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Charité University Medicine Berlin,
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It has been known for decades that suppression of spontaneous scalp electroencephalographic activity occurs during ischaemia.

Trend analysis for such suppression was found useful for intraoperative monitoring during carotid endarterectomy, or as a

screening tool to detect delayed cerebral ischaemia after aneurismal subarachnoid haemorrhage. Nevertheless, pathogenesis of

such suppression of activity has remained unclear. In five patients with aneurismal subarachnoid haemorrhage and four patients

with decompressive hemicraniectomy after malignant hemispheric stroke due to middle cerebral artery occlusion, we here

performed simultaneously full-band direct and alternating current electroencephalography at the scalp and direct and alternating

current electrocorticography at the cortical surface. After subarachnoid haemorrhage, 275 slow potential changes, identifying

spreading depolarizations, were recorded electrocorticographically over 694 h. Visual inspection of time-compressed scalp

electroencephalography identified 193 (70.2%) slow potential changes [amplitude: �272 (�174, �375) mV (median quartiles),

duration: 5.4 (4.0, 7.1) min, electrocorticography–electroencephalography delay: 1.8 (0.8, 3.5) min]. Intervals between succes-

sive spreading depolarizations were significantly shorter for depolarizations with electroencephalographically identified slow

potential change [33.0 (27.0, 76.5) versus 53.0 (28.0, 130.5) min, P = 0.009]. Electroencephalography was thus more likely to

display slow potential changes of clustered than isolated spreading depolarizations. In contrast to electrocorticography, no

spread of electroencephalographic slow potential changes was seen, presumably due to superposition of volume-conducted

electroencephalographic signals from widespread cortical generators. In two of five patients with subarachnoid haemorrhage,

serial magnetic resonance imaging revealed large delayed infarcts at the recording site, while electrocorticography showed

clusters of spreading depolarizations with persistent depression of spontaneous activity. Alternating current electroencephalo-

graphy similarly displayed persistent depression of spontaneous activity, and direct current electroencephalography slow po-

tential changes riding on a shallow negative ultraslow potential. Isolated spreading depolarizations with depression of both

spontaneous electrocorticographic and electroencephalographic activity displayed significantly longer intervals between succes-

sive spreading depolarizations than isolated depolarizations with only depression of electrocorticographic activity [44.0 (28.0,
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132.0) min, n = 96, versus 30.0 (26.5, 51.5) min, n = 109, P = 0.001]. This suggests fusion of electroencephalographic depres-

sion periods at high depolarization frequency. No propagation of electroencephalographic depression was seen between scalp

electrodes. Durations/magnitudes of isolated electroencephalographic and corresponding electrocorticographic depression per-

iods correlated significantly. Fewer spreading depolarizations were recorded in patients with malignant hemispheric stroke but

characteristics were similar to those after subarachnoid haemorrhage. In conclusion, spreading depolarizations and depressions

of spontaneous activity display correlates in time-compressed human scalp direct and alternating current electroencephalography

that may serve for their non-invasive detection.

Keywords: subarachnoid haemorrhage; spreading depression; delayed cerebral ischaemia; electroencephalography; ischaemic stroke

Abbreviations: AC = alternating current; COSBID = Co-Operative Studies on Brain Injury Depolarizations; DC = direct current;
MHS = malignant hemispheric stroke; SAH = subarachnoid haemorrhage

Introduction
In the last decades, hundreds of Phase II and III clinical trials on

presumed neuroprotective agents for stroke have failed (see

Washington University Internet Stroke Centre, www.strokecenter

.org). Therefore, a new road map for neuroprotection has been

proposed including better proof of efficacy of neuroprotectants in

animal models and efficacy in novel clinical proof of concept stu-

dies (Donnan, 2008). In animal experiments, neuroprotectants

have been found to be most effective either when given within

minutes after the onset of acute neuronal injury or when they

have been pre-administered. Moreover, recent experimental evi-

dence suggests that phases of acute injury and repair may require

opposing neuroprotective strategies (Lo, 2008). It would thus be

promising to develop clinical proof of concept studies where a

biomarker can distinguish between phases of acute injury and

repair to guide phase-specific treatment allocation of neuroprotec-

tants. Moreover, the biomarker ought to allow a read-out of the

neuroprotectant’s effect on the parenchyma. Ideally, such a bio-

marker should reflect neuronal injury in real-time and should be

measurable non-invasively.

Spreading depolarization is the mechanism of the abruptly de-

veloping cytotoxic oedema in cerebral grey matter (Klatzo, 1987;

Dreier, 2011). Spreading depolarization occurs when neuronal

cation efflux by the ATP-dependent sodium pumps locally fails

to compensate for cation influx of sodium and calcium (Somjen,

2001). The ion fluxes result in a net gain of solutes by the neurons

accompanied by water influx. Specifically, spreading depolarization

is characterized as a wave of massive ion translocation between

intra- and extracellular space, near-complete sustained neuronal

depolarization, glial depolarization and neuron swelling.

Spreading depolarization is observed as an abrupt, large, negative

slow potential change as measured in the low-frequency or direct

current (DC) range of the electrocorticogram (Canals et al., 2005;

Oliveira-Ferreira et al., 2010; Hartings et al., 2011b). In the

high-frequency or alternating current (AC) range of the electro-

corticography, spreading depolarization causes silencing of spon-

taneous activity (spreading depression).

Spreading depolarization is induced by energy depletion as well

as other stimuli such as chemicals, neurotransmitters and mechan-

ical damage. Spreading depolarization may be followed by either

recovery, dependent on sufficient recruitment of sodium pump

activity (LaManna and Rosenthal, 1975), or neuronal death

(Takano et al., 2007; Risher et al., 2010; Dreier, 2011).

Progressive injury and cell death are manifested in a negative

ultraslow DC potential, which is possibly of glial and neuronal

origin (Herreras and Somjen, 1993; Somjen, 2001;

Oliveira-Ferreira et al., 2010). Hence, real-time detection of infarc-

tion can be achieved using electrodes on the brain surface over

the newly developing infarct through measurement of the large

negative ultraslow DC potential on which one or more slow po-

tential changes/spreading depolarizations are riding (Oliveira-

Ferreira et al., 2010). However, spreading depolarizations typically

propagate away from or circle around the infarcted tissue at a

speed of �3 mm/min (Nakamura et al., 2010). Even remote

from the actual infarct, recording electrodes may therefore identify

occurrence of a new infarct when a cluster of recurrent,

short-lasting spreading depolarizations is recorded (Dreier et al.,

2006; Dohmen et al., 2008). Spreading depolarizations of such a

cluster ride on a shallow negative ultraslow potential in the ischae-

mic penumbra (current sink), whereas they ride on a shallow posi-

tive potential in the normally perfused surrounding tissue (current

source) (Oliveira-Ferreira et al., 2010). Between recurrent spread-

ing depolarizations, normally perfused tissue immediately around

the penumbra shows persistent depression of spontaneous activity

in similar fashion to the penumbra, whereas repeated cycles of

spreading depression of spontaneous activity followed by recovery

are observed further away (Oliveira-Ferreira et al., 2010; Hartings

et al., 2011b). Whether and how zonal gradients of the slow

potentials along laminar profiles across the cortex reflect such

interregional electrophysiological differences in and around

ischaemic zones has not been studied sufficiently while current

sources and sinks are well established for epileptic seizure activity

and spreading depolarization in otherwise healthy tissue (Wadman

et al., 1992).

