the episomal closed circular or the host genome-integrated form.
Whereas one tissue sample positive for HBoV3 contained the episomal form (HBoV3-E1), none had the genome-integrated
form. The complete genome sequence of HBoV3-E1 contains 5319 nucleotides of which 513 represent the non-coding
terminal sequence. The secondary structure of HBoV3-E1 termini suggests several conserved and variable features among
human and animal bocaviruses. Our observation that HBoV genome exists as head-to-tail monomer in infected tissue either
reflects the likely evolution of alternative replication mechanism in primate bocaviruses or a mechanism of viral persistence
in their host. Moreover, we identified the HBoV genomic terminal sequences that will be helpful in developing reverse
genetic systems for these widely prevalent parvoviruses.

Significance: HBoV have been found in healthy human controls as well as individuals with respiratory or gastrointestinal
disease. Our findings suggest that HBoV DNA can exist as episomes in infected human tissues and therefore can likely
establish persistent infection in the host. Previous efforts to grow HBoV in cell culture and to develop reverse genetic
systems have been unsuccessful. Complete genomic sequence of the HBoV3 episome and its genomic termini will improve
our understanding of HBoV replication mechanism and its pathogenesis.
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Introduction

Parvoviruses are small, non-enveloped icosahedral viruses with

single-stranded linear DNA genomes that frequently infect animals

through the fecal-oral route [2]. They are members of the

Parvoviridae family, which comprises two sub-families, Densovirinae

and Parvovirinae that infect non-vertebrate and vertebrate hosts,

respectively [2,3]. The International Committee on Taxonomy of

Viruses (ICTV) has further classified the sub-family Parvovirinae

into five genera: Dependovirus, Bocavirus, Erythrovirus, Parvovi-

rus and Amdovirus. Bocaviruses are unique among parvoviruses

because they contain a third ORF between the non-structural and

structural coding regions [4,5,6]. The genus Bocavirus includes the

bovine parvoviruses (BPV), minute virus of canines (MVC) [2],

porcine bocaviruses [7], gorilla bocavirus [1] and 4 species of

human bocaviruses (HBoV 1–4) [4,8,9,10,11].

Parvoviruses are unique as they have a linear single-stranded

DNA genome with hairpin sequences at each end. The length of

the DNA genome is between 4500 and 5500 nucleotides [2,3].

Depending on their replication requirements, parvoviruses (PV)

can be autonomous PV or dependoviruses; the latter includes

adeno-associated viruses (AAV) and requires presence of a helper

virus for successful replication [3]. Bocaviruses are considered

autonomous parvoviruses. The non-coding or non-translated

regions on the genomic termini contain palindromic sequences,

commonly known as inverted terminal repeats (ITR), that play a

vital role in viral replication [12]. Since their discovery using

nucleic acid amplification-based techniques [4,8,9,11], the termi-

nal regions of all primate bocavirus species remain unsequenced,

limiting the scope of studies on viral replication and the

development of reverse genetic systems. Here we report the

complete genome of the HBoV episome found in infected human

intestinal tissue and the secondary structure of its termini.

HBoV1 infection, widely considered acute, has been linked with

mild to severe lower respiratory tract infections in children, frequently

in association with other viral infections [8,13,14,15,16,17,18,19,20].

HBoV1 has also been detected at low frequency in stool samples,

although its association with enteric disease is weaker than with

respiratory disease [9,21,22,23,24,25]. HBoV2 was first identified in

stool samples of Pakistani children [11]. Lower frequencies of HBoV2

were detected in the stools of Scottish adults and children [11].

HBoV3 and HBoV2 were recently found in stool samples from

Australian children with diarrhea [9], and HBoV4 was first identified

in stool samples of children from Nigeria and Tunisia [26]. Whether

PLoS ONE | www.plosone.org 1 June 2011 | Volume 6 | Issue 6 | e21362



any of the four HBoV species causes human disease is still

undetermined [3,27,28].

During a survey of divergent bocaviruses in animals, the first

distinct species of non-human primate bocavirus, GBoV1, was

identified in stool samples of gorillas from a captive colony [1].

Phylogenetic analysis suggests that GBoV1 is most genetically

related to HBoV1. GBoV1 and its related variant were also

detected in stool samples of wild animals in Cameroon, confirming

their non-human primate origin and worldwide distribution [29].

