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Since the onset of land application of poultry litter, transportation of microorganisms,
antibiotics, and disinfectants to new locations has occurred. While some studies provide
evidence that antimicrobial resistance (AMR), an evolutionary phenomenon, could be
influenced by animal production systems, other research suggests AMR originates in the
environment from non-anthropogenic sources. In addition, AMR impacts the effective
prevention and treatment of poultry illnesses and is increasingly a threat to global public
health. Therefore, there is a need to understand the dissemination of AMR genes to the
environment, particularly those directly relevant to animal health using the One Health
Approach. This review focuses on the potential movement of resistance genes to the
soil via land application of poultry litter. Additionally, we highlight impacts of AMR on
microbial ecology and explore hypotheses explaining gene movement pathways from
U.S. broiler operations to the environment. Current approaches for decreasing antibiotic
use in U.S. poultry operations are also described in this review.

Keywords: antibiotic resistant gene determinant, soil microbiome, broiler systems, One Health Approach,
environmental dissemination

INTRODUCTION

Antibiotic Use and History in U.S. Broiler Operations
Antimicrobial compounds and antibiotics in U.S. broiler (meat chicken) operations have widely
been used to treat and prevent bacterial, protozoal, and fungal pathogens that sicken or kill birds,
as well as promote growth (Chapman and Johnson, 2002; McEwen and Fedorka-Cray, 2002;
Sneeringer et al., 2015). Considering, disease in broiler flocks can account for 20% loss of the

Abbreviations: AMR, antimicrobial resistant; ARG, antibiotic resistant gene; ARGD, antibiotic resistant gene determinant;
FDA, Food and Drug Administration; NARMS, National Antimicrobial Resistance Monitoring Systems; WHO, World Health
Organization.
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gross value of production (Food and Agriculture Organization
of the United Nations [FAO], 2013) antibiotics are important
tools in poultry production. Continuous improvement in disease
management and the establishment of government regulations
has lead to staggering increases in poultry production efficiency
[e.g., in 1965, 112 rearing days would produce a 1.13 kg chicken
with a 4.7 feed conversion ratio (weight/feed intake); whereas
current rearing periods are 42 days for a 2.7 kg chicken with a
feed conversion ratio of 1.8] (National Chicken Council, 2015).
Concurrent with production efficiency increases is consumption,
as the average American now consumes 41 kg of broiler meat per
year (National Chicken Council, 2018).

The first use of antibiotic drugs in poultry can be traced
back to 1946 (Moore et al., 1946) and first resistance was
reported in food animals by Starr and Reynolds (1951), with
concerns about the development of resistance dating back to 1969
(Dibner and Richards, 2005). After the first cases of antibiotic
resistant bacterial diseases in humans, recommendations were
made for banning the use of antibiotics as growth promoters
if drugs are also prescribed for use in human medicine (e.g.,
penicillins, tetracyclines, and sulfonamides; Swann et al., 1969).
In a survey from 1995 to 2000, there was a substantial decline
in the use of antibiotics in U.S. broiler operations (Food and
Drug Administration [FDA], 2014). In another report released
in 2011, it was estimated that 20–52% of broiler operations used
antibiotics for production purposes not related to disease control.
This report also found a long-term decline in antibiotic use in
broiler production (Sneeringer et al., 2015). More recently, based
on a report of antimicrobials sold or distributed for use in food-
producing animals from the U.S. Food and Drug Administration
(FDA), approximately 3,345,022 kg of antimicrobials were sold
and used in the U.S. poultry industry in 2016; with 1,265,420 kg
being “medically important” in human medical therapy (Food
and Drug Administration [FDA], 2017). Among the most
significant action that the FDA Center for Veterinary Medicine
has taken, is to transition medically important antimicrobials
that are used in the feed or drinking water of food-producing
animals to veterinary oversight, and to eliminate the use of
these products in animals for production purposes, such as for
growth promotion (Guidance for Industry #213; Food and Drug
Administration [FDA], 2013).

