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Natural Killer (NK) cells are innate lymphoid cells (ILCs) capable of recognizing and directly
killing tumor cells. They also secrete cytokines and chemokines, which participate in the
shaping of the adaptive response. NK cells identify tumor cells and are activated through a
net positive signal from inhibitory and activating receptors. Several activating NK cell
receptors are coupled to adaptor molecules containing an immunoreceptor tyrosine-
based activation motif (ITAM). These receptors include CD16 and the natural cytotoxic
receptors NKp46, NKp44, NKp30 in humans. The powerful antitumor NK cell response
triggered by these activating receptors has made them attractive targets for exploitation in
immunotherapy. In this review, we will discuss the different activating receptors associated
with ITAM-bearing cell surface receptors expressed on NK cells, their modulations in the
tumor context and the various therapeutic tools developed to boost NK cell responses in
cancer patients.
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NK CELLS: AN OVERVIEW

NK cells belong to the ILC family, which encompasses several other subsets: helper-like ILC (ILC1
to 3) and lymphoid tissue inducer cells (LTi). NK cells are endowed with cytolytic functions,
whereas helper-like ILC are characterized mainly by their cytokine secretion profiles, which mirror
those of helper CD4+ T cells. ILC1 produce IFN-g type 1 cytokine, ILC2 produce type 2 cytokines,
such as IL-5 and IL-13, and ILC3 secrete IL-17 and IL-22 type 3 cytokines (1).

In humans and mice, NK cells circulate in the peripheral blood and infiltrate most organs,
including the spleen, liver, lymph nodes and bone marrow. They are also located in the barrier
organs of the body, such as the intestines and lungs (2). The NK cell compartment is heterogeneous.
Human NK cell subsets are generally defined on the basis of their cell surface expression of CD56
and CD16 (FcgRIIIA) and lack of the T cell receptor complex (CD3/TCR). Human NK cells have
been split into two main subsets: CD56dim CD16+ NK cells and CD56bright CD16− NK cells, which
are found in the bloodstream and most organs (3, 4). According to their transcriptomic profiles,
these two subsets are found in the blood and spleen of humans and conserved in mice at
homeostasis. They were defined as NK1/CD56dim-like and NK2/CD56bright-like cells (5).

CD56dim CD16+ cells are cytotoxic and express killer-cell immunoglobulin-like receptors (KIRs),
whereas CD56bright CD16− NK cells are less mature, produce larger amounts of cytokines and
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chemokines and are more prone to proliferate under cytokine
stimulation (6). Several studies have suggested that CD56dim

CD16+ cells can differentiate from CD56bright CD16− cells (7, 8).
We recently showed that an additional NK0/CD56bright-like
subset displays specific enrichment in the expression of genes
associated with the NK cell precursor (NKP) signature. This
tissue-specific subset differs from NK2/CD56bright-like cells in its
higher levels of expression of CD52, CD127 and a lack of CD160.
A bioinformatic algorithm inferring developmental trajectories
from scRNAseq data showed that NK0/CD56bright CD160−-like
cells could differentiate into both NK1/CD56dim and NK2/
CD56bright CD160+-like cells, but that NK1 and NK2 cells did
not appear to be developmentally related under physiological
conditions (9).

In addition, some individuals harbor a particular population
of NK cells, “adaptive NK”, characterized by the cell surface
activating receptor NKG2C and the maturation marker CD57 in
humans (10). This subset results from the expansion and
persistence after contraction of NK cells following
cytomegalovirus (CMV) infection. Adaptive NK cells can be
recovered from both humans and mice, and have been detected
following the activation of NK cells following hantavirus
infection (11), herpes simplex virus 2 infection (12) or
influenza vaccination in humans (13).

Another population, cytokine-induced memory-like (CIML)
NK cells, has also been described in both humans and mice (14–
16). Following prior activation with an IL-12/IL-15/IL-18
cytokine cocktail, the capacity of these cells to produce IFN-g
and granzyme B after restimulation increases.

Thus, several subsets of NK cells have been identified in healthy
donors by bulk RNA sequencing (RNAseq), single-cell RNAseq or
Cytometry by time of flight (CYTOF). However, it remains to be
verified whether all these NK cell populations are indeed present
in the majority of individuals. Also, it is of interest to define the
heterogeneity of NK cells in several cancer indications.
ROLE OF NK CELLS IN CANCER

NK cells are cytolytic and exocytose cytotoxic granules containing
both perforin (a membrane-disrupting protein) and granzymes (a
family of proteolytic enzymes) at the immunological synapse with
target cells, leading to target cell lysis. Activated human NK cells
also express death-inducing ligands, such as FAS ligand and TNF-
related apoptosis-inducing ligand (TRAIL). In addition to their
cytotoxic activities, NK cells can produce cytokines, such as IFN-g
and TNF-a. IFN-g has direct antitumor properties, but also
activates myeloid cells and contributes to the shaping of T-cell
responses. NK cells can also secrete growth factors (e.g.
granulocyte–macrophage colony-stimulating factor) and
chemokines (CCL3, CCL4 and CCL5), which participate in the
recruitment of dendritic cells in inflamed tissues (17–19).