The presence of GBoV1 in stool samples of animals living in

captivity for several years suggests that bocavirus infection may be

persistent in these animals. In humans, HBoV infection is

predominantly acute; therefore, most studies done to determine

the association between HBoV and disease compared the

prevalence of viral DNA in samples from symptomatic patients

and healthy controls [9,14,17,21,22,23,30,31,32,33,34]. Here we

report the first detection of episomal HBoV3 in human intestinal

tissue. These results raise the possibility that bocaviruses, like other

well-characterized parvoviruses, may cause persistent infection of

their hosts [12,35].

Materials and Methods

Samples and source
Patient biopsies were collected as part of a study to assess the

frequency of measles virus transcripts in ilea of children with

autistic disorder and gastrointestinal symptoms (AUT-GI) and

children with gastrointestinal symptoms without any apparent

neurologic disorder (CON-GI) [36]. The Institutional Review

Boards (IRB) of Columbia University Medical Center (CUMC)

and Partners specifically reviewed and approved the design of the

previous study under which these samples were obtained after

written consent of parents and guardians, in addition to child

assent, as appropriate. After the conclusion of the previous study,

all residual samples were de-identified and stored, and thereafter

were deemed exempt from additional review by the IRB. All

procedures employed in the current study were approved by the

CUMC IRB under a human subjects protocol designed for the

investigation of properly de-identified samples, wherein the need

for any additional consent has been specifically waived. All

samples were analyzed anonymously.

Sample processing and pan-bocavirus PCR assay
DNA was extracted from ileal biopsy material from 22 patients

(15 AUT-GI and 7 CON-GI patients) with TRIzol (Invitrogen),

using the manufacturer’s protocols for sequential extraction of

RNA and DNA. DNA concentration and integrity were

determined using a Nanodrop ND-1000 Spectrophotometer

(Nanodrop Technologies) and a Bioanalyzer (Agilent Technolo-

gies). Samples were stored at 280uC. PCR primers panBOV-F1

(59-TAATGCAYCARGAYTGGGTIGANCC -39) and panBOV-

R1 (59- GTACAGTCRTAYTCRTTRAARCACCA-39) were

used for the first round of hemi-nested PCR; primers panBOV-

F2 (59- GCAYCARGAYTGGGTIGANCCWGC – 39) and

panBOV-R1 (same as first round) were used for the second round

of semi-nested PCR. For the first round of nested PCR, 5 ml of

each specimen’s DNA were mixed with 5.2 ml 106 polymerase

reaction buffer (Qiagen), 3 ml of MgCl2, 1.25 ml each dNTP

(10 mM), 50 pmol each of forward (both panBOV-F1) and reverse

primer (panBOV-R1), 0.65 ml HotStart Taq DNA polymerase

(Qiagen) and 32 ml nuclease free water, in a total reaction volume

of 50 ml. The PCR reaction was performed using the following

protocol: initial denaturation at 95uC for 7 min, followed by 6

cycles at 95uC for 40 sec, 60uC for 45 sec and 68uC for 30 sec,

followed by 35 cycles at 95uC for 30 sec, 57uC for 30 sec and 68uC
for 30 sec, and a final extension at 72uC for 10 min. During the

first round of PCR, the first 6 cycles were done at a high annealing

temperature to increase stringency, and the remaining cycles were

performed at a lower temperature to facilitate primer hybridiza-

tion by tolerating some nucleotide mismatches. We added 0.5 ml of

the PCR product from the first round to the reaction mixture for

the second round of PCR. We used the same cycling conditions for

the second round, with an annealing temperature of 64uC for the

first 6 cycles and 58uC for the remaining 35 cycles. Following

electrophoresis, products were imaged on a 2% agarose gel. PCR

products showing positive bands of approximately 290 bp,

corresponding to the highly conserved amplified NS gene

fragment, were purified using a PCR purification kit (Qiagen)

and then directly sequenced from both ends.

Complete genome sequencing and inverse PCRs
The complete HBoV2 and HBOV3 genomes found in clinical

samples were acquired using the primer walking approach as

previously described [26]. In brief, each PCR extension step used

one primer specific for the novel virus sequence and another

degenerate primer to hybridize all known bocavirus sequences.

After the complete genome was assembled, each base was

sequenced in triplicate to confirm our results.

To detect the presence of the extra-chromosomal circular

episomal form of HBoV (HBoV-EPI), we used a nested inverse

PCR assay with outward primers against known genomic termini.