According to the World Health Organization (WHO),
antimicrobial resistance (AMR) is defined by “an increase
in the minimum inhibitory concentration of a compound
for a previously sensitive strain” (World Health Organization
[WHO], 2013). There are four general mechanisms that
cause antibiotic resistance: target alteration, drug inactivation,
decreased permeability, and increased efflux (Munita and
Arias, 2016). It is still uncertain if resistance genes are a
result of adaptation through chromosomal mutation (or gene
shuffling), or through horizontal gene transfer (or the movement
of genetic materials between different organisms), instead
of vertical transmission of DNA from parent to offspring
(Nesme and Simonet, 2015).

While specific links between antibiotic-use in animal
agriculture and human health have been debated
(Vaughn and Copeland, 2004), one contributing factor cited

for the decline in antibiotic use is consumer demand for
“antibiotic-free” chicken products. There is growing interest
in sustainable food production and research is currently being
conducted to identify antibiotic alternatives that could support
healthy growth and provide defense against pathogenic microbes
(Sneeringer et al., 2015; Gadde et al., 2017). Therefore, the broiler
industry is now a new leader in management systems that seeks
to eliminate the use of antibiotics for the entire broiler lifecycle.
A comprehensive review of currently available compounds, their
mechanism of action and advantage and disadvantages in applied
broiler production is available from Gadde et al. (2017). A brief
list of sample types, susceptibility to antibiotics, and mechanism
of resistant can be found in Table 1.

Finally, the U.S. is the world’s largest poultry producer with
over 9 billion broilers produced annually, with roughly 45% of
broilers being produced in 4 mid-south states (Arkansas, North
Carolina, Georgia, and Alabama). Poultry litter is a combination
of bedding material, poultry excreta, spilled feed and feathers and
is produced in significant quantities. By some estimates, nearly 13
million Mg (14 million tons) of broiler litter is produced on U.S.
poultry farms annually (Moore et al., 1995; Gollehon et al., 2001).
Consequently, large volumes of manure are produced in areas
of concentrated poultry production, which serve as a valuable
source of nutrients, but are also as possible sources of AMR
bacterial populations in the environment (Thanner et al., 2016).
Approximately 30–80% of the veterinary antibiotics administered
to animals are excreted in manure and urine (Sarmah et al.,
2006). Therefore, poultry litter-amended soil may serve as a non-
point source for antibiotics that enter surface and ground waters
via runoff and leaching. The goal of this review is to provide
an update on the development and fate of antibiotic resistance
genes (ARG) and bacteria in U.S. broiler poultry operations, and
explore hypotheses explaining gene movement pathways to the
environment. In the next section, resistance transmission and
factors contributing to its development in poultry operations will
be discussed as it relates to the soil microbiome.

Reservoirs and Transmission of AMR Bacteria and
Genes From Farm-to-Field
Soils are an immense reservoir of microbiological diversity,
considering a gram of soil may contain 106–109 bacterial
cells of 103–106 different bacterial species (Girvan et al.,
2003; Torsvik, 2011). Therefore, it is no surprise that the
majority of antimicrobial compounds used in animal healthcare
were originally isolated from the soil; namely bioactive
compounds synthesized by bacteria (e.g., Streptomyces spp.)
or fungi (Waksman and Woodruff, 1942). Consequently, the
complex ecology of AMR can only be properly assessed by
taking environmental reservoirs into account (Figure 1). In
contrast to the strict clinical definition of resistance, which
characterizes resistance phenotypes in isolated bacterial
strains, the environmental resistome includes all ARG in
the environmental, including ARG precursor genes and
cryptic resistance genes (Nesme and Simonet, 2015). Recent
research has identified ARG in diverse environmental samples
ranging from pristine environments to agricultural soils
(Demanèche et al., 2008; Allen et al., 2009; Cook et al., 2014).
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TABLE 1 | Sample sources, susceptibility to antibiotics, and mechanisms of potential AMR gene transfer to the environment.

Sample sources Susceptibility to antibiotics Mechanisms of AMR gene transfer References

Poultry fecal waste The study indicated that poultry samples showed a high
prevalence of CTX-M cluster 9 and blaTEM.

Horizontal transfer of ARGs by
Bacteriophages

Colomer-Lluch et al.,
2011

Composted poultry
manure

Poultry manure applications increased AMR genes in the
rhizosphere, root endophyte, and phyllosphere, suggesting
poultry manure may have an impact on lettuce resistomes.