Currently, clinical monitoring of spreading depolarizations is lim-

ited to patients who require neurosurgical interventions that allow

for placement of a subdural electrode strip such as surgical aneur-

ysm ligation after subarachnoid haemorrhage (SAH), placement

of extraventricular drainage, decompressive hemicraniectomy or

evacuation of a haematoma (Strong et al., 2002; Dreier et al.,

2006; Dohmen et al., 2008). Thus, spreading depolarizations

have been recorded in abundance in individuals with aneurismal

SAH, delayed ischaemic stroke after aneurismal SAH, malignant
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hemispheric stroke (MHS), spontaneous intracerebral haemorrhage

or traumatic brain injury (Strong et al., 2002; Dreier et al., 2006,

2009; Fabricius et al., 2006; Dohmen et al., 2008; Hartings et al.,

2011b). Nevertheless, the monitoring of spreading depolarizations

could be extended to other patient populations if non-invasive

technology allowed their reliable detection. Here, we investigated

whether ultraslow DC potential, slow potential change and/or de-

pression of spontaneous activity can be recorded using scalp DC/

AC-EEG while occurrence of those signals was validated at the

brain surface using invasive near-DC/AC-electrocorticography or

DC/AC-electrocorticography.

Patients and methods

Patient recruitment
Five patients with aneurismal SAH and four patients with MHS were re-

cruited at two centres of the Charité University Medicine Berlin parti-

cipating in the Co-Operative Studies on Brain Injury Depolarizations

(COSBID) [Campus Virchow Klinikum (n = 5) and Campus Benjamin

Franklin (n = 4)]. Inclusion criteria were age 518 years and the clinical

decision for either craniotomy to perform surgical ligation of an an-

eurysm, evacuation of a haematoma and/or decompression, or for an

extended burr hole to place a ventricular drain or oxygen sensor.

Patients with fixed, dilated pupils were excluded. Research protocols

were approved by the institutional review board and surrogate in-

formed consent was obtained for all patients. All research was con-

ducted in accordance with the Declaration of Helsinki. Aneurismal SAH

and MHS were diagnosed by the assessment of CT and CT angiog-

raphy scans. In three patients with aneurismal SAH, additional digital

subtraction angiography was performed initially.

At the conclusion of surgery, a single, linear, six-contact (platinum)

recording strip (Wyler, 5 mm diameter; Ad-Tech Medical) was placed

on the surface of the cortex for subsequent electrocorticography

recordings (Strong et al., 2002; Dreier et al., 2006; Dohmen et al.,

2008). After surgery, patients were transferred to the intensive care

unit where continuous electrocorticography and EEG recordings were

acquired for up to 15 days after aneurismal SAH and up to 8 days

after MHS. Thereafter, electrode strips were removed at the bedside

by gentle traction. No haemorrhagic or infectious complications of the

electrode strip were encountered. Clinical outcome was assessed using

the modified Rankin Scale on Day 15 after aneurismal SAH and on

Day 8 after MHS.

Throughout recordings, patients were ventilated and pharmacologic-

ally immobilized as required. Sedation was mostly maintained with

propofol or midazolam, and analgesia was provided with fentanyl.

Intracranial pressure was monitored, if clinically indicated, by a ven-

tricular drainage catheter or an intraparenchymal intracranial pressure

transducer (Codman). Glasgow Coma Score, blood gases, glucose and

electrolytes were documented at least every 6 h. A thorough neuro-

logical examination was performed at least daily.

Patients with aneurismal subarachnoid
haemorrhage
Clinical presentation of aneurismal SAH was classified according to

the World Federation of Neurological Surgeons scale. Amount and

distribution of subarachnoid blood was graded according to the

Fisher scale (Kistler et al., 1983). After diagnosis of aneurismal SAH,

surgical and/or endovascular interventions were performed within the

next 24 h. Three patients underwent surgical clipping, one endovascu-

lar coiling and one was initially coiled followed by clipping due to

aneurysm rupture in the course of coiling. The recording strip was

positioned on viable, but often oedematous tissue.

A delayed ischaemic neurological deficit was defined as the occur-

rence of focal neurological impairment (such as hemiparesis, aphasia,

apraxia, hemianopia or neglect), or a decrease of at least two Glasgow

Coma Scale points [either on the total score or on one of its individual

components (eye, motor on either side, verbal)]. Moreover, the diag-

nosis of a delayed ischaemic neurological deficit required that the

neurological deficit was not present immediately after aneurysm oc-

clusion, that it lasted for at least 1 h, could not be attributed to other

causes such as hydrocephalus or re-bleeding by means of clinical as-

sessment, CT or MRI of the brain, and appropriate laboratory studies,

and did not occur earlier than 72 h after the initial haemorrhage

(Vergouwen et al., 2010). Serial MRI scans were performed post-

operatively, at the time of clinical deterioration and after the monitor-

ing period to screen for delayed infarcts. Admission and follow-up

neuroimages were independently evaluated by a study neuroradiolo-

gist (M.S.), blinded to the electrocorticography data, for the presence

of focal or global cerebral oedema, the Fisher grade, the presence and

degree of hydrocephalus, the presence of infarction, intracerebral or

subdural haematoma.

Criteria for proximal vasospasm after aneurismal SAH were defined

using digital subtraction angiography as 430% narrowing of the ar-

terial luminal diameter in one of the following arterial segments: A1,

A2, M1, M2 and C1–C2. Magnification errors were corrected by com-

paring extradural segments of the internal carotid artery (C4–C5).

Using transcranial Doppler sonography, significant vasospasm was

defined by a mean velocity 5200 cm/s in at least one middle cerebral

artery (Vora et al., 1999). Vasospasm was excluded if the middle

cerebral artery mean velocities remained 5120 cm/s throughout the

observation period.

Patients with delayed cerebral ischaemia were treated with haemo-

dynamic therapy (hypertension, hypervolaemia) (van Gijn and Rinkel,

2001). Oral nimodipine was given prophylactically in all patients.

Patients with malignant hemispheric
stroke
Clinical presentation of MHS was classified according to the National

Institute of Health Stroke Scale. All patients with MHS suffered from

52/3 infarction of the middle cerebral artery territory. Hemicraniect-

omy was initiated following similar in- and exclusion criteria as recently

published for DESTINY II (Juttler et al., 2011), but inclusion criterion for

age was 518 years. In patients with MHS, the electrode strip was im-

planted over presumed viable peri-infarct tissue of the anterior cerebral

artery. The electrode was advanced under the bone rim to ensure

proper fixation so that the strip was placed tangentially in relation to

the border of infarction. The lead wire of the strip was externalized

through a burr hole in the skull (if the bone flap was replaced) and

tunnelled beneath the scalp to exit 2–3 cm from the craniotomy margin.

Near-DC/AC- and DC/AC-
electrocorticography recordings at
the cortical surface
Two ipsilateral, subdermal platinum needle electrodes (SpesMedica)

served as reference and ground for the invasive, subdural recordings.

Electroencephalography of spreading depolarization Brain 2012: 135; 853–868 | 855



Near-DC/AC-electrocorticography signals were recorded by a GT205

amplifier (bandpass: 0.01–45 Hz, sampling rate: 200 Hz) connected

to a Powerlab 16/SP analogue/digital converter (ADInstruments). In

some patients, electrocorticography was measured in parallel using a

BrainAmp amplifier in order to record DC in addition to near-DC po-

tential components (bandpass: 0–1000 Hz, sampling rate: 2500 Hz,

BrainAmp MR plus, Brain Products). Subdural electrodes were con-

nected in sequential bipolar fashion as well as in unipolar fashion,

each referenced to the ipsilateral subdermal platinum electrode. Data

were recorded and reviewed with the use of LabChart 7 software

(ADInstruments) and BrainVision Recorder 1.05 software (Brain

Products), respectively.