We used the following inverse PCR primer sequences (59 to 39):

TATGCTTATAAGTTCCTCTCCAATGGAC for Bo2-Inv-F1;

GAAAAGGGTGACTGTAATCCCGAGC for Bo3-Inv-F1; TC-

TAATTACAGGAGCAGAAAAGGCC for Bo2-Inv-R1; GAT-

TGGCTGACATACGTCACTTCC for Bo3-Inv-R1; GTTCC-

TCTCCAATGGACAAG for Bo2-Inv-F2; GGGTGACTGTAA-

TCCCGAGCTCA for Bo3-Inv-F2; CAGGAGCAGAAAAGGC-

CATA for Bo2-Inv-R2; and CTGACATACGTCACTTCCTG-

GGC for Bo3-Inv-R2. All first round primers were designed to be

exonuclease-resistant by phosphorothioation of the first three 59

end bases. The first round PCR mix contained Bo3-Inv-F1 or

Bo2-Inv-F1 and Bo3-Inv-R1 or Bo2-Inv-R1. During the second

round, we used either Bo3-Inv-F2 or Bo2-Inv-F2 and Bo3-Inv-R2

or Bo2-Inv-R2. For the first round of nested PCR, 5 ml of DNA

extracted from tissue samples were used in first round of PCR

using reaction conditions for Hot Start DNA polymerase (as

described above). The PCR reaction was performed using the

following protocol: initial denaturation at 95uC for 7 min, followed

by 5 cycles at 95uC for 40 s, 61uC for 40 s, and 72uC for 1 min,

followed by 35 cycles at 95uC for 30 s, 58uC for 40 s, and 72uC for

1.15 min, and a final extension at 72uC for 10 min. We added

0.5 ml of PCR product from the first round to the reaction mixture

for the second round of PCR. Second round primers were used

under identical cycling conditions, with annealing temperatures of

64uC and 57uC for the first 6 cycles and 60uC and 54uC for the

remaining 35 cycles for HBoV3 and HBov2, respectively.

Following electrophoresis, products were imaged on a 1.5%

agarose gel, isolated, and sequenced from both ends. The

complete HBoV3-Episome (HBoV3-E1) genome was submitted

to Genbank under accession number JN086998. A detailed

protocol of the techniques used to detect the HBoV host

chromosome-integrated form (HBoV-INT) can be found in our

recent publication on the discovery of mammalian endogenous

parvoviruses [37]. Briefly, to detect the genome-integrated form,

we used the same nested PCR assays described above, except that

the template for the first round of inverse PCR used restriction

enzyme digested- and re-circularized host genomic DNA.

Genome of Human Bocavirus Episome
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Sequence and DNA secondary structure analysis
To determine the sequence relationship of HBoV3-E1 and

HBoV3-IB1 with other known HBoV species, at least one

representative virus, including the one with the best-characterized

genome, was used to generate the nucleotide sequence alignments of

the entire coding region (NS, NP and VP gene). We used the

following Genbank sequences in the analysis: EU262978, FJ858259,

AB481085, EF450727, AB481077, FJ560720 for HBoV1; FJ170279,

EU082213, GQ200737, GU048664, GU048662, EU082214,

GU048663, FJ170280, FJ170278 for HBoV2; EU918736,

HM132056, FJ948861, GU048665, FJ973562, GQ867667,

GQ867666, FJ973563 for HBoV3; and FJ973561 for HBoV4.

The model test implemented in the phylogenetic program MEGA

5 [38] showed that the nucleotide substitution pattern among

variable sites of different HBoV sequences can be best analyzed

using a General Time Reversible (GTR) model with a discrete

Gamma distribution (+G) of 5 rate categories. We constructed a

maximum likelihood phylogenetic tree and then performed

bootstrap re-sampling to demonstrate robustness of phylogenetic

groupings [38]. Modeling of the secondary structure of the non-

coding DNA sequence region (NCR) between the VP and NS

genes in HBoV3-E1 and MVC (FJ214110) was done using a

standard minimum energy folding algorithm for single-stranded

nucleic acids implemented in the ‘‘mfold’’ web server (http://

mfold.rna.albany.edu/?q=mfold/DNA-Folding-Form) [39]. For

better comparison with the HBoV3-E1 NCR, the secondary

structure of the complete MVC NCR was determined after

circularizing the linear MVC genome in 59 to 39 orientation.

Comparative secondary structure analysis of the right-hand

termini of different HBoV species was done using HBoV3-E1

and the most complete genomic terminal sequences available in

Genbank for HBoV1 (GQ925675) and HBoV2 (GQ200737) [40].