No mechanism reported. Zhang et al., 2019

Poultry litter 50% of these isolates were susceptible to ampicillin, 57%
to erythromycin, 25% to tetracycline, 4% to
chloramphenicol, 40% to kanamycin, 75% to streptomycin,
54% to tobramycin, and 4% to rifampicin.

Transformation and conjugation was
reported as a mechanism for horizontal
gene transfer between bacteria in
poultry litter.

Sridevi Dhanarani et al.,
2009

Poultry litter and
soil

Out of the 13 antibiotics tested for E. coli, high (>70%) and
similar (in the range of 10–15%) resistance against 7
antibiotics was observed in samples from both litter and
agricultural soils where poultry litter applied.

No mechanism reported. Bhushan et al., 2017

Poultry litter The 86% of litter isolates (163 isolates in total) were
resistant to more than one antibiotic.

No mechanism reported. Furtula et al., 2013

FIGURE 1 | Potential AMR transmission route from broiler chicken antibiotic
induction – to flock – to either poultry litter or meat products and to the
soil-water environment. Solid lines suggest direct transmission, while dotted
lines indicate indirect or possible transmission route.

For these reasons, soil is a predominant reservoir for ARG
determinants (ARGD, or determinants of resistance; Van
Goethem et al., 2018). For example, AMR genes have been
recovered from 30,000 years old permafrost samples, which
suggests AMR is an ancient phenomenon, existing before
antibiotic usages (D’Costa et al., 2011). Laboratory work also
demonstrates that antibiotic resistant strains are very stable

even in the absence of antibiotic selection pressure (Gibreel
et al., 2005). Consequently, AMR development by pathogenic
bacteria and/or commensal (or “friendly”) bacteria is a complex
interaction and an evolutionary phenomenon.

Current research has focused on tracking the direction of
gene transfer from environment to poultry and has important
implications for future antibiotic resistance management and
microbial ecology (Cook et al., 2014; Nesme and Simonet,
2015). Three research studies indicate it is probable that
lateral resistance gene transfer is the primary pathway of gene
acquisition from different environments, including that from
soils to pathogenic bacteria genomes (Allen et al., 2009; Forsberg
et al., 2012; Nesme et al., 2014). For example, Forsberg et al.
(2012) evaluated resistant bacteria via functional metagenomic
methods and determined that substantial amounts of resistance
genes are shared between the soil and the gut microbiome and
can transfer resistance to a previously susceptible Escherichia
coli host. A shared resistome was also observed (Allen et al.,
2009; Nesme et al., 2014) with metagenomics sequencing. These
studies continue to emphasize the importance of environmental
reservoirs of AMR in the emergence of novel clinical resistance
(Nesme and Simonet, 2015).

While some research has not distinguished the direction
of transfer (either through gene acquisition or through
modulation), studies have shown that commensal (non-
pathogenic) and pathogenic microorganisms share resistance
genes with soil communities. Specifically, contact of
antimicrobial compounds may stimulate bacterial stress
response, which can result in increased mutation rates in
co-dispersed bacteria, with co-selection amplifying this effect;
thus allowing clustering of ARG (Yong-Guan et al., 2017). For
example, DNA element class 1 integrons, which are assemblies
of gene cassettes that allow bacteria to adapt and evolve through
the expression of new genes, can capture and integrate foreign
genes from the environment. This has played an important
role in spreading antibiotic resistance from non-pathogenic
bacteria to pathogenic bacteria in the environment (Yong-Guan
et al., 2017). Next generation sequencing now indicates that a
derivative of class 1 integrons can be found in every gram of feces
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and agricultural animals, with up to 1023 copies being released
into the environment every day (Gillings, 2017). This is one
example of the abundance and distribution of resistant genes,
although more research is needed to identify anthropogenic
AMR genes in the environment relative to baseline levels
(Durso et al., 2016).

The pathogenic bacteria pathway from the animal through
the environment is complicated and more longitudinal studies
are needed to follow AMR genes through agricultural systems
(Yang et al., 2019). These complex transmission routes of
AMR bacteria and genes within animals and the environment
make it difficult to identify the AMR reservoir and which
reservoir poses an animal health. The current approach
for assessing the reservoir of AMR bacteria and genes is
to identify the indicator bacteria and analyze the level of
AMR gene in farm animals (Thanner et al., 2016). With
this research, descriptive metadata are needed that describes
specific environments, which may reflect survivability and gene
transfer. For example, the Terra Genome project includes soil
information needed to evaluate terrestrial DNA which includes:
(1) site description, (2) sampling description, (3) climate, (4)
soil classification, and (5) soil analysis (Cole et al., 2010).
These metadata should be important for pathogen viability,
easy and inexpensive to obtain, and collected by established
and standard methods. These metadata may provide a better
understanding and potential mitigation strategies to minimize
AMR dissemination.