Scalp DC/AC-EEG recordings
In order to monitor the full-band DC/AC–EEG (bandpass: 0–1000 Hz,

sampling rate: 2500 Hz), sintered Ag/AgCl electrodes (EasyCap) were

connected to a BrainAmp amplifier. The number of recording elec-

trodes varied from 8 to 13 depending on the scalp area shaved for

the neurosurgical procedure and the localization of exit points from

the skull for invasive probes such as the external ventricular drain.

Ipsilateral to the electrocorticography strip, 6–8 scalp electrodes were

placed covering the frontal, parietal and temporal brain regions; 2–5

electrodes were placed contralaterally. Electrodes were positioned in

accordance to the international 10–20 electrode system (Klem et al.,

1999). The reference electrode was placed on the mastoid ipsilateral to

the electrocorticography recording strip. An electrode in the frontal

midline served as ground. The electrodes were attached with

Collodion adhesive (Mavidon). Abrasive electrode gel (Abralyt 2000,

EasyCap) and conductive electrode cream (Synapse, Med-Tek) were

applied to set the electrode impedance to 55 kV and to assure

long-term stability of the signal with minimal DC potential drifts.

The EEG signal was recorded using BrainVision Recorder 1.05

software.

Data processing and analysis
Spreading depolarizations were identified in the subdural recordings by

(i) the simultaneous occurrence of a slow potential change in the DC

or near-DC frequency range (50.05 Hz), and depression of spontan-

eous activity in the AC frequency range (�0.5–45 Hz) in individual

channels; and (ii) the sequential occurrence of slow potential change

and depression on adjacent channels, evidencing the propagation of

spreading depolarization across the cortex as described previously

(Fabricius et al., 2006). Depression durations were scored beginning

at the initial decrease in the integral (60 s decay time constant) of the

power of the AC-electrocorticography and ending at the start of the

recovery phase as described previously (Dreier et al., 2006) (Fig. 1A).

The integral of the power is based on a method of computing

time integrals with a reset type that resets the integral periodically

after a given time, in the manner of decay such as that found in

a ‘leaky’ analogue integrator. This mathematical procedure provides

a smoothed curve easing visual assessment of changes in

AC-electrocorticography power. The method has become standard

to score depression periods of spreading depolarizations (Dreier

et al., 2006; Dohmen et al., 2008; Hartings et al., 2011b) and is

useful in the screening for ictal epileptic activity (Fabricius et al.,

2008; Dreier et al., 2012). In this article, depression periods were

scored in each of the five bipolar electrocorticography channels (elec-

trode 1–2, 2–3, 3–4, 4–5 and 5–6) to determine longest and shortest

depression period of each spreading depolarization.

Slow potential changes also occurred in some cases when the

AC-electrocorticography band was flat, or isoelectric, and therefore

lacked depression periods. Baseline isoelectricity may result from

non-spreading depression of activity as described previously (Leão,

1947; Dreier, 2011), or from a persistent depression period of a

preceding spreading depolarization (Dreier et al., 2006; Fabricius

et al., 2006; Dohmen et al., 2008; Oliveira-Ferreira et al., 2010;

Hartings et al., 2011b). Slow potential changes occurring in a stereo-

typed and propagating manner in isoelectric tissue are termed ‘silent’

spreading depolarizations in the present paper. In a previous paper,

the term ‘isoelectric’ spreading depolarization was used (Hartings

et al., 2011b). Both terms refer to the same phenomenon. The

term ‘isoelectric’ spreading depolarization does not imply that the

slow potential change remains undetected by the electrocorticography

recording.

Apparent propagation velocities were calculated from the DC- or

near-DC-electrocorticography signals as the 10-mm separation be-

tween subdural electrodes divided by the time interval between the

onsets of the slow potential change at adjacent electrodes.

Because of the substantial spatial distance between EEG electrodes

at the scalp and subdural electrocorticography electrodes at the brain

surface, EEG depressions were accepted as co-registrations in a range

of �15 min around time points of spreading depolarization appear-

ance in the subdural electrodes. Such spatial distance may lead to a

substantial time displacement of the co-registration. Although a

30-min window was thus considered for analysis around the electro-

corticography starting point of spreading depolarization, the actual

delay observed was in general much lower, with a median 56 min

(see below).

Durations of EEG depressions were quantified in a similar fashion to

electrocorticography depressions beginning at the initial decrease in the

integral (60 s decay time constant) of the power of the AC-EEG and

ending at the start of the recovery phase (Fig. 1A). We arbitrarily con-

sidered EEG depressions as significant if a deviation of the integral of

power from the baseline (average of 10 min immediately preceding the

drop in integral of power) to a level of 485% was detected. Amplitudes

of the slow potential changes were measured in the DC-EEG from the

baseline to the peak negativity (Fig. 1A). Electrocorticography data were

analysed by M.W. blinded to the clinical courses and radiological find-

ings. Spreading depolarization time points were then given to C.D. who

analysed the EEG data blinded to the durations of the electrocorticogra-

phy depression periods, the clinical courses and radiological findings.

Thereafter, J.D. performed the statistical comparisons between electro-

corticography and EEG data provided by M.W. and C.D. blinded to the

clinical courses and radiological findings.

Data are given as median (1st, 3rd quartile). Statistical analysis was

performed using Mann–Whitney Rank Sum Tests and Spearman’s

Rank Order Correlations as indicated in the text. P5 0.05 was con-

sidered statistically significant.

Results

Slow potential changes in scalp and
cortical surface recordings of patients
with aneurismal subarachnoid
haemorrhage
Demographic details are given in Table 1. During 1255.2 h of

near-DC/AC-electrocorticography recording time from the cortical

856 | Brain 2012: 135; 853–868 C. Drenckhahn et al.



Figure 1 (A) Simultaneous recording of spreading depolarization with spreading depression of spontaneous activity in a patient with

aneurismal SAH (Case 1 in Table 1) using electrodes at the cortical surface (electrocorticography; ECoG) and scalp EEG. Recordings were

performed on Day 5 after aneurismal SAH. Traces 1–9 show the electrocorticography at electrodes E2, E3 and E4 (red, orange and yellow)

(subdural electrode strip), whereas traces 10–18 give the EEG at the ipsilateral scalp electrodes F3, FC5 and T7 (dark blue, green and light

blue) (international 10–20 electrode system). Traces 1–3 (near-DC/AC-electrocorticography) and traces 10–12 (DC/AC-EEG) display the

slow potential change that identifies spreading depolarization. Traces 4–6 (AC-electrocorticography) and 13–15 (AC-EEG) show the

associated depression of spontaneous activity in the conventional EEG bandwidth 40.5 Hz. The integral of power of the conventional EEG

bandwidth is calculated in traces 7–9 (AC-electrocorticography) and 16–18 (AC-EEG). The figure illustrates how the integral of power is

used to score the duration of the depression period from the initial decrease to the start of the recovery phase. Note slow potential change

propagation from electrode E4 to E3 to E2 in cortical surface recordings of traces 1–3 (arrows). In contrast, no spread of the slow potential

change is identified by visual inspection of the scalp EEG measurements in traces 10–12 (arrows). In similar fashion, propagation of the

depression of spontaneous activity is only seen between subdural electrodes (traces 4–9) but not between scalp electrodes (traces 13–18).