Many data from in vitro studies have shown that NK cells kill
cancer cells of different histological origins. In vivo, depletion
experiments and the use of mouse models with impaired NK cell
activity have demonstrated higher rates of tumor growth and
Frontiers in Immunology | www.frontiersin.org 2
metastasis (20, 21). Unfortunately, the depleting antibodies used
in these experiments were not specific for NK cells. The anti-
NK1.1 antibody can also target ILC1, natural killer T cells (NKT)
and activated T cells, and the anti-asialo GM1 serum can also
target NKT, some T-cell populations, gd T cells, basophils,
eosinophils and macrophages (22, 23). NKp46 is mostly
restricted to NK cells, but it is also expressed by ILC1, a subset
of ILC3 and a minority fraction of T cells. As a result, no NKp46-
depleting antibody or mouse models with modified Ncr1 gene
(coding for NKp46) expression can specifically target NK cells. In
this context, it is, therefore, important to bear in mind that the
results obtained with these tools and attributed to NK cells might
actually be due to other cell populations, such as ILC1. Along this
line, investigations of role of ILC1 in tumor responses are an
emerging field of research, and opposite effects have already been
reported in the mouse. On the one hand, ILC1 expansion and
cytotoxicity are associated with the control of tumor growth in a
mouse mammary tumor model (24) and with the limitation of
metastatic seeding in the liver for MC38 colon carcinoma cells
and Lewis lung carcinoma cells (LLC) (25). On the other hand,
NK cell differentiation towards cells with an ILC1-like gene
signature has been shown to be associated with uncontrolled
melanoma cell metastasis in the lung (26) and chemically
induced fibrosarcoma (27, 28). In this last model, intratumoral
ILC1 may limit the NK1.1+ cell-dependent antitumoral response,
or even foster tumor growth (28). These results should, therefore,
prompt evaluation of differential tumor infiltration and the role
of ILC1 and NK cells in optimizing the harnessing of immunity
in the treatment of cancer patients.

In humans, cancer incidence is higher in patients with NK cell
deficiencies characterized by an absence of NK cells or poor
effector functions due to mutations of the MCM4 or GATA2
genes (29, 30) (see Table 1). However, these data should be
interpreted with caution as such mutations also affect immune
cells other than NK cells; it is thus not possible to establish a
formal link between NK cell activity and cancer control based on
these findings.

A few studies have monitored the cytotoxic activity of blood
NK cells and the risk of developing cancer (40, 41). In an 11-year
follow-up survey conducted in the Japanese general population,
the group of patients with low levels of NK cell cytotoxic activity
had a higher risk of cancer (31). Along the same lines, low NK
cell counts, rather than CD4+ or CD8+ T cells in peripheral blood
are associated with lower overall survival in patients with
follicular lymphoma (42).

Many studies have also reported defective blood NK cell
function in patients with solid tumors. Our analysis of
predefined NK and CD8+ T-cell signatures in multiple public
transcriptome data from the TCGA database, which includes
over 10,000 tumor samples corresponding to 33 different cancer
types, showed that most tissues infiltrated by NK cells were also
infiltrated by T cells. Contrary to the findings for ILC1, the NK
signature was strongest in hematopoietic cancers (acute myeloid
leukemia (AML) and B-cell lymphoma), followed by solid
cancers, including kidney renal clear cell carcinoma, testicular
germ cell tumors, mesothelioma (a very rare form of cancer
June 2022 | Volume 13 | Article 898745
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affecting the membranes lining internal organs, such as the
pleura, peritoneum and pericardium), thymoma, cervical
squamous cell carcinoma, endocervical adenocarcinoma, lung
cancer and gastric cancers (esophagus, stomach, pancreas) (43)
(see Table 1).

Even if there is no formal proof that NK cells are involved in
immunosurveillance, NK cells have been shown to have
antitumor effects in clinical studies. In several xenograft
models in which human cancer cells are implanted in
immunodeficient mice, the injection of human NK cells
controls tumor elimination (44, 45). Solid evidence for the
targeting of human tumors by NK cells in patients has been
provided by studies of allogeneic hematopoietic stem cell
transplantation (HSCT), in which donor NK cells expressing
inhibitory KIRs mismatched with the patient’s cells for MHC
class I (MHC-I) molecules because they recognized recipient
myeloid leukemia cells as foreign cells (46).