Results

Presence of HBoV DNA in human tissue samples
We examined the presence of HBoV DNA in intestinal biopsy

samples using a sensitive nested PCR assay (1–10 copies) that

targets conserved sequences in HBoV capsid genes and can

amplify all known primate bocavirus species [1]. Of the 22 samples

tested, 4 tested positive for HBoV DNA. Sequence analysis

confirmed that 3 samples were positive for HBoV3, and 1 was

positive for HBoV2. These results were confirmed using PCR

targeting other regions of the viral genome (NS and NP) [4]. The

complete genome of the HBoV2 variant found in one child’s

biopsy tissues showed .97% nucleotide identity to HBoV2 viruses

recently identified in China and Thailand (Genbank accession

no. GU048662-3 and GU301644, respectively) (Fig. 1). Similarly,

the HBoV3 found in these tissues showed ,1–2% nucleotide

divergence from published HBoV3 genomes found in Australia,

Figure 1. Comparative phylogenetic analysis of HBoV3-E1 and HBoV2-IB1 (filled rectangles). Nucleotide alignments were generated
using the complete coding sequence of the NS, NP and VP genes. Names of sequences used for analysis are shown as Genbank accession numbers
followed by the names of HBoV species and strains. The tree was constructed with the maximum likelihood method using a GTR+G substitution
model [38]. Bootstrap replicates (.70%) are shown above the branches and distances (.0.02) are shown below the braches.
doi:10.1371/journal.pone.0021362.g001

Genome of Human Bocavirus Episome
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Nigeria and Thailand (Fig. 1). Sequence comparison of HBoV3

viruses found in other children also showed ,1% nucleotide

divergence over the entire genomic coding region (NS, NP and VP

gene). The HBoV sequences reported in this study showed a high

sequence similarity to already-published HBoV sequences pub-

lished by us [4] and others [10,31,41]; thus, only minimal

phylogenetic analysis was done to confirm the genetic relatedness

among these viruses (Fig. 1).

We used the same nested inverse PCR assays to detect the

HBoV-INT and HBoV-EPI forms (Fig. 2A). Non-manipulated

nucleic acids extracted from HBoV DNA positive biopsies were

used to detect the HBOV-EPI form. Inverse PCR assays of

digested and re-circularized nucleic acids were used to detect the

HBoV-INT form [37]. Although none of the 4 HBoV DNA-

positive samples contained the HBoV-INT form, one sample was

positive for the HBoV-EPI form (Fig. 2B). To confirm these

results, inverse PCR assays were repeated on the original DNA

sample, and the amplification product was sequenced multiple

times. The sequences at the ends of the amplification product

showed 100% nucleotide identity to the termini of linear HBoV3

and HBoV1 genomes available in Genbank (Fig. 2C). Sequencing

and alignment of the inverse PCR product confirmed the

amplification of the junction region sequence located between

the 59 and 39 termini (head-to-tail orientation) and the presence of

the HBoV3-EPI form in human tissue (Fig. 2C).

Genomic characterization of HBoV3 episome
Because we detected the HBoV-EPI form in only 1 sample, we re-

extended and re-sequenced the complete HBoV3-E1 genome using

the inverse PCR fragment as a starting point for genomic analysis.

Every base of the complete HBoV3-E1 genome was sequenced at

least 3 times (Genbank accession no. JN086998). The PCR product

chromatograms were consistent with infection by a single HBoV

lineage. However, mixed HBoV infection cannot be ruled out as

population sequencing only allows detection of a minority of

variants comprising .10% of the total sequences.

The complete HBoV3-E1 circular genome contains 5319 nt and

codes for 3 large ORFs flanked by a 513 nucleotide long NCR

representing both termini (Fig. 2A and 3). ORF1 encodes

nonstructural (NS) protein; ORF2 encodes overlapping VP1/VP2

capsid proteins; and ORF3 encodes NP1 [4]. Helicase and ATPase,

conserved motifs associated with rolling circle replication, are

present within ORF1. Unlike animal bocaviruses, the HBoV3-E1

NS gene also exhibited conserved RNA splicing signals essential to

generate shorter and longer NS protein in all HBoV species [1]. To

confirm the recombinant origin of HBoV3-E1, we performed a

sliding window analysis of sequence homology between the coding

region of HBoV3-E1 and members of the other 3 HBoV species.

We found that whereas the HBoV3-E1 NS1 and NP1 genes were

more closely related to HBoV1 than to HBoV2 and HBoV4, the

HBoV3-E1 VP genes were more similar to the HBoV2 and HBoV4

VP1/VP2 gene (data not shown) [4,9,10].