Moreover, the duration of the depression period is similar at the three scalp electrodes in contrast to subdural recordings where the

duration of the depression period differs between electrodes. This inter-regional uniformity of the scalp EEG is due to summation of

volume conducted scalp EEG signals from generators widely distributed over the whole hemisphere (see text). Amplitudes of the slow

potential changes (�) were measured in the DC-EEG from the baseline (b) to the peak negativity as shown in trace 12. (B) Series of

five spreading depolarizations (marked by asterisk in trace 1) associated with depression of spontaneous activity recorded by electro-

corticography and EEG. The recordings are from the same patient and day as those in (A) (delay between A and B: 8 h and 30 min). Traces

1–9 (red, orange and yellow) show the electrocorticography at subdural electrodes E2, E3 and E4 while traces 10–16 (dark blue, green

and light blue) give the EEG at the ipsilateral scalp electrodes. Traces 1–3 (near-DC/AC-electrocorticography) and trace 10 (DC/AC-EEG)

display the slow potential changes that identify the spreading depolarizations. Traces 4–6 (AC-electrocorticography) and 11–13 (AC-EEG)

show the associated depression of spontaneous activity in the conventional EEG bandwidth 40.5 Hz. The integral of power of the

conventional EEG bandwidth is calculated in traces 7–9 (AC-electrocorticography) and 14–16 (AC-EEG). Note the recording time of

13.5 h. Also note that the near-DC-electrocorticography recordings of the slow potential changes at the brain surface indicate that the

paths of spreading depolarization in the cortex change from third to fourth to fifth spreading depolarization, so the temporal relationships

between electrocorticography and EEG vary between the subsequent spreading depolarizations. Thus, the depression of spontaneous

activity of the third spreading depolarization starts almost simultaneously in AC-electrocorticography and AC-EEG (marked by broken

line a), whereas the depression of the fourth spreading depolarization starts in the AC-EEG prior to the AC-electrocorticography (marked

by broken line b) and the depression of the fifth spreading depolarization starts in the AC-electrocorticography prior to the AC-EEG

(marked by broken line c). Similar temporal relationships between cortical surface and scalp also apply to the slow potential changes.

Varying paths of spreading depolarizations in the cortex thus translate into slightly varying patterns of slow potential changes and

depressions in the scalp DC/AC-EEG.

Electroencephalography of spreading depolarization Brain 2012: 135; 853–868 | 857
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surface, the five patients with aneurismal SAH had a total of

398 spreading depolarizations. For further analysis, 694.0 h of

simultaneous subdural near-DC/AC-electrocorticography and

scalp DC/AC-EEG recording time was available during which

275 of the 398 spreading depolarizations occurred. Slow poten-

tial changes of these 275 spreading depolarizations showed a

peak-to-peak amplitude of 1.2 (0.8, 1.8) mV (median, quar-

tiles) in the near-DC-electrocorticography recordings; propa-

gation velocity was 5.7 (2.9, 8.2) mm/min assuming an ideal

linear spread along the subdural electrode strip. Slow potential

change duration was not determined since slow potential

change distortion in near-DC recordings precludes assessment

of slow potential change duration (Hartings et al., 2009).

Subsequently, visual inspection of scalp DC-EEG recordings iden-

tified 193 of 275 slow potential changes (70.2%) as illustrated

in Figs 1, 2E, 3, 4E and 5. Of note, the intervals between

successive spreading depolarizations were significantly shorter,

as measured in near-DC-electrocorticography, for spreading de-

polarizations which displayed the slow potential change in

DC-EEG [33.0 (27.0, 76.5) versus 53.0 (28.0, 130.5) min,

P = 0.009, n = 273, Mann–Whitney Rank Sum Test] (Table 2).

In other words, DC-EEG was more likely to detect slow potential

changes of clustered than isolated spreading depolarizations.

Such slow potential changes of clustered, highly frequent

spreading depolarizations are shown in Fig. 3B. This observation

may indicate that, statistically, larger areas of cortex are simul-

taneously depolarized in clustered compared with isolated

spreading depolarizations.

Median slow potential change amplitude was �272 (�174,

�375) mV (range: �65 to �1090 mV) and median slow potential

change duration was 5.4 (4.0, 7.1) min in scalp DC-EEG record-

ings (Fig. 1A). Delay between slow potential change onsets in

brain surface near-DC-electrocorticography and scalp DC-EEG

recordings was 1.8 (0.8, 3.5) min. Different from subdural elec-

trodes, no spread of the slow potential change was seen between

scalp electrodes (Fig. 1A).

The signature of delayed cerebral
ischaemia in scalp and cortical surface
recordings
Thirty-six of the 275 spreading depolarizations represented

silent, clustered spreading depolarizations in the near-DC/AC-

electrocorticography recordings. ‘Silent’ means that spontaneous

activity had already ceased before the onset of spreading depolar-

ization. Such silent spreading depolarizations cannot lead to a fur-

ther clinical deficit in the neurological function represented in the

parenchyma undergoing the depolarization as this function was

already lost due to the preceding depression of activity (Dreier,

2011; Oliveira-Ferreira et al., 2012). Nevertheless, such silent

spreading depolarizations may determine whether this function

will be lost permanently as they may damage the neurons irre-

versibly (Hossmann, 1994; Dreier et al., 2006; Fabricius et al.,

2006; Oliveira-Ferreira et al., 2010; Hartings et al., 2011a, b).

The persistent depression of spontaneous activity between the

silent spreading depolarizations in the AC-electrocorticography

was well reflected by the persistent depression of spontaneous

activity in the AC-EEG in each case, as illustrated in Fig. 2E.

Simultaneously with the silent spreading depolarizations in the

near-DC/AC-electrocorticography, DC-EEG displayed slow poten-

tial changes riding on a negative ultraslow potential (Fig. 2E).

It has been shown previously that such electrocorticography

clusters of recurrent silent spreading depolarizations are associated

with delayed ischaemic infarcts after aneurismal SAH (Dreier et al.,

2006). Consistently, the cluster of silent spreading depolarizations,

demonstrated in Fig. 2E, was associated with a large, new delayed

ischaemic infarct in the ipsilateral hemisphere during the recording

period, as illustrated in the MRI scans of Fig. 2C1 and C2 com-

pared with those of the preceding MRI shown in Fig. 2B1 and B2.

Figure 2A1, A2 and 2D demonstrate localization of subdural

recording strip and scalp electrode array, respectively.

In another patient, the subdural DC/AC-electrocorticography

was recorded over the infarcting area during infarct evolution in

Table 2 Comparison between near-DC/AC-electrocorticography and DC/AC-EEG findings in the five patients with
aneurismal SAH

Spreading depolarizations in near-DC/
AC-ECoG

Proportion of depression periods
with a correlate in the AC-EEG

Proportion of SPCs with an SPC correlate
in the DC-EEG

Pattern 1: silent spreading depolarizations
characterized by persistent depression
of spontaneous activity between SPCs
(n = 36 spreading depolarizations).

Persistent depression of spontaneous activity
between SPCs in 2 of 2 patients.

72.2% (SPCs ride on a negative ultraslow
potential in 2 of 2 patients).

Pattern 2: spreading depolarizations with
depression of spontaneous activity
(n = 239 spreading depolarizations).

Depression period of spontaneous activity is
detected in 46.8% of these spreading de-
polarizations (34 spreading depolarizations
were excluded from this analysis because of
an artefact due to the BrainAmp amplifier).

69.9%

Intervals between successive spreading de-
polarizations: 44.0 (28.0, 132.0) versus
30.0 (26.5, 51.5) min, detected versus un-
detected depression periods (P = 0.001).

Intervals between successive spreading
depolarizations: 33.0 (27.0, 76.5) versus
53.0 (28.0, 130.5) min, detected versus
undetected SPCs (P = 0.009).