In solid tumors, NK cell infiltration seems to be essential for a
robust immune checkpoint blockade (ICB) response (47).
Interestingly, transcriptomic analysis of patient samples
corresponding to gastric (32), neuroblastoma (38), hepatocellular
carcinoma (33), non-small cell lung cancer (NSCLC) (48), head and
neck (36) and melanoma (37) tumors have revealed a correlation
between NK cell infiltration and better patient outcomes regardless
of treatment. Furthermore, NK cell infiltration in solid tumors, as
monitored by immunohistochemical analyses of renal cell
carcinoma (49), breast cancer (50), adenocarcinoma lung cancer
(51), squamous cell lung cancer (34) and NSCLC (35) patients, is
associated with better overall survival.

Based on all of this evidence, the targeting of NK cells as been
proposed as a means of improving immunotherapies for cancer
control, at the forefront of cancer research.
NK CELL ACTIVATION

NK cells gauge their environment by integrating signals delivered
through ligands binding to inhibitory and activating germline-
encoded receptors. The long intracellular part of inhibitory
Frontiers in Immunology | www.frontiersin.org 3
receptors contains a highly conserved signaling motif, the
immunoreceptor tyrosine-based inhibitory motif (ITIM)
defined by the consensus sequence S/I/V/LxYxxI/V/L. When
this inhibitory receptor is triggered, the ITIM is tyrosine
phosphorylated, leading to the recruitment of the SH2 domain
(Src Homogy domain 2)-containing protein phosphatases SHP-
1/2 or phosphatidylinositol phosphatase SHIP (52). These
phosphatases dephosphorylate key signaling molecules
involved in the activation pathways, thereby inhibiting cell
activation. This inhibitory signal results principally from the
interaction of inhibitory receptors, such as KIR in humans and
Ly49 in mice, with physiological levels of MHC-I molecules. The
CD94/NKG2A heterodimer is another major inhibitory receptor,
expressed by around half the NK cells in human and mice; it is
capable of recognizing non-classical MHC-I molecules, such as
human leukocyte antigen (HLA)-E in humans and Qa-1b in mice
(53, 54).

NK cell activation results from the engagement of activating
receptors, such as the activating isoforms of KIRs and Ly49, the
natural cytotoxicity receptors (NCRs), the SLAM (signaling
lymphocyte activating molecule)-related receptors, NKG2D
and CD16, leading to NK cell activation through the initiation
of different signaling pathways (55). Activating receptors can be
classified into three groups: receptors associating with adaptors
bearing the immunoreceptor tyrosine-based activation motif
(ITAM) (activating KIRs, CD16 and NCRs), NKG2D and
other receptors signaling via different pathways (CD2, 2B4,
DNAM-1 and NKp80). NKG2D associate with DAP10 in
humans but with DAP12 (also known as TYROBP/KARAP) in
mice. CD16, NKp46 and NKp30 are coupled to CD3z and FcRg
as homo- or heterodimers, whereas NKp44 and KIR-S signal
through DAP-12 (Figure 1). CD3z, FcRg and DAP12 harbor
ITAM motifs defined by the consensus sequence YxxL/Ix(6-8)
YxxL/I (56, 57). Cell-surface receptor aggregation induces the
recruitment of Src protein tyrosine kinases, which phosphorylate
the ITAM, leading to the recruitment and activation of the
tandem SH2 domain–containing Syk and ZAP-70 tyrosine
kinases. This cascade of events leads to the recruitment and
phosphorylation of multiple signaling molecules (LAT, SLP-76,
TABLE 1 | Clinical evidence for a role of NK cells in controlling cancer.

Evidence Cancer type Prognosis References

Dysfunction in NK cell cytotoxicity Multiple cancer types Higher rate of cancer incidence (31)

NK cell lymphopenia and GATA2 deficiency Acute myeloid leukaemia Higher rate of cancer incidence (30)

NK cell lymphopenia and MCM4 deficiency Lymphoma Higher rate of cancer incidence (29)

NK cell infiltration

Gastric cancer Better patient prognosis (32)

Hepatocellular carcinoma Better patient prognosis (33)

Squamous cell lung cancer Better patient prognosis (34)

Non-small cell lung cancer Better patient prognosis (35)

Head and neck cancer Better patient prognosis (36)

Melanoma Better patient prognosis (37)

NK cell gene signature Neuroblastoma Better patient prognosis (38)

Presence of NKp46 transcripts Melanoma Better patient prognosis (39)
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PI3K, PLCg, Grb2, Vav, Cbl, Nck) and the expression of
subsequent effector functions (52). Adaptor molecules differ in
the number of ITAMs. FcRg and DAP12 each contain only one
ITAM, whereas CD3z has three ITAM motifs. The CD16 Fc
receptor, NKp46 and NKp30 can, therefore, theoretically signal
via the phosphorylation of up to six ITAMs, whereas KIR-S and
NKp44 can deliver activating signals via the phosphorylation of
only two ITAMs (55).
CELL SURFACE RECEPTORS
ASSOCIATED WITH ITAM-BEARING
POLYPEPTIDES IN HUMANS

