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Abstract

Frameworks such as BioNetGen, Kappa and Simmune use “reaction rules” to specify bio-

chemical interactions compactly, where each rule specifies a mechanism such as binding or

phosphorylation and its structural requirements. Current rule-based models of signaling

pathways have tens to hundreds of rules, and these numbers are expected to increase as

more molecule types and pathways are added. Visual representations are critical for con-

veying rule-based models, but current approaches to show rules and interactions between

rules scale poorly with model size. Also, inferring design motifs that emerge from biochemi-

cal interactions is an open problem, so current approaches to visualize model architecture

rely on manual interpretation of the model. Here, we present three new visualization tools

that constitute an automated visualization framework for rule-based models: (i) a compact

rule visualization that efficiently displays each rule, (ii) the atom-rule graph that conveys

regulatory interactions in the model as a bipartite network, and (iii) a tunable compression

pipeline that incorporates expert knowledge and produces compact diagrams of model

architecture when applied to the atom-rule graph. The compressed graphs convey network

motifs and architectural features useful for understanding both small and large rule-based

models, as we show by application to specific examples. Our tools also produce more read-

able diagrams than current approaches, as we show by comparing visualizations of 27 pub-

lished models using standard graph metrics. We provide an implementation in the open

source and freely available BioNetGen framework, but the underlying methods are general

and can be applied to rule-based models from the Kappa and Simmune frameworks also.

We expect that these tools will promote communication and analysis of rule-based models

and their eventual integration into comprehensive whole-cell models.

Author summary

Signaling in living cells is mediated through a complex network of chemical interactions.

Current predictive models of signal pathways have hundreds of reaction rules that specify

chemical interactions, and a comprehensive model of a stem cell or cancer cell would be

expected to have many more. Visualizations of rules and their interactions are needed to

navigate, organize, communicate and analyze large signaling models. In this work, we

have developed: (i) a novel visualization for individual rules that compactly conveys

what each rule does, (ii) a comprehensive visualization of a set of rules as a network of
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regulatory interactions called an atom-rule (AR) graph, and (iii) a set of procedures for

compressing the AR graph into a pathway diagram that highlights underlying signaling

motifs such as feedback and feed-forward loops. We show that these visualizations are

compact and informative across models of widely varying sizes. The methods developed

here not only improve the understandability of current models, but also establish princi-

ples for organizing the much larger models of the future.

This is a PLOS Computational Biology Methods paper.

Introduction

Rule-based frameworks such as BioNetGen [1–3], Kappa [4–6] and Simmune [7,8] have been

used to build detailed kinetic models of signaling pathways (e.g., FcεRI [9–11], TCR [12], EGFR

[13,14], and p53 [15]). A rule-based model is composed of multiple “reaction rules”, where each

rule specifies a reaction mechanism and its structural requirements, e.g., a phosphorylation rule

would specify the set of binding interactions that bring the kinase into contact with substrate

and the specific site on the substrate that is phosphorylated. Current models range in size from

tens to hundreds of reaction rules, but these numbers are expected to increase as rule-based

models are collectively organized in databases of kinetic interactions [10,12,14,16] and eventu-

ally integrated into whole cell models [17]. Large models, whether rule-based or otherwise, are

difficult to understand or communicate without good visualization methods. Currently, the size

of rule-based model that can be simulated far exceeds the size of model for which useful visuali-

zations can be constructed automatically. In particular, we do not have visualizations that can

present the regulatory interactions embedded in a model as a network diagram of signal flows.

Also, other than using manual approaches, we do not have an effective approach to build com-

pact pathway diagrams to communicate the model. Solving the automated diagramming prob-

lem is necessary to make the leap from opaque machine-readable model descriptions that can

only be understood through manual annotation to transparent models that can be understood

and explored by the wider community.