ECoG = electrocorticography; SPC = slow potential change.
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Figure 2 Development of a large delayed ischaemic infarct at the recording area during the monitoring period. (A1) The CT scout view

shows the orientation of the electrocorticography (EoG) recording strip (marked by white arrow). (A2) CT scan showing location of

subdural electrode E2 (marked by black arrow). (B1) Apparent diffusion coefficient (ADC) map, and (B2) diffusion weighted imaging

(DWI) of MRI on Day 2 after aneurismal SAH (aSAH). (C1) Apparent diffusion coefficient map, and (C2) diffusion weighted imaging scan

of MRI on Day 7 after aneurismal SAH. Note that the MRI scans of Day 7 display a large new delayed ischaemic infarct in the left middle

cerebral artery and posterior cerebral artery territories. (D) Scalp electrode array following the 10–20 system, and electrocorticography

recording strip. (E) Transition from spreading depolarizations associated with depression of spontaneous activity to a cluster of silent

spreading depolarizations with persistent depression of activity. The electrocorticography and EEG traces are from the same patient as

those in Fig. 1 but only recorded on Day 6 after aneurismal SAH between the two MRIs shown in (B) and (C). Traces 1–6 give the

electrocorticography at electrodes E3 (red) and E4 (orange), and traces 7–12 the EEG at the ipsilateral scalp electrodes F5 (dark blue) and

FC5 (green). Traces 13–15 display the EEG at the contralateral scalp electrode F4 (light blue). Traces 1 and 2 (near-DC/

AC-electrocorticography) and traces 7 and 8 (DC/AC-EEG) display the slow potential changes that identify the spreading depolarizations.

Traces 3 and 4 (AC-electrocorticography) and 9 and 10 (AC-EEG) show the associated depression of spontaneous activity in the

conventional EEG bandwidth 40.5 Hz. The integral of power of the conventional EEG bandwidth is calculated in traces 5 and 6

(AC-electrocorticography) and 11 and 12 (AC-EEG). The first two spreading depolarizations during this recording period of 7 h are

associated with depression of spontaneous activity followed by recovery (marked by broken lines a and b). The third spreading

depolarization (marked by broken line c) initiates the persistent spreading depression of spontaneous activity during which the

electrocorticography displays five silent spreading depolarizations (‘silent’ means that spontaneous activity has already ceased before

spreading depolarization onset, see text). Note that the persistent depression of spontaneous AC-electrocorticography activity (traces 3–6)

is accompanied by simultaneous depression of spontaneous AC-EEG activity (traces 9–12). Also note the onset of a negative ultraslow

potential in scalp electrodes F5 and FC5 (traces 7 and 8) marked by broken line c. In animals, slow potential changes riding on such

negative ultraslow potentials are the characteristic signature of neuronal injury (Herreras and Somjen, 1993; Oliveira-Ferreira et al., 2010).

Changes at the contralateral electrode F4 are much less pronounced. The mild AC-EEG depression at the contralateral electrode may

be caused by the ipsilateral reference at the mastoid. GND = ground; REF = reference.
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addition to the routine near-DC/AC-electrocorticography (Figs 4

and 5). As described previously during infarct evolution in animals

(Herreras and Somjen, 1993; Hossmann, 1994; Oliveira-Ferreira

et al., 2010), slow potential changes at the cortical surface rode

on a characteristic local negative ultraslow injury potential (Fig. 5).

DC-EEG recordings simultaneously displayed slow potential

changes riding on a shallow negative ultraslow potential at the

scalp. Drop in integral of AC-EEG power, indicating persistent de-

pression of spontaneous activity at the scalp, displayed a similar

time course as drop in integral of AC-electrocorticography power,

indicating persistent depression of spontaneous activity at the

brain surface (Fig. 5).

Figure 3 Cluster of repetitive spreading depolarizations in a patient developing a delayed ischaemic infarct remote from the subdural

recording strip (Case 5 in Table 1). (A) Traces 1–6 display the DC/AC-electrocorticography (ECoG) at subdural electrodes E1–E6. Note the

slow potential changes that identify three spreading depolarizations in this episode of 80 min duration (vertical lines). The slow potential

changes seem to propagate from electrode E5 to the other electrodes (arrows). Also note large amplitudes of the slow potential changes

and slow potential changes with two or even three peaks at electrodes E2 to E5. Such twin peaks could reflect longer depolarizations in

deeper layers of the cortex (Herreras and Somjen, 1993). Traces 7–12 give the simultaneous integrals of AC-electrocorticography power

demonstrating cycles of spreading depression of spontaneous activity (arrows) followed by recovery. Traces 13 and 14 display the slow

potential changes at scalp electrodes FC6 (dark blue) and F4 (light blue) that correspond to the slow potential changes at the cortical

surface. The integrals of EEG power in traces 15 (electrode FC6) and 16 (electrode F4) show isolated cycles of depression in spontaneous

activity followed by recovery similar to the invasive recordings. In contrast to the subdural recordings, no propagation of slow potential

changes and depression periods is observed between scalp electrodes. (B) One day later, spreading depolarizations continue to recur at

high frequency. Arrangement of traces, electrodes and filter settings is similar to (A) but the DC/AC-EEG recordings at scalp electrodes

AF8 and CP6 are demonstrated in addition to those at scalp electrodes FC6 and F4 to illustrate variations in scalp slow potential change

patterns. Note correspondence between slow potential changes at scalp and cortical surface (vertical lines). It seems that subsequent

depression periods are fused at scalp electrode F4 (integral of power in trace 17) although subdural electrodes still show isolated cycles of

spreading depression followed by recovery of spontaneous activity at the cortical surface.
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Isolated depression periods in scalp
and cortical surface recordings of
patients with aneurismal subarachnoid
haemorrhage
In 239 of the 275 spreading depolarizations, near-DC/

AC-electrocorticography displayed spreading depression of spon-

taneous activity. Unfortunately, in 34 of those, depression of

spontaneous activity escaped detection in the AC-EEG due to

an artefact produced by the automatic drift correction of the

BrainAmp amplifier. The automatic drift correction had to be

turned on since substantial slow drifts of the EEG signal could

occur over the long recording periods. For each of the remaining

205 spreading depolarizations, we identified the AC-electrocorti-

cography channel with the longest and the shortest depression

periods using the integral of power of the cortical surface record-

ings (Fig. 1A). As explained previously, the depression period is an

indirect indicator of tissue energy supply since restoration of

the spontaneous activity after spreading depolarization is energy

dependent (Back et al., 1994; Dreier et al., 2006). In the 205

spreading depolarizations, the median longest depression period

Figure 4 Development of a large delayed ischaemic infarct at the recording area during the monitoring period (Case 2 in Table 1).