Activating KIRs
KIR genes are located in the leukocyte receptor complex on
chromosome 19. The KIR gene family encompasses 15 genes and
2 pseudogenes. The KIR nomenclature indicates the structure
and the function of the receptor, and take into account the
nucleotide sequence similarity among the different KIR family
members (17). Thus, the nomenclature indicates the numbers of
extracellular domains (2D or 3D), and provides information on
the length of the cytoplasmic tail (long L or short S). In general,
activating receptors have a short cytoplasmic fragment and
possess in their transmembrane region, of a charged lysine
residue that allows their association with the DAP12 bearing
the ITAM motif. Only the KIR2DL4 receptor can conduct both
activating and inhibitory signals. KIR genotypes are divided into
A and B haplotypes: haplotype A contains only one activating
receptor 2DS4 while haplotype B contain different combinations
of the activating genes KIR2DS1, -S2, -S3, -S5 and KIR3DS1.
Haplotype B can contains from one to five activating KIR
receptors. KIR ligands are HLA class I, HLA-C and HLA-B as
indicated in Figure 1. Additionally, recent work has shown that
Frontiers in Immunology | www.frontiersin.org 4
KIR2DS2+ NK cells can respond to different malignant cell lines
in vitro through the interaction of KIR2DS2 with a b2-
microglobulin-independent ligand (58).

Upon engagement by their ligands, activating KIRs signal via
DAP12 and promote NK cell functions. Correlation between
activating KIR and cancer prevalence is still unclear, but it has
been shown that KIR2DS1, 2DS3, 2DS5, 3DS1 are associated
with overall survival in gastric cancer (59). However, the
presence of KIR2DS2, regardless of the HLA-C genotype, is
associated with neuroblastoma (60).

CD16
The FCGR3A gene encodes the CD16 receptor. This receptor
consists of two extracellular Ig domains, a short cytoplasmic tail
and a transmembrane domain (Figure 1). It associates with FcRg
and CD3z homodimers or heterodimers in humans and with
FcRg homodimers in mouse NK cells (56, 57). CD16A is a low to
intermediate-affinity glycoprotein transmembrane receptor for
the Fc domains of IgG1 and IgG3 expressed by NK cells, whereas
the isoform CD16B is mainly expressed by neutrophils. CD16
engagement initiates antibody-dependent cell-mediated
cytotoxicity (ADCC), and CD16A expression levels are
positively correlated with the ADCC potency of NK cells (61,
62). Upon CD16A engagement, tumor cells can be killed by the
release of cytotoxic granules. Also, NK cells produce
proinflammatory cytokines, such as IFN-g, and chemokines,
which lead to the recruitment and activation of tumor-
infiltrating immune cells, contributing to tumor cell killing
(63–71). CD16 triggering also affects NK cell survival, as CD16
ligation facilitates proliferation and sustained growth of IL-2-
activated human NK cells (72). However, CD16 ligation also
promotes NK cell death (73).

Two polymorphic variants of CD16A have been described
resulting from a single nucleotide polymorphism (SNP). These
allelic variants differ in their affinity for IgG with a KD of 0.75
FIGURE 1 | ITAM-bearing receptors in humans. ITAM-bearing receptors in humans are represented at the membrane associated either with CD3z or with FcRg as
homo- or heterodimers. ITAM motifs are represented with the proteins involved in the activation signal cascade. Natural ligands for KIR-S and CD16, and tumor
ligands for NCRs are indicated.
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µM for CD16A-158V and 5 µM for CD16A-158F, and this can
affect the efficacy of tumor-targeting therapeutic mAbs (74).
Patients homozygous for the higher-affinity CD16A variant with
follicular lymphoma (FL) (75), non-Hodgkin lymphoma (76),
CRC (77), or breast cancer (78) have a better clinical outcome
after treatment with anti-tumor mAbs than patients with the
low-affinity CD16 allele (see Table 2). This correlation has been
observed in many, but not all studies (106–110), suggesting that
other parameters may also be involved, such as variability in
copy numbers of FCGR3A transcripts (61). In addition to
recognizing IgG, CD16A has been shown to mediate
spontaneous cytotoxicity of melanoma cells (111) by
associating with CD2 in cis to recognize CD58 as a ligand (112).

Unlike other activating receptors expressed by NK cells,
CD16A displays a downregulation of its surface expression
after triggering, by cleavage and shedding induced by the
ADAM17 metalloprotease (113–117). However, ADAM17
deficiency in humans does not affect NK cell effector activities
(118). ADAM-17 is overexpressed in several human cancers,
such as non-small cell lung cancer (119) and gastric carcinoma
(120, 121), and this overexpression is associated with poor
patient survival. CD16A levels on the surface of NK cells are
downregulated in the tumor microenvironment of colorectal
carcinoma (80), ovarian carcinoma (81), head and neck
cancers (82), breast cancer (122) and melanoma (79),
contributing to NK cell dysfunction.