As the HBoV3-E1 genome is covalently linked (head-to-tail) and

the complete ITR sequences of linear HBoV genomes are not

known, we were not able to definitively locate the start or end of

the genome (Fig. 3). However, sequence alignment of the complete

HBoV-E1 NCR with HBoV linear genomic termini unmasked

over 50 previously unsequenced nt in the HBoV termini (Fig. 2C)

Figure 2. Schematic representation of the HBoV3 episome, results of inverse PCR and sequence alignment of HBoV genomic
termini. (A) Describes the genomic organization of the HBoV3 episome and location/orientation of PCR primers used for screening samples and
inverse PCR. (B) Shows results of inverse PCR assay for three samples (B-1 to B-3) that were positive for HBoV3 screening PCR with molecular weight
(MW) marker and negative (Neg) reagent PCR control. (C) Shows alignment of previously known genomic termini of HBoV3 and HBoV1 linear
genomes with the non-coding region of HBoV3 episome. Unique sequence identified in this study is shown as connecting the 39 and 59 termini
(nucleotide with no background and ‘‘-’’ represent sequence that remained elusive in previous studies).
doi:10.1371/journal.pone.0021362.g002

Genome of Human Bocavirus Episome
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that is predicted to encode a small 49 aa long protein with very weak

domain homology to bacteriophage head-to-tail connecting protein

[42]. This family of proteins is found in bacteria and viruses. The

head-to-tail connector, a dodecamer of gp10, is embedded within a

unique five-fold vertex of the head. The connector serves as the site

of assembly of the transient DNA packaging motor that translocates

the dsDNA genome to a precursor head shell, or prohead [42].

Additional studies in other HBoV species will be necessary to test

the role of this novel protein.

Sequence and structure of HBoV3-E1 termini
Confidence in the predicted secondary structure of DNA or

RNA requires comparative modeling of multiple, diverse yet

significantly related sequences [43]. As such sequences are

unavailable for comparison in HBoV species, we relied on

experimentally-confirmed MVC ITR structures [44]. The sec-

ondary structure of the 513 nt long HBoV3-E1 NCR sequence

between the VP termination and the NS initiation codon

contained 3 distinct DNA structures, namely, a hairpin-1,

hairpin-2 and a 59 cluster. Although the MVC and HBoV termini

showed no sequence similarity, they shared 3 structurally similar

regions in the NCR (Fig. 3). We were unable to locate the terminal

nt of the HBoV3-E1 genome. The alignment generated with

sequences reported for linear genomes suggests that the terminal

bases may be within the hairpin-2 region (Fig. 3). We observed

that the hairpin-1 region located in the HBoV3-E1 39 (RHS)

terminus showed remarkable structural similarity to rabbit ear-like

structures formed by the termini of several parvoviruses [44]. To

confirm the presence of the DNA stem loop, we used the 39

terminal partial ITR sequence available for all HBoV species for

folding and comparative analysis (Fig. 4). Remarkably, despite

their sequence diversity, the sequences of all 3 HBoV species

folded into almost identical secondary structures. Moreover,

HBoV species 1 and 2 are highly genetically diverse and show

,80% protein identity, and even lower nt identity, in their protein

coding regions (NS, NP and VP gene) [4,11]. Comparative

sequence analysis of the complete 513 nt long HBoV3-E1 NCR

showed high sequence identity (.90%) with the partial terminal

sequences available for HBoV1, HBoV2 and HBoV3, but not with

either of the complete terminal sequences of animal bocaviruses

(MVC and BPV). The conserved role of ITR structures in

replication of HBoV may require maintenance of a high degree of

Figure 3. Secondary structure prediction and sequences for the non-coding terminal region of HBoV3-E1 (top) and MVC (bottom).
The 3 major bocavirus genes are shown in shaded boxes as NS, NP and VP. The NS gene protein initiation codon and VP genes stop codon are
underlined. The 2 stable and long palindromic sequences are shown as hairpin 1 and 2. Cluster of DNA stems and loops immediately upstream of the
N-terminus of the NS gene are shown as 59 terminal structures. Based on the Genbank data, the start and end of the HBoV and MVC linear genomes
are shown with arrows.
doi:10.1371/journal.pone.0021362.g003
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sequence identity among these genetically diverse viruses.

Sequence alignment also confirmed that HBoV termini are non-

identical and form imperfect palindromes, characteristics that are

more similar to parvoviruses than to animal bocaviruses [12].