(A) MPRAGE (magnetization prepared rapid gradient echo)-sequence, a T1-weighted, gradient-echo sequence visualizing the subdural

recording strip (marked by white arrow). (B) The CT scout view shows the orientation of the electrocorticography (ECoG) recording strip

(marked by white arrow). (C1 and C2) Diffusion weighted MRI (DWI) shows an infarct in the posterior territory of the left middle cerebral

artery on Day 3. (D1 and D2) On Day 7, a new delayed ischaemic infarct is visualized in the left anterior middle cerebral artery territory

including the recording area. Moreover, a small delayed infarct is seen in the left anterior cerebral artery territory. (E) The initial spreading

depolarization of the cluster is displayed that is completely depicted at lower resolution in Fig. 5. The cluster occurred on Day 4 after

aneurismal SAH between the two MRIs of Days 3 and 7. Traces 1–5 show the near-DC/AC-electrocorticography recordings at subdural

electrodes E1 to E5 measured by the GT205 amplifier whereas traces 6–10 simultaneously give the DC/AC-electrocorticography

recordings measured by the BrainAmp amplifier. Note that the slow potential change is distorted in the near-DC/AC-electrocorticography

recordings in traces 2–5, which precludes assessment of its duration (Hartings et al., 2009) in contrast to the slow potential change

depicted in the DC/AC-electrocorticography recordings in traces 7–10. The slow potential change propagates from electrode E5 to E2

(arrows). Trace 11 (blue) provides the slow potential change simultaneously measured by electrode FC5 at the scalp. Traces 12–16 depict

the spreading depression of spontaneous activity in the power of the AC-electrocorticography at subdural electrodes E1 to E5. The lowest

trace (green) displays the tissue partial pressure of oxygen. Abrupt, marked reduction of tissue oxygen accompanies spreading depolar-

ization as measured close to electrode E6 using an intraparenchymal oxygen sensor (Licox, Integra Lifesciences Corporation). This may be

the consequence of a combination of reduced blood supply (inverse coupling) with increased oxygen consumption in response to

spreading depolarization (Dreier et al., 2009). Note that the spreading depolarization does not propagate to subdural electrode E1.

Electrode E1 was positioned on a neighbouring gyrus that was not affected by the new infarct. Because of artefacts in lower frequencies,

we chose a bandpass between 30 and 45 Hz to illustrate the depression of spontaneous activity in the subdural recordings.
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Figure 5 Cluster of silent spreading depolarizations riding on a negative ultraslow potential during development of a new delayed

ischaemic infarct (Case 2 in Table 1). Figure 4 depicts the first spreading depolarization of this cluster at high resolution in addition to the

neuroimaging findings. Similar to Fig. 4, traces 1–5 show the near-DC/AC-electrocorticography (ECoG) recordings at subdural electrodes

E1 to E5 measured by the GT205 amplifier, whereas traces 6–10 simultaneously give the DC/AC-electrocorticography recordings

Electroencephalography of spreading depolarization Brain 2012: 135; 853–868 | 863
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lasted for 12.6 (9.5, 16.8) min and the median shortest depression

period for 5.0 (4.1, 8.1) min. During the longest depression

period, the integral of power fell to 23.6 (10.5, 35.2)%, and,

during the shortest depression period, to 24.2 (14.2, 34.0)%. In

only 96 of the 205 spreading depolarizations (46.8%), visual in-

spection of the AC-EEG identified depression of spontaneous ac-

tivity. Figure 1 shows examples for such scalp EEG detected

depression periods. Proportions of spreading depolarizations with

AC-electrocorticography depression that also displayed AC-EEG

depression of spontaneous activity ranged from 30% to 75%

for the five individual patients with aneurismal SAH. During de-

pression, the integral of scalp AC-EEG power decreased to a

median value of 52.5 (36.2, 64.1)% (range: 10.8–82.1%).

Subsequently, we compared the 96 spreading depolarizations

where AC-EEG displayed depression periods with the 109 spread-

ing depolarizations where this was not the case. Of note, the

interval between successive spreading depolarizations were signifi-

cantly longer for spreading depolarizations during which AC-EEG

displayed a depression period [44.0 (28.0, 132.0) versus 30.0

(26.5, 51.5) min, P = 0.001, n = 205, Mann–Whitney Rank Sum

Test] (Table 2). Moreover, spontaneous activity was depressed to

a significantly lower level [integral of AC-electrocorticography

power reduction to 15.8 (7.3, 34.7) versus 27.1 (12.5, 35.6)%

during the longest depression period, P = 0.004, n = 205, Mann–

Whitney Rank Sum Test]. The EEG reflects a summation of

volume-conducted signals from cortical generators widely distrib-

uted over the whole hemisphere. These findings thus suggest that

highly frequent spreading depolarizations with depression of spon-

taneous activity in the AC-electrocorticography led to fusion of

depression periods in the AC-EEG between subsequent spreading

depolarizations. This process is illustrated in Fig. 3A and B.

We then investigated whether the durations of either shortest or

longest AC-electrocorticography depression period of spontaneous

activity correlated with the duration of the AC-EEG depression

period. Both correlated significantly with the AC-EEG depression

period (n = 96; shortest depression: correlation coefficient: 0.301,

P = 0.003; longest depression: correlation coefficient: 0.233,

P = 0.023, Spearman’s Rank Order Correlation). We also studied

whether the levels to which the spontaneous electrocorticography

activity was depressed during the shortest and longest depression

periods, respectively, correlated with the level to which the EEG

was depressed. Again, significant correlations were found (n = 96;

shortest depression: correlation coefficient: 0.287, P = 0.005; long-

est depression: correlation coefficient: 0.435, P50.001,

Spearman’s Rank Order Correlation). Consistent with the findings

for slow potential changes at scalp electrodes, there was no ob-

servable spread of AC-EEG depression between scalp electrodes

(Fig. 1A). Onset of AC-EEG depression and slow potential change

could precede, accompany or succeed onset of AC-electrocortico-

graphy depression and slow potential change for different spread-

ing depolarizations of the same patient as shown in Fig. 1B.

This change in temporal relationships between brain surface

near-DC/AC-electrocorticography and scalp DC/AC-EEG corres-

ponded with different propagation paths in the near-DC/

AC-electrocorticography recordings (Fig. 1B). Median delay be-

tween AC-electrocorticography and AC-EEG depressions was 5.3

(2.1, 10.1) min.

Patients with malignant hemispheric
stroke
Demographic details are given in Table 1. During 475.6 h of

near-DC/AC-electrocorticography recording time, the four pa-

tients with MHS had a total of 79 spreading depolarizations.

For further analysis, 268.2 h of simultaneous near-DC/

AC-electrocorticography and DC/AC-EEG recording time was

available during which 20 of the 79 spreading depolarizations

were observed. The slow potential change of these spreading de-

polarizations had a peak-to-peak amplitude of 4.5 (3.5, 5.2) mV in

the near-DC-electrocorticography and a propagation velocity of

6.1 (3.2, 7.6) mm/min. There was only one silent, clustered

spreading depolarization. Hence, 19 spreading depolarizations

induced AC-electrocorticography depression of spontaneous activ-

ity. Unfortunately, 12 of these were not detected in the scalp DC/

AC-EEG due to the artefact produced by the automatic DC

drift correction of the BrainAmp amplifier. The remaining

seven spreading depolarizations from three of the four patients

showed a depression to 50.4 (34.1, 59.1)% similar to the

median depression in the patients with aneurismal SAH and

lasted for 10.5 (9.4, 22.6) min. The simultaneous shortest and

Figure 5 Continued
measured by the BrainAmp amplifier. The near-DC/AC- and DC/AC-electrocorticography recordings display the slow potential changes

that identify the spreading depolarizations. The arrow marks the first spreading depolarization in traces 2–5. The first spreading

depolarization causes persistent spreading depression of spontaneous activity, as shown in traces 13–16 (power of subdural electrodes

E1–E5, arrows), trace 17 (integral of power at electrode E2) and trace 18 (integral of power at scalp electrode FC5). The multiple

subsequent spreading depolarizations in traces 2–5 and 7–10, respectively, occur during this persistent depression of spontaneous activity

(silent spreading depolarizations). Note in the DC/AC-electrocorticography recordings of traces 7–10 that the recurrent slow potential

changes ride on a negative ultraslow potential (marked by the stars). This negative ultraslow injury potential is largest at electrodes E3

to E5 and seems reflected in a shallow negative ultraslow potential at scalp electrode FC5 (trace 11). Note that no slow potential changes/

spreading depolarizations occur at subdural electrode E1 which was located on another gyrus spared from infarction. Interestingly, an

ultraslow positive potential (current source) is seen at subdural electrode E1 (star at trace 6) in contrast to the ultraslow negative potential