NKp46
The NCR family has three members: NKp46, NKp44 and
NKp30. NKp46 (or CD335, NCR1), is the only NCR conserved
across mammalian species; it is expressed by all mature NK cells,
ILC1 (123), a subset of ILC3, and Tgd cells (124). NKp46,
encoded by the NCR1 gene, is a 46 kDa type 1 transmembrane
protein from the immunoglobulin (Ig) superfamily characterized
by two immunologublin-C2-like extracellular domains
connected by a stalk domain to a transmembrane domain and
a short cytoplasmic tail. NKp46 is associated with CD3z and/or
FcRg at the cell membrane (125) (Figure 1).

NKp46 recognizes several microbial ligands, a surface protein
on healthy pancreatic b cells and the soluble complement factor
P (124). In vitro, NK cells can kill different types of tumor
cells via NKp46, but the identity of the ligand involved remains
unknown. In vivo, genetic deficiencies of NKp46 in mice impair
the clearance of subcutaneous PD1.6 T lymphoma (126), RET
melanoma tumors (127) and B16 melanoma metastases in the
lung (127–129). Moreover, the overexpression of an NKp46
transgene has been shown to enhance the clearance of
melanoma metastases in the lung (130). Enhanced NKp46
signaling has been shown to elicit IFN-g secretion and to
increase fibronectin deposition in the tumor, altering the
architecture of the solid tumor and decreasing the formation of
melanoma metastases (39).

NKp46 expression at the cell surface is downregulated on NK
cells/ILC1 from patients with acute myeloid leukemia, this
phenotype being reversible upon complete remission (83–85)
(see Table 2). Patients with cervical cancer also present a
decrease in NKp46 expression on the surface of NK cells/ILC1
Frontiers in Immunology | www.frontiersin.org 5
(86). Still, the level of surface expression of NKp46 in breast,
liver, head and neck, metastatic melanoma, lung and kidney
cancer patients remains quite similar to the one of healthy
donors and was not correlated with NK cell dysfunction (87).

NKp30
NKp30 (or CD337, NCR3) is a 30 kDa protein expressed by all
mature human NK cells (131), ILC2, and tonsil-derived ILC3.
This surface receptor consists of an extracellular IgV domain and
a hydrophobic transmembrane domain with a charged arginine
residue capable of associating with the adaptor proteins CD3z
and/or FcRg (132) (Figure 1).

NKp30 has six variants (NKp30a, NKp30b, NKp30c,
NKp30d, NKp30e and NKp30f), due to alternative splicing.
NKp30a, NKp30b and NKp30c have a V-type Ig-like
extracellular domain, whereas NKp30d, NKp30e and NKp30f
have a different C-type Ig extracellular domain. It has been
reported that the triggering of the NKp30a and NKp30b
variants promotes the production of IFN-g, whereas cells
transfected with the NKp30c variant produce high levels of
immunosuppressive IL-10 (133). This difference may reflect
the strong association of the NKp30a and NKp30b variants
with CD3z and FcRg, whereas NKp30c associates very little
with these adaptors (133, 134), but the relevance of these
findings remains to be understood.

NKp30 recognizes microbial and tumor-derived ligands. The
tumor ligands it recognizes include nuclear HLA-B-associated
transcript 3 (BAT3), a protein chaperone released from tumors
(135) and reported to trigger NK cell activation. Conversely,
soluble BAT3 has been detected in the serum of patients with
Hodgkin lymphoma and chronic lymphocyte leukemia (93, 94),
and has been shown to suppress NK cell activation. BAT3 also
promotes melanoma metastasis (136, 137) and has been
identified as a biomarker for poorer patient survival in
hepatocellular carcinoma (95), gastrointestinal stromal tumor
(96) non-small cell lung cancer (97) and lung adenocarcinoma
(138) patients (see Table 2).

NKp30 binds to B7-H6, a B7 family member. Membrane
expression of B7-H6 renders cancer cells sensitive to NK cell-
mediated cytolysis (139). Conversely, NK cells chronically
stimulated with soluble forms of B7-H6 resulting from
metalloprotease-mediated shedding may display a downregulation
of NKp30 expression contributing to tumor immune escape (140).
Soluble B7-H6 has been detected in the serum of patients with
hepatocellular carcinoma (98) or gastrointestinal tumors (96) and in
peritoneal fluid from patients with ovarian cancer (99). High levels
of soluble B7-H6 are also associated with bone marrow metastasis
and the chemoresistance of neuroblastoma cells (88, 100).