Sources of AMR Genes in the
Environment
The role of the environment as a transmission route for bacterial
pathogens has long been recognized, often associated with
fecal contamination of water or organic fertilizer applications
(Bengtsson-Palme et al., 2018). Depending on antibiotic
properties, significant (e.g., up to 90%) amounts of veterinary
antibiotics pass un-degraded through the animal gut to manure
(Sarmah et al., 2006; Berendsen et al., 2015). Bacterial pathogens
can be introduced to a flock via many routes, including feed,
water, air, insects and other pests (Trampel et al., 2014; Mouttotou
et al., 2017). Once introduced into a flock, pathogenic bacteria
are excreted in the manure, and can survive in the litter (Chen
and Jiang, 2014). Therefore, antibiotics, resistance genes, and
microorganisms can be transferred from manure to soil (Cook
et al., 2014; He et al., 2014). Following land application of poultry
litter, antibiotics migrate from soil through runoff, leaching, and
particle adsorbed runoff (Kay et al., 2004; Leal et al., 2013; Sun
et al., 2013), potentially ending up in soil, surface water, and
groundwater (He et al., 2014; Figure 1). Measuring antibiotics in
a complex matrix, such as soil, is subject to technical limitations,
and studies measuring veterinary pharmaceuticals in soil and
water are reviewed elsewhere (Thiele-Bruhn, 2003; Dinh et al.,
2011; Aga et al., 2016).

Several research efforts have been conducted for testing
sources of AMR pathogenic bacteria and the transmission route
from the chicken flock, to processing, and the larger environment
(Berndtson et al., 1996; Berrang et al., 2001; Posch et al., 2006;

Cook et al., 2014). Numerous routes have been suggested for the
introduction of AMR pathogens into the chicken flock, such as
horizontal gene transfer from an environmental source to the
chicken flock (Krauland et al., 2009), or vertical transmission
from breeder to progeny chicks (Pearson et al., 1996). Feed and
water can also serve as potential reservoirs and transmit AMR
pathogens from the environment to the chicken flock (Byrd et al.,
1998; Perez-Boto et al., 2010). Although it is thought that cross-
contamination of meat products can occur during the slaughter
process (Berndtson et al., 1996; Berrang et al., 2001), there is
limited information related to the transmission route from one
part of contaminated meat to the whole retail product.

Mechanisms of AMR Gene Transfer
Even though it has been suggested that there is a relationship
between antibiotic usage in agricultural animals and AMR
emergence, it does not mean that the usage of antibiotics
is the only explanation for AMR prevalence. For example,
AMR genes are carried by mobile genetic elements and can
be transferred among distantly related bacteria from different
phyla (Musovic et al., 2006). Plasmids and transposons can
serve as the vehicle in horizontal gene transfer. Transposons,
coding for antibiotic resistance, are able to cut AMR genes
from one bacterial chromosome or a plasmid, and subsequently
insert AMR genes into another chromosome or plasmid in other
bacteria by the process of conjugation. Through this process,
multiple AMR genes can be transferred among different bacteria;
thus resulting in multi-drug resistance. Without antibiotic
exposure, AMR genes may be able to persist long-term, such as
VanA glycopeptide-resistant Enterococci (Johnsen et al., 2002).
For example, van-resistant Enterococci can reportedly be stable
after 1,000 generations in serial transfer broth cultures and
gnotobiotic mice without antibiotic selection. The administration
of antibiotics to farm animals, as a stressor to select AMR genes,
is only one explanation and AMR can be driven by acquisition
of mobile genes that existed in bacteria and evolved over time in
the environment.