(current sink) at the other electrodes, remarkably similar to findings in and around infarcts in animals (Oliveira-Ferreira et al., 2010). Trace

19 shows a persistent decrease of tissue partial pressure of oxygen as measured with an oxygen sensor. Note recurrent decreases of tissue

oxygen in response to the spreading depolarizations. Cerebral perfusion pressure is constant during the event. Because of artefacts

in lower frequencies, we chose a bandpass between 30 and 45 Hz to illustrate the depression of spontaneous activity in the subdural

recordings.
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longest AC-electrocorticography depression periods lasted for 7.7

(6.4, 15.3) and 2.8 (2.3, 3.7) min, respectively; the integral of

AC-electrocorticography power was depressed to 24.7 (17.9,

34.4) and 29.7 (21.4, 49.5)%, respectively. In the scalp DC-EEG

recordings, median slow potential change amplitude was �305

(range: �107, �517) mV and median slow potential change dur-

ation was 7.4 (4.4, 8.3) min. Correlations between electrocortico-

graphy and EEG parameters were not analysed because of

insufficient statistical power.

Discussion
It has been known for a long time that cerebral ischaemia is

associated with marked changes in the human scalp AC-EEG,

such as polymorphic delta activity, focal attenuation as well as

loss of fast activity and sleep spindles (Cohn et al., 1948). These

changes in spontaneous activity were first used diagnostically for

the intraoperative monitoring during carotid endarterectomy

(Sharbrough et al., 1973). Later, a number of approaches using

scalp AC-EEG have been developed to detect the advent of

delayed cerebral ischaemia in patients with aneurismal SAH

(Labar et al., 1991; Rivierez et al., 1991; Vespa et al., 1997;

Claassen et al., 2004, 2005). Clinical application of quantitative

AC-EEG technology was tested in different studies and was found

clinically useful in the screening for delayed cerebral ischaemia.

The best quantitative AC-EEG parameter for this purpose has re-

mained controversial. Ratios of fast over slow activity and trend

analysis of total power, in similar fashion to our study, are among

the favoured approaches (Labar et al., 1991; Vespa et al., 1997;

Claassen et al., 2005). It is seen as a strength of scalp AC-EEG

that the changes associated with delayed cerebral ischaemia are

widespread so these changes provide a summary measure for very

different locations of the cerebrum that can be affected by

delayed cerebral ischaemia. Use at the bedside is another obvious

advantage of scalp EEG. On the other hand, there are some dis-

advantages: artefacts by scalp electrodes may confound neuroima-

ging studies (Claassen et al., 2005). Moreover, interpretation of

quantitative AC-EEG parameters has been only recommended

with caution (Claassen et al., 2005). They should not be inter-

preted in isolation but in combination with the underlying raw

AC-EEG by a person trained in this analysis since a multitude of

artefacts as well as extracranial factors such as scalp swelling may

confound them. Furthermore, labour intensity is a problem for

continuous EEG recording, an EEG technician being constantly

needed to ensure high-quality measurements and neurophysiolo-

gists having to evaluate enormous amounts of EEG data.

Classic diagnostic tools for detection
of ischaemic lesion progression
Quantitative AC-EEG in isolation is not sufficient for the diagnosis

of delayed cerebral ischaemia but it serves as a screening tool

(Claassen et al., 2005). This implies that additional studies are

currently needed to confirm the diagnosis of delayed cerebral

ischaemia such as clinical examination, digital subtraction angiog-

raphy, transcranial Doppler sonography or neuroimaging (Claassen

et al., 2005). Unfortunately, these confirmatory studies have limi-

tations as well: clinical examinations are of limited value in stupor-

ous or comatose patients with aneurismal SAH. Digital subtraction

angiography remains the gold standard for the diagnosis of prox-

imal vasospasm but is not without risk for the patient, and the

value of digital subtraction angiography for the diagnosis of

delayed cerebral ischaemia has been increasingly questioned in

recent years (Vergouwen et al., 2010). First, there is now clear

evidence from autopsy and neuroimaging studies that delayed

cerebral ischaemia can occur without angiographic vasospasm

(Neil-Dwyer et al., 1994; Dreier et al., 2002; Weidauer et al.,

2008; Woitzik et al., 2011). Moreover, in contrast to a significant

association between unfavourable clinical outcome and delayed

cerebral ischaemia (Vergouwen et al., 2011), in a recent

meta-analysis, no association was found between unfavourable

outcome and proximal vasospasm (Etminan et al., 2011). The val-

idity of transcranial Doppler-sonography for the diagnosis of

delayed cerebral ischaemia is even more restricted since, as a sur-

rogate method for digital subtraction angiography, significant cor-

respondence between digital subtraction angiography and

transcranial Doppler-sonography was only found for relatively

small ranges of transcranial Doppler-sonography mean velocities

in the middle cerebral arteries 5120 and 4200 cm/s (Vora et al.,

1999). CT is a reliable tool to detect delayed territorial infarcts but

lesion maturation takes several hours before CT reliably identifies

an infarct and so diagnosis is delayed. Moreover, cortical infarcts

are the predominant pathomorphological correlate of delayed

cerebral ischaemia in autopsy studies but frequently escape detec-

tion by CT (Neil-Dwyer et al., 1994; Dreier et al., 2002; Weidauer

et al., 2008). Furthermore, with few exceptions, CT is not a bed-

side tool but requires transport to the scanner tying up human

resources from the hospital. MRI is the gold standard for the de-

tection of delayed ischaemic stroke since its sensitivity for small

lesions is significantly higher compared with that of CT (Shimoda

et al., 2001; Dreier et al., 2002; Vergouwen et al., 2010).

Nevertheless, mild ischaemia without structural injury still escapes

detection by MRI. Moreover, MRI shares with CT the transport

problem of the patient between scanner and intensive care unit.

Other methods of complementary value are imaging techniques

assessing cerebral blood flow but their practical use is limited by

the enormous temporal dynamics of cerebral blood flow that can

drop to ischaemic levels within seconds and change to hyperper-

fusion within minutes up to hours thereafter as observed in a

characteristic fashion using continuous subdural laser-Doppler

flowmetry in patients with aneurismal SAH (Dreier et al., 2009).

This behaviour corresponds well with the marked diversity of cere-

bral blood flow patterns in imaging studies of delayed cerebral

ischaemia (Minhas et al., 2003).

Continuous quantitative
neuromonitoring at the bedside for
detection of ischaemic lesion
progression
The combination of the invasive neuromonitoring tools such as

subdural DC/AC-electrocorticography, tissue partial pressure of
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oxygen measurements, laser-Doppler flowmetry of regional cere-

bral blood flow and slow and rapid sampling microdialysis now

allow for the assessment of early and delayed pathophysiology

in patients with aneurismal SAH and MHS in practically the

same detail as in animal studies (Dreier et al., 2009; Bosche

et al., 2010; Feuerstein et al., 2010; Oliveira-Ferreira et al.,

2010). Cut-off values for these methods are currently being de-

veloped to guide treatment allocation in patients at risk for

delayed cerebral ischaemia (Dreier, 2011). However, such cut-off

values could be limited by the more or less restricted sample vol-

umes of the invasive tools. The largest sample volume may be that

of DC/AC-electrocorticography since spreading depolarizations

invade the tissue surrounding the ischaemic zone and high recur-

rence rates may indicate even remotely developing ischaemic

lesions (Dreier et al., 2006; Dohmen et al., 2008; Oliveira-

Ferreira et al., 2010). However, even if reliable cut-off values

are calculated for early diagnosis of delayed cerebral ischaemia

after aneurismal SAH or ischaemic lesion progression after MHS,

a slight risk for local infection or haemorrhage will remain with

invasive probes (Espinosa et al., 1994; Lee et al., 2000). This obs-

tacle will limit probe implantation to patients requiring neurosur-

gical interventions. Therefore, the ultimate goal for diagnostic

development is powerful, non-invasive recording technology for

use at the bedside that has been validated by comparison with

invasive technology. The present study represents a significant first

step in this process as our invasive near-DC- and DC/AC-electro-

corticography recordings have demonstrated the pathophysiologic-

al basis of the previously described scalp AC-EEG changes in the

course of aneurismal SAH and ischaemic stroke. Our findings thus

indicate that the characteristic loss of AC-EEG power associated

with ischaemia (Labar et al., 1991; Vespa et al., 1997; Claassen

et al., 2004) is caused by clusters of spreading depolarizations

associated with the depression of spontaneous activity.