Overall, increases in the level of NCR3 transcripts have been
reported to be associated with better patient survival in the
context of head and neck cancer, lung adenocarcinoma,
cutaneous melanoma and sarcoma (92). NKp30a and NKp30b
are associated with better survival and prognosis for
gastrointestinal stromal tumors (133, 141), hepatocellular
carcinoma (142) and pediatric neuroblastoma (88), whereas
morbidity is higher in patients expressing predominantly the
NKp30c isoform. NKp30 protein levels at the surface of NK cells
June 2022 | Volume 13 | Article 898745
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TABLE 2 | Dysregulation of NK cell surface receptor associated with ITAM-bearing polypeptides in cancer.

Activating
Receptor

Analysis Evidence Cancer Type Prognosis References

CD16 Flow cytometry &
Transcriptomic analysis

CD56dimCD16- NK cells are the
dominant subset in the tumor
microenvironment

Melanoma Better patient outcome (79)

Flow cytometry Low levels of CD16 expression at
the cell surface of CD56+ NK cells

Breast cancer ? (78)

Colorectal cancer ? (80)

Ovarian cancer ? (81)

Squamous cell carcinoma of the
head and neck

Worse patient outcome (82)

Sequencing Patients homozygotes for the
CD16A-158V treated with
therapeutic mAbs

Follicular lymphoma Better patient outcome (75)

Non-Hodgkin lymphoma Better patient outcome (76)

Colorectal cancer Better patient outcome (77)

Breast cancer Better patient outcome (78)

NKp46 Transcriptomic analysis Low levels of NKp46 transcripts in
stage IV patients

Melanoma Worse patient outcome (39)

Flow cytometry Low levels of NKp46 at the cell
surface of NK cells

Acute myeloid leukaemia Worse patient outcome (83–85)

Cervical cancer Worse patient outcome (86)

Flow cytometry Normal levels of NKp46 at the cell
surface of NK cells

Breast cancer ? (87)

Liver cancer ? (87)

Head and neck cancer ? (87)

Metastatic melanoma ? (87)

Lung cancer ? (87)

Kidney cancer ? (87)

NKp30 Protein assay, Flow
cytometry
& Transcriptomic
analysis

Soluble B7-H6 serum levels are
correlated with NKp30
downregulation

High risk neuroblastoma Worse patient outcome (88)

Pediatric neuroblastoma Worse patient outcome (88)

Flow cytometry Low levels of NKp30 at the cell
surface of NK cells

Acute myeloid leukaemia Worse patient outcome (89)

Breast cancer Worse patient outcome (90)

Chronic lymphocytic leukaemia Worse patient outcome (91)

Transcriptomic analysis Overall reduction in NKp30 mRNA
transcript levels

Melanoma Higher levels of NKp30 mRNA
isoform C transcripts are correlated
with worse prognosis

(39)

Transcriptomic analysis High levels of NCR3 transcripts Head and neck cancer Better patient outcome (92)

Lung adenocarcinoma Better patient outcome (92)

Cutaneous melanoma Better patient outcome (92)

Sarcoma Better patient outcome (92)

Protein assay High levels of BAT3 in the serum Hodgkin lymphoma Worse patient outcome (93)

Chronic lymphocytic leukaemia Worse patient outcome (94)

Transcriptomic analysis BAT3 is overexpressed in
tumor cells

Hepatocellular carcinoma Worse patient outcome (95)

Transcriptomic analysis
& Protein assay

Levels of soluble BAT3 are
correlated with downregulation of
NKp30 and mRNA transcripts

Gastrointestinal stromal tumor Worse patient outcome (96)

Sequencing Presence of BAT3 rs3117582 SNP Non-small cell lung lancer Association of BAT3 rs3117582 SNP
with an increased risk of developing
non-small cell lung lancer

(97)

IHC High expression of B7-H6 in the
tumor

Hepatocellular carcinoma Worse patient outcome (98)

Ovarian cancer Worse patient outcome (99)

Transcriptomic analysis
& Protein assay

High levels of soluble B7-H6 in the
serum and high expression of
B7-H6 in the tumor

Gastrointestinal tumor Worse patient outcome (96)

Neuroblastoma Worse patient outcome (100)

(Continued)
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are lower in patients with breast cancer (90) and chronic
lymphocytic leukemia (91). The monitoring of NKp30
expression could thus be of interest to predict NK cell
dysfunction. As such, NKp30 is downregulated in acute
myeloid leukemia and NKp30 status has been proposed as an
early prognostic biomarker identifying patients at intermediate
risk with a poor prognosis (89).