Poultry Manure as a Reservoir for
Resistant Genes
Approximately 6.9 kg per 1000 kg live weight per day is
produced for a typical broiler operation, or 0.6–1.8 Mg per
1,000 broilers per flock (dry weight basis; American Society of
Agricultural and Biological Engineers [ASABE] (2005); Moore,
2011), and there is concern that its land application may transport
AMR microorganisms and genes to the environment, along
with excreted drug residues from birds given antimicrobials,
and residual disinfectants used in cleaning. For these reasons,
AMR bacteria may be able to spread to the environment by
application of litter to soils, which could possibly contribute
to an increased frequency of horizontal gene transfer in the
soil environment. Land application of poultry litter may also
increase the diversity and dissemination of novel gene fragments
among soil bacterial populations (Heuer et al., 2009). Research
from Binh et al. (2009) indicated that the clinically relevant
AMR gene, aadA (encoding resistance to streptomycin and
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spectinomycin), was introduced via poultry manure into soil.
Cook et al. (2014) also evaluated AMR genes in land applied
poultry litter and found that litter-borne AMR bacteria flourish
following applications.

Typical antibiotic concentrations in manure range from 1
to 10 mg kg−1 (Kumar et al., 2005; Dolliver et al., 2007;
Heuer et al., 2011), whereas soil and water concentrations range
from trace to µg kg−1 or µg L−1, respectively (Thiele-Bruhn,
2003). In a comparison of indoor and free-range production
systems, He et al. (2014) found that ARG in soil were positively
correlated with antibiotic, metal, and nutrient concentrations.
These data also suggest that both direct selection and co-
selection mechanisms contribute to the suite of AMR genes
detected. In the following section, authors discuss current
approaches for decreasing the likelihood of AMR genes in U.S.
broiler operations, as well as mitigation strategies for reducing
AMR development.

Current Approaches for Decreasing AMR in Poultry
Operations in the U.S.
The development and transmission of AMR determinants in
microbial communities in poultry gastrointestinal tracts or
on poultry products is a complex phenomenon fueled by a
plethora of biotic and abiotic factors. Current approaches for
decreasing AMR in poultry operations consist of coordinated
multidisciplinary strategies aimed at developing new drugs
and antibiotic alternatives and management approaches,
and reducing total antibiotic usage (Food and Drug
Administration [FDA], 2013). A brief description of each
approach is provided below.

Antibiotic Alternatives-Prebiotics,
Probiotics, and Antimicrobial
Compounds
Development of new antimicrobial drugs is a very labor intensive,
time consuming and costly pursuit. More than 20 classes of
antibiotics were identified from 1930 to 1962 (Coates et al.,
2002). Since then, however, only a few classes of antibiotics
have been approved (Butler and Buss, 2006). Other antimicrobial
compounds such as antimicrobial peptides, peptidomimetics
(Mojsoska and Jenssen, 2015), and virulence inhibitors (Mühlen
and Dersch, 2015; Muhs et al., 2017) are being investigated for
their efficacy against poultry pathogenic bacteria. Although found
to be effective, their application in the industry would require
significant industry-level testing and standardization.

Research is also currently being conducted to identify
potent antibiotic alternatives that could provide both growth
promotion for poultry and defense against microorganisms
(Ricke, 2015; Upadhyaya et al., 2015a,b; Ricke, 2018). Prebiotics,
probiotics, and antimicrobial compounds are the three major
groups that are added to poultry water to reduce pathogenic
bacteria colonization in the gut and subsequent contamination
of poultry products. The efficacy of antibiotic alternatives on
reducing Campylobacter colonization has been summarized
in this review (Table 2). Prebiotics are defined as substrates
that are selectively utilized by host microorganisms conferring

a health benefit (Gibson et al., 2017). These beneficial effects
could be through nutritional supplementation of beneficial
microorganisms and/or through imparting resistance to
pathogenic bacteria colonization. Fructans and galactans
are examples of popular prebiotics with several research
investigations highlighting their effect in enriching beneficial
gut bacteria such as Lactobacillus and/or Bifidobacterium spp.
(Bajury et al., 2017). With advances in microbiome research, our
understanding of gut microbiota composition and substances
that modify the microbiota has improved. This has expanded
the prebiotic concept to include new compounds such as
yeast-based products (Park et al., 2017) and dietary fibers
(Ricke, 2015, 2018).