In addition, we have identified two other, promising signals

while recording the DC-component of the scalp EEG. It was not

believed possible to record the slow potential change, the extra-

cellular index of spreading depolarization, in scalp DC-EEG record-

ings as the potent capacitive resistance of dura and skull would

filter the slow voltage variation (Dreier, 2011). In the present

study, the large majority of slow potential changes in the

near-DC- and DC-electrocorticography were nevertheless accom-

panied by slow potential changes in the scalp DC-EEG.

Furthermore, in two cases, scalp DC-EEG recordings were per-

formed during early infarct evolution, and scalp electrodes were

placed over the infarcting area. In these cases, scalp DC-EEG

recorded a negative ultraslow potential, the classical extracellular

index of neuronal injury in animal experiments (Herreras and

Somjen, 1993; Lehmenkühler et al., 1999; Oliveira-Ferreira

et al., 2010). In one of these cases, DC-electrocorticography

was recorded at the cortical surface in addition to the routine

near-DC-electrocorticography while the subdural electrode strip

overlaid the region of the developing infarct. This allowed us to

measure in parallel the negative ultraslow injury potential at both

scalp and cortical surface. Similar to recordings in rats, the

DC-shifts of spreading depolarizations did not reverse between

cortical surface and scalp as these potentials are generated in

the parenchyma rather than at the interface between blood and

brain (Lehmenkühler et al., 1991). However, future experimental

studies should address whether and how the signals are influenced

by the fresh craniotomy in the patients with aneurismal SAH or by

the decompressive hemicraniectomy in the patients with MHS.

Visual inspection did not detect a spread of slow potential

change or AC-EEG depression of spontaneous activity between

different scalp electrodes. This is likely explained by the fact that

the scalp EEG is influenced by volume conduction from many

superposed sources of the whole hemisphere. For spread recon-

struction, disentanglement of cortical generators from scalp DC/

AC-EEG recordings would require more complex mathematical

procedures such as virtual source montage or principal compo-

nents analysis (Miller et al., 2007).

Conclusion and future goals
The strength of the combined bedside recording of the scalp ultra-

slow potential, slow potential change and depression of spontan-

eous activity is that they potentially allow for the instantaneous,

on-line detection of ischaemic injury onset and progression in a

large patient population. This would allow for targeted treatment

to begin earlier than with diagnosis based on any imaging modal-

ity, which requires time for lesion maturation as well as time for

patient transport to the scanner. To come to this point, the elec-

trophysiological techniques require further development and care-

ful analysis of limitations. In principle, the negative ultraslow

potential of ischaemic injury is the largest electrophysiological

signal at the human brain surface (Leão, 1947; Oliveira-Ferreira

et al., 2010), even larger than the slow potential change, which

can reach up to 25 mV (Dreier et al., 2009; Oliveira-Ferreira et al.,

2010) and much larger than the DC potential associated with

epileptic seizure activity, which may reach up to 2 mV at the

cortical surface (Dreier et al., 2012) and 30–150 mV at the scalp

(Miller et al., 2007). However, the DC potential can be con-

founded by many different generators including the eyeball,

tongue, blood–brain barrier and the skin (Miller et al., 2007).

The galvanic skin response at the scalp can be avoided by slight

puncturing of the skin epithelia during electrode application. Other

causes of DC potentials such as movements, jugular vein compres-

sion or chemical factors like changes in carbon dioxide tension, are

more difficult to control, and not all DC potential generators may

be known.

Further development of the techniques applied here could make

it possible in the future to alert the neurointensive care specialist

of the onset or progression of neuronal injury in a fashion similar

to the use of continuous electrocardiography to detect cardiac

arrhythmia. A number of research goals have to be achieved for

this purpose. Thus, it is necessary to calculate sensitivity and spe-

cificity for a cut-off value of duration in spreading

depolarization-induced depression of spontaneous activity mea-

sured by electrocorticography or EEG that indicates delayed

ischaemic stroke after aneurismal SAH or ischaemic lesion progres-

sion in MHS, lesion progression being assessed using serial MRI

(Dreier, 2011). For this analysis, recording of slow potential

changes would serve the differentiation between spreading

depolarization-induced depression and other types of depression
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such as depression of spontaneous activity by sedatives for ex-

ample. Moreover, a better understanding of the complex gener-

ators and artefacts underlying DC potential changes at the brain

surface and scalp is needed to make full use of slow potential

change and ultraslow potential. Polymer researchers should de-

velop electrodes with similar low-frequency recording properties

as Ag/AgCl electrodes but without their toxicity to replace the

platinum electrodes for the subdural recordings. Platinum has

much better low-frequency recording properties than stainless

steel but is polarizable and thus inferior to Ag/AgCl (Tallgren

et al., 2005). Mathematical tools such as virtual source montage

and principal components analysis should be applied to identify

the characteristic propagation of spreading depolarizations using

scalp DC/AC-EEG in analogous fashion to the source localization

of epileptic seizure activity (Miller et al., 2007). The spread would

add another criterion to distinguish spreading depolarizations from

other bioelectrical phenomena and artefacts. Electrocorticography

recordings at the brain surface could be used to validate such

mathematical tools since they identify with high accuracy sources

of slow potential changes. Additional criteria for the differential

diagnosis of electrophysiological signals could be derived from

non-invasive surrogate measures of cerebral blood flow such as

near-infrared or diffuse correlation spectroscopy that can be

applied at the bedside (Obrig and Villringer, 2003; Durduran

et al., 2010). All this should be flanked by the development of

software packages and hardware for automated, on-line analysis

at the bedside on the intensive care unit. We believe that the

findings of the present study are promising for this development

since, in all patients, even visual inspection of the raw

time-compressed DC/AC-EEG data was sufficient to identify

clear reflections of the spreading depolarizations at the scalp.

Acknowledgements
We would like to thank the nursing staff of the study, Claudia

Altendorf and Nicole Gase.

Funding
Deutsche Forschungsgemeinschaft (DFG) DFG DR 323/5-1 to

J.P.D. and J.W., DFG SFB Tr3 D10; Bundesministerium für

Bildung und Forschung (Center for Stroke Research Berlin, 01

EO 0801 and Bernstein Center for Computational Neuroscience

Berlin 01GQ1001C B2); ERA-NET NEURON SDSVD German

Israeli Foundation (No 124/2008); Wilhelm Sander foundation

(2002.028.1); Kompetenznetz Schlaganfall to J.P.D. and DFG

WO 1704/1-1 to J.W. M.S. was supported by the ‘Friedrich C.

Luft’ Clinical Scientist Pilot Program funded by Volkswagen

Foundation and Charité Foundation.
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