NKp44
NKp44 is an activating receptor expressed by activated human NK
cells, tonsil NCR+ ILC3s and plasmacytoid dendritic cells in
humans, but not in mice. NKp44 is a 44 kDa protein consisting
of an extracellular immunoglobulin V-like domain linked by a stalk
domain to a transmembrane domain connected to an intracellular
moiety (132) (Figure 1). At the membrane, NKp44 associates with
the adaptor protein DAP12.Three NKp44 mRNA splice variants
(NKp44-1,−2,−3) have been reported, each endowed with different
signaling capabilities based on the presence (NKp44-1) or absence
(NKp44-2 and−3) of an ITIM in their cytoplasmic tail. Initially
described as non-functional (143), this ITIM may, in some cases,
transduce an inhibitory signal (144). NKp44-1 expression has been
associated with poor survival in AML patients (145).

NKp44 recognizes various tumor ligands, including the
‘proliferating cell nuclear antigen’ (PCNA) (146), platelet-
derived growth factor D (PDGF-DD) (147), nidogen 1 (148).

PCNA is a nuclear protein involved in regulating DNA
replication, DNA repair, and cell cycle progression; it may be
overexpressed in cancer cells, promoting tumor survival and
malignancy (149). The NKp44/PCNA axis inhibits NK cell-
mediated cytotoxicity and IFN-g secretion via the ITIM motif
of the NKp44-1 variant (145).

NKp44 also recognizes the soluble PDGF-DD, a member of
the PDGF family corresponding to the active processed form of
PDGF-D (150, 151). Remarkably, NKp44/PDGF-DD interaction
promotes the secretion of IFN-g and TNF-a by IL-2-activated
NK cells, but not cytotoxicity, limiting tumor cell growth in vitro
and tumor spread in a transgenic NCR2 mouse model (147).
PDGF-DD is secreted by various tumors and promotes cell
proliferation, stromal cell recruitment, angiogenesis, epithelial-
mesenchymal transition and metastasis (152, 153) (see Table 2).

Barrow and coworkers recently identified transcriptional
signatures unique to PDGF-DD-activated NK cells and
established the abundance of this signature in The Cancer
Genome Atlas (TCGA) low-grade glioma (LGG) and bladder
Frontiers in Immunology | www.frontiersin.org 7
cancer (BLCA) datasets with CIBERSORT. They found that
tumors of patients enriched in PDGF-DD-activated NK cell or
memory CD8+ T-cell phenotypes were associated with a more
favorable prognosis in LGG, but with a poor prognosis in BLCA
(104, 105).

Nidogen 1 (NID1) is an extracellular matrix protein (148) that
promotes epithelial-mesenchymal transition (EMT) and metastasis
in ovarian cancer. NID1 increases the adhesion of ETV5-
overexpressing endometrial cancer cells to the extracellular matrix
(ECM) and promotes their proliferation and migration. The
NKp44/NID1 axis does not induce classical NK cell activation,
but it does inhibit the IFN-g production induced by PDGF-DD
following NKp44 engagement. Soluble NID1 levels are high in
non-small cell lung cancer (102), ovarian (103), head and neck
squamous cell carcinoma and glioma (101) (see Table 2).

Finally, NKp44 can also recognize a subset of HLA-DP
molecules, depending on HLA-DP allotype (HLA-DP401), this
interaction being further modulated by the peptide presented by
HLA-DP molecules (154). The NKp44/HLA-DP401 axis induces
the production of IFN-g by NK cells. Tumor cells exposed to
IFN-g express HLA-II (155). The NKp44/HLA-DP401 axis may,
therefore, contribute to the favorable prognosis of certain tumors
with high levels of HLA-II expression (156).
HARNESSING NK CELL ACTIVATING
RECEPTORS

The mechanisms underlying the therapeutic effect of antibodies used
in clinical practice depend on the cell types infiltrating the tumor and
the type of FcgR they express. Unlike myeloid cells and B cells, which
also display inhibitory FcgR isoforms, NK cells express only the
CD16A activating receptor for IgG, and are therefore particularly
responsive to therapeutic mAb-dependent activation. Several studies
have reported that increases in the numbers of intratumoral and
circulating NK cells are associated with favorable outcomes of
treatment with anti-HER2-mAbs, anti-EGFR-mAb (cetuximab) and
anti-CD20-mAb (obinutuzumab and rituximab) for breast cancer,
head and neck squamous cell carcinoma, follicular lymphoma and
diffuse large B-cell lymphoma (157–162). Furthermore, the Treg-
mediated suppression of ADCC is correlated with lower clinical
efficacy in cetuximab-treated HNSCC patients (163).