Probiotics are live microorganisms, which when administered
at adequate dosages, confer a health benefit on the host
(World Health Organization [WHO], 2011). The major
mechanisms by which probiotics act include competitive
exclusion, improving barrier function, immunomodulation,
and metabolic effects such as quorum sensing mitigation and
virulence modulation in pathogenic bacteria (Oelschlaeger,
2010). In addition to their applications in human nutrition,
probiotics are increasingly being supplemented in poultry feed
for their health benefits. The commonly used genera include
Bifidobacterium, Bacillus, Lactobacillus, and Lactococcus. Several
probiotics have been reported to decrease the colonization
of Campylobacter in the gastrointestinal track of broilers
(Eeckhaut et al., 2016). This ability of probiotics to reduce
poultry associated foodborne pathogenic bacteria could be
due to their ability to promote beneficial gut bacteria that
may exclude pathogens. For example, probiotic strains of
human origin-Lactobacillus rhamnosus GG, Propionibacterium
freudenreichii spp. shermanii JS, and Lactococcus lactis spp.
lactis were found to attach to chicken intestinal mucus thereby
reducing the binding and colonization of Campylobacter (Ganan
et al., 2013). In addition to Campylobacter, several probiotic
candidates have shown efficacy in reducing colonization of
Salmonella spp. in vitro (Muyyarikkandy and Amalaradjou,
2017; Nair and Kollanoor Johny, 2017) and in poultry
(Higgins et al., 2008).

Another management practice that could reduce the
dissemination of AMR genes is the use of plant extracts. Plant-
derived compounds represent a relatively safe, effective, and
environmentally friendly source of antimicrobials. Plant extracts
have been used in many cultures as food preservatives and dietary
supplements for reducing spoilage and promoting growth. Due
to their low cost, non-toxic nature, and antimicrobial efficacy,
several phytochemicals are promoted as in-feed or in-water
(nanoemulsion forms) supplements for reducing poultry
pathogenic bacteria colonization. Extensive research in the
last 2 decades has identified a plethora of compounds with
antimicrobial efficacy (Gracia et al., 2016; Guyard-Nicodeme
et al., 2016). Compounds such as caprylic acid (obtained
from coconut oil), trans-cinnamaldehyde (from cinnamon
bark), carvacrol (from oregano oil), and eugenol (from clove
oil) have found to be effective in controlling Salmonella and
Campylobacter in poultry (Kollanoor Johny et al., 2010, 2012;
Arsi et al., 2014; Upadhyaya et al., 2015a,b). Medium chain fatty
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TABLE 2 | The efficacy of antibiotic alternatives (phyto chemicals, probiotics, and probiotics and prebiotics) on reducing Campylobacter colonization and counts
in broilers.

Phyto chemicals Solis de los Santos et al. (2008; 2009; 2010) demonstrated that in feed supplementation of Caprylic acid, a medium chain fatty acid
consistently reduced Campylobacter colonization in broiler chickens.

Kollanoor Johny et al. (2010) previously reported the in vitro ability of thymol and carvacrol to inhibit both Campylobacter jejuni and
Salmonella Enteritidis in chicken cecal contents.

Results from Kollanoor Johny et al. (2012) suggest that Transcinnamaldehyde and Eugenol supplemented through feed could reduce
Salmonella Enteritidis colonization in market-age chickens.

Upadhyaya et al. (2013) revealed that antimicrobial wash with Eugenol or carvacrol rapidly inactivated S. Enteritidis on eggs to below
detection limit at 32◦C.

Arsi et al. (2014) reported that in feed supplementation of plant extracts such as thymol or carvacrol reduced Campylobacter
colonization in broiler chickens.

Wagle et al. (2017a) demonstrated that supplementation of β-resorcylic acid in poultry feed for 14 days at 0.5 and 1% reduced
Campylobacter populations in cecal contents by ∼ 2.5 and 1.7 Log CFU/g, respectively.

Use of select doses of β-resorcylic acid showed significant reduction of C. jejuni on chicken skin and meat samples (Wagle et al.,
2017b).

Probiotics Aguiar et al. (2013) selected isolates for enhanced motility and the results from this study demonstrated that motility-enhanced isolates
are more efficacious than unenhanced isolates in reducing Campylobacter colonization in broiler chickens.

Arsi et al. (2015a) screened 116 isolates of probiotic strains and reported that six out of 116 strains reduced Campylobacter counts by
at least 1–2 log.in vivo.