Discussion

GBoV1 is genetically most related to HBoV1 and was first

identified in feces of captive animals living in isolation for several

years [1]. Later, GBoV1 was also found in fecal samples of wild

primates from Cameroon, confirming GBoV1 as an authentic

non-human primate bocavirus [1,29]. These findings inspired us

to explore the nature of primate bocavirus infections. Because

longitudinal fecal samples from these animals were not available

for study, we used human intestinal biopsy samples to characterize

the different genomic forms of HBoV.

Our results show that, like adeno-associated viruses [45], HBoV

can become persistently established in host cells by forming the

extra-chromosomal closed circular (episomal) form. However,

unlike AAV, we did not find evidence of HBoV DNA integration

into the host genome. The approach we used to determine HBoV

integration into human genome is more sensitive than other

Figure 4. Secondary structure prediction of the sequences immediately downstream of the structural gene of different HBoV
species (upper-HBoV1, middle-HBoV2 and lower-HBoV3-E1). The stems and arms are numbered for comparison, and the termination codon
of the VP gene is marked by a solid line. The rabbit-ear structure (structure 3 and 4) present in all 3 HBoV species is comparable to similar conserved
structures of left-hand side termini reported for animal bocaviruses (MVC and BPV) [44].
doi:10.1371/journal.pone.0021362.g004
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adapter ligation-based approaches [35,46], as the primers during 2

rounds of PCR selectively amplify only circular DNA containing

viral termini. Previously, we used a similar approach to

successfully characterize an endogenous rat parvovirus that exists

as a single viral copy per cellular genome [37]. However, we

cannot rule out the possibility that HBoV integrates in a rare

minority of infected cells. Moreover, because we tested only a few

human intestinal tissue samples, a larger sample set should be

studied to confirm or refute the existence of the HBoV host

chromosome integrated form.

Despite the discovery of different HBoV species, the genomic

sequences of their termini remain elusive, limiting the development

of a successful cell culture replication system. The information

yielded by sequencing the HBoV terminal region and character-

izing the HBoV3 episome will be helpful in studying its replication

and pathogenesis. The closed circular form of HBoV may be rapidly

and clonally amplified using highly efficient strand displacement

DNA polymerases to generate large quantities of infective episomes

[47]. Unfortunately we didn’t have sufficient sample or DNA left to

perform these experiments. During replication, most parvoviruses

generate replicative intermediates that contain multiple, covalently-

linked linear genomes. Notably, these concatamers show head-to-

head or tail-to-tail (adjoining of same termini) linear genomic

orientations. We sequenced the inverse PCR product multiple times

and repeated the assay to confirm the identification of the head-to-

tail circularized HBoV genome.

Genomic characterization of HBoV3-E1 resulted in identifica-

tion of more than 50 previously unsequenced nt in primate

bocaviruses [8,9,11,40]. However, it is possible that the linear form

of the HBoV genome contains more sequences that maintain

terminal stability during replication, that are otherwise not

important during replication of a circular template. The AAV

episomal junction region lacks some sequences present in linear

viral genomes [35]. During the review of our manuscript, a new

study [48] reported identification of head-to-tail oriented circular

DNA form for another HBoV species (HBoV1) during its infection

in cell culture and clinical samples further confirming the existence

of HBoV episome in infected cells.

Parvoviruses are ubiquitous and are proposed to contribute to a

broad spectrum of diseases in animals, including enteritis, panleuko-

penia, hepatitis, erythrocyte aplasia, immune complex-mediated

vasculitis and cerebellar ataxia [3,12]. Most studies done to determine

the association of HBoV with disease have shown that a high

percentage of samples from healthy subjects are also positive for

HBoV DNA. However, these studies typically report presence or

absence rather than quantitative data. Given our evidence that HBoV

sequences may persist, future work of HBoV epidemiology should

place more emphasis on the quantity, rather than mere presence, of

viral genome. Moreover, previous reports of high prevalence of HBoV

in association with infection with other viruses (mixed infections) may

reflect reactivation of latent bocavirus episomes.

Although we could not determine what population or

percentage of intestinal cells was infected with HBoV in our

samples, our results show that, during natural HBoV infection,

some linear viral genomes can circularize and exist as extra-

chromosomal episomes. Our observation that HBoV genome exist

as head-to-tail monomer in infected tissue either reflects the likely

evolution of alternative replication mechanism in primate

bocaviruses or a mechanism of viral persistence in their host.

We also report the complete HBoV episomal genome and the

secondary structures of its termini. This novel sequence informa-

tion will increase our understanding of how these recently

discovered parvoviruses replicate and cause infection.
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