The first clinical studies of bispecific NK cell engagers (BiKEs)
date back to the 1990s. A F(ab’)2 format molecule was generated to
TABLE 2 | Continued

Activating
Receptor

Analysis Evidence Cancer Type Prognosis References

NKp44 Transcriptomic analysis
& IHC

High expression of NID1 at the
tumor cell surface

Glioma Worse patient outcome (101)

Head and neck squamous cell
carcinoma

? (101)

Protein assay High levels of NID1 in the serum Non-small cell lung cancer ? (102)

Ovarian cancer Worse patient outcome (103)

Transcriptomic analysis High expression of PDGF-DD in
tumor cells

Low grade glioma Better prognosis (104)

Bladder cancer Better prognosis (105)
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target CD16 and NK cells and CD30 as the tumor antigen (Tag), to
treat end-stage Hodgkin’s disease (164–166). Unfortunately, this
treatment was highly toxic. Novel BiKEs have been generated in
recent years, to link scFvs against an NK-cell receptor (CD16,
NKp46, NKp30 or NKG2D) and a Tag (BCMA, CD19, CD20,
CD30, CD33, CD38, CD133, EPCAM and GPC3) (166–173). The
engineering of the Fc portion of tumor-targeting mAbs makes
specific targeting of the FcRg subtype possible. Specific genetic
mutations and glycoengineering can be used to increase the
affinity of the IgG for CD16. The anti-CD20 mAb obinutuzumab
differs from rituximab in having a defucosylated Fc region,
increasing CD16 binding affinity (174–177). In combination with
chemotherapy, the antitumor efficacy of obinutuzumab was
superior to that of rituximab, with the elicitation of stronger
ADCC due to its binding to both CD16A-158V and 158F,
indifferently, in patients suffering from chronic lymphocytic
leukemia (CLL) or follicular lymphoma (178–181)

Another way to improve the responsiveness of NK cells is to
stimulate them with cytokines. The IL-12/IL-15/IL-18
inflammatory cytokine cocktail can confer memory-like features
onmurine and human NK cells in the absence of an antigen (14, 16,
182). Heteromeric IL-12/IL-15/IL-18/CD16scFv fusion proteins
were found not to increase NK cell reactivity over that achieved
with IL-12/IL-15/IL-18, and were, therefore, not developed any
further. Furthermore, the reactivity of CIML NK cells against HuT-
78 lymphoblasts in the presence of AFM13 (CD16/CD33) is
moderately higher than that of freshly isolated NK cells (183).
However, TriKEs composed of one scFv against CD16, another
against CD33 and a human IL-15 crosslinker promote NK cell
effector functions, and also increase NK cell expansion and
persistence in vivo in mouse preclinical models of AML and
ovarian cancer (184, 185). Thus, co-engagement of the ITAM and
JAK/STAT pathways renders the NK cell response more potent.
The humanized TriKE CD16/IL-15/CD33 is currently under
evaluation in a phase I/II trial for the treatment of high-risk
myelodysplastic syndromes, refractory/relapsed AML and
advanced systemic mastocytosis (NCT03214666).

NKp46 appears to be a particularly interesting potential target, as
it is persistently expressed on tumor-infiltrating NK cells, whereas
NKp30, CD16 and NKG2D are frequently downregulated. NKp46
is also more NK-cell specific, as NKG2D is widely expressed in T
cells and can cause severe T cell-associated toxicities (70). Bispecific
NK cell engagers against NKp46 and tumor antigen GPC3 are being
developed (186). Trispecific NK cell engagers targeting both NKp46
and CD16 on NK cells together with a Tag, named ANKET
(Antibody-based NK cell engager therapeutics), have been
generated. Bispecific NKp46-Tag activate NK cells, but trispecific
ANKET have greater potency for the activation of NK cells in vitro
and for increasing the number of NK cells at the tumor site, thereby
providing a higher degree of tumor growth control in solid and
Frontiers in Immunology | www.frontiersin.org 8
invasive mouse tumor models. The co-engagement of a larger
number of NK cell activating receptors therefore increases
efficacy. Trispecific ANKET can control tumor development in
preclinical models of B cell lymphoma (87). In pediatric B-cell acute
lymphoblastic leukemia, the trispecific ANKET targeting NKp46,
CD16 and CD19 has been shown to have greater cytotoxicity
against BCP-ALL cell lines and to lead to an increase in the
percentage of IFN-g+ NK cells (187). Finally, tetraspecific ANKET
combining NKp46/CD16/CD20 and IL-2 are now being generated
and are displaying strong preclinical antitumor efficacy against
CD20+ tumor cells and an ability to increase NK cell proliferation
(Demaria et al., unpublished data).

CONCLUDING REMARKS

High levels of NK cell infiltration have been associated with a
better prognosis, at least for some tumors. However, the tumor
microenvironment may affect NK cell invasion of the tumor
mass and may also have suppressive activities against NK cells. It
is thus of interest to favor NK cell infiltration of tumors and to
boost NK cell functions in the tumor bed. The antitumor
response of NK cells is effectively stimulated by tumor-
targeting mAbs, through NCRs and CD16 triggering. Current
research is aiming to promote NK cell survival/proliferation,
recruitment, and persistence at tumor sites. Future studies will
aim to potentiate these immunotherapies by combining them
with immune checkpoint inhibitors, chemotherapy or drugs
targeting the immunosuppressive tumor microenvironment.
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