Probiotics and prebiotics In a separate study, Arsi et al. (2015b) demonstrated that prebiotics did not consistently reduced Campylobacter. However, prebiotics
(MOS) did significantly decrease the Campylobacter load when used in combination with Probiotics spp. (Arsi et al., 2015b).

acids emulsion (caproic, caprylic, capric, and lauric acids) also
reduce Campylobacter survival in drinking water and feed (Solis
de los Santos et al., 2008, 2009; Solís de los Santos et al., 2010).
Similar anti-Campylobacter efficacy has been reported with the
addition of monocaprin emulsion (Thormar et al., 2006) thyme,
and pine oil (Ozogul et al., 2015) in poultry feed. Research is still
needed on how the use of these compounds may disrupt ARGD
moment and fate in the environment.

Management Approaches for Controlling
AMR Development
Identifying feasible management practices is one of the objectives
of the USDA Action Plan to control AMR development in animal
agriculture (United States Department of Agriculture [USDA],
2014). Establishing good farm practices, maintaining proper
hygiene, controlling vectors that transmit poultry pathogens,
reducing stress in poultry during housing and transport, and
identification of Critical Control Points during processing that
contribute to AMR development are some of the key areas that
hold promise and require detailed investigations. Scientifically,
validated studies are required to test the effect of aforementioned
factors on AMR development in poultry production and develop
appropriate recommendations for the industry.

There is some evidence to suggest organic practices may also
reduce the spread of AMR genes to the environment (Rothrock
et al., 2016). For example, when comparing the numbers of
infected hens from conventional and organic farms, hens from
organically grown farms were less infected by Campylobacter
than from conventional grown farms (Lestari et al., 2009;
Kassem et al., 2017). Campylobacter isolated from organically
grown hens exhibited significantly lower resistance to three
antibiotics: ciprofloxacin, erythromycin, and tylosin (Kassem
et al., 2017). However, the study from Noormohamed and Fakhr
indicated that multidrug resistance existed in both organic and

conventional farms (Noormohamed and Fakhr, 2014).Lestari
et al. (2009) also provided differences of AMR patterns between
conventional and organic chicken. Among 126 Salmonella
isolates from conventionally and organically raised chicken
carcasses obtained from retail stores in Louisiana, Salmonella
isolates from organic chicken samples were susceptible to 11
of the antimicrobials, while isolates from conventional chickens
were only susceptible to 4 antimicrobials (Lestari et al., 2009).
However, it is still too early to conclude that organic chickens are
less likely to harbor AMR than conventionally raised chickens.

CONCLUDING REMARKS

Antibiotic resistance is a common ecological feature in soil, as
is antibiotic production, therefore, AMR genes are ubiquitous
and represent a reservoir of transferable genetic material. In
addition, resistance is an advantageous trait for microorganisms
surviving stressful environmental conditions. Only since the
1970s has it been realized that soils receiving poultry litter
may be a major reservoir and transmission route for ARG.
Thanks to advances in molecular biology, bioinformatics, and
sequence data throughput, much more data are available on
resistance genes, as well as the complex matrix that is soil
and poultry litter. However, untangling the complexity of
microbial ecology and environmental factors (e.g., particle size,
pH, water availability, vegetation cover etc.) as it relates to
transfer (transformation, conjugation or transduction) of genetic
resistance is a multifaceted issue and widely considered a key
challenge facing agriculture.

A major challenge facing microbiologists is to track
dissemination of resistance genes in poultry production systems
and identify reservoirs of resistance genes. Understanding
factors that drive selection and dissemination of environmental
antibiotic resistance, as well as mitigation strategies that
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will reduce the environmental dissemination of ARG. Future
improvements in monitoring AMR movement in surface water
from land-applied poultry litter will be critical to prevent the
spread of resistance genes in the environment.

The pathogenic bacteria pathway from animals through
the environment is complicated and more research is needed
to follow AMR genes through these systems using the One
Health Approach. Finally, owing to consumer demand for
antibiotic-free meat products, much research has been done on
promising antibiotic replacements (e.g., prebiotics, probiotics,
and antimicrobial compounds). However, further research is
needed on their efficacy and influence on AMR gene movement
from farm-field.
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