Why is it challenging to visualize rule-based models? Tools that formally visualize the

model tend to focus on a single type of information, such as what molecular structures are

being modeled (contact map [6]), what rules have been defined on those structures (Simmune

[8], Virtual Cell [18,19], BioUML [20]), and how various rules interact with each other (rule

influence diagram [21], Kappa story [22]). To communicate the architecture of the model at a

global level, these different types of information have to be integrated into a single diagram,

but current approaches such as the Extended Contact Map (ECM) [23], the Systems Biology

Graphical Notation: Entity Relationship Diagram (SBGN:ER) [24] and the Molecular Interac-

tion Map (MIM) [25] rely on human interpretation, which decouples the diagram from the

executable model. Methods to automate generation of diagrams include the Simmune Net-

work Viewer [26], which uses an interactive approach to visualization, and the rxncon regula-

tory graph [27], which has a simplified representation of rule-based models that is more

amenable for visualization than standard rules. In Fig 1, we apply a contact map, a conven-

tional rule visualization approach, a rule influence diagram and an extended contact map to a

previously published model of immunoreceptor signaling [9], and below, we discuss the issues

raised by each type of information displayed in those diagrams. We also present more detailed

comparisons to the remaining tools in Discussion.

Automated visualization of rule-based models
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The contact map (Fig 1A) conveys the structural composition of a model (e.g. in [28–30]

and others) by showing what types of molecular structures are available to compose reaction

rules [6]. This includes structured objects called molecules, components, states and bonds,

which we explain in more detail in the Methods section.

Conventional rule visualizations (Fig 1B) show reaction rules as reactant to product trans-

formations. The reactant side includes not just the structures that are to be modified in the

rule, but also the structural requirements that need to be matched for the rule to be triggered.

To determine the action of a rule, the reader has to compare reactants to products, which can

be challenging for complex rules that have a number of structural requirements (e.g., rules in

the center column of Fig 1B). Nevertheless, this is the standard approach to show rules (e.g., in

[9,13,28] and others), whether using manually drawn diagrams such as Fig 1B or automated

diagrams generated by various software (Simmune [8], Virtual Cell [18,19], BioUML [20]).

The rule influence diagram (Fig 1C) represents each rule with a single node and each com-

puted interaction between rules as a directed edge [21,31]. Each rule interacts with other rules

through shared structures, e.g., a binding rule that produces a kinase-bound configuration reg-

ulates a phosphorylation rule that requires the same configuration. However, it is difficult to

understand regulatory interactions from just the rule influence diagram because it does not

show structures interacting with rules. Also, even moderate-sized models produce unreadably

dense diagrams such as Fig 1C, and the computation of influences is quadratic in the number

of rules, which is limiting for large models. Both BioNetGen and Kappa frameworks can gener-

ate rule influence diagrams, with the Kappa version allowing for different levels of precision

[31].

The extended contact map (Fig 1D) is an expert-curated diagram that highlights functional

roles of various structures and mechanisms as well as emergent regulatory architectures such

as feedbacks and cascades [23]. It uses standard diagramming conventions to convey function

(e.g., round arrowhead to indicate phosphorylation), annotation to relate diagram to model

Fig 1. Visualization of an immunoreceptor signaling model [9]. (A) Contact map showing the types of molecules in the model (Lig, Rec, Lyn,

Syk), their components, and the internal states (Y,pY) and bonds available to those components. (B) The 24 rules in the model visualized as reactant-

to-product transformations, showing what structures need to be matched for each rule to be triggered. (C) Rule influence diagram showing

interactions between pairs of rules, computed by explicitly comparing each pair of rules from panel B. (D) Extended Contact Map drawn by manually

interpreting the model according to a defined set of conventions [23]. Each diagram in panels B-D raises specific complexity and usability issues (see

main text).

https://doi.org/10.1371/journal.pcbi.1005857.g001

Automated visualization of rule-based models
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(e.g., edge label 2 pointing to rule number 2), and secondary documentation to convey biologi-

cal significance (e.g., an attached model guide that indexes and describes each rule). Each of

these components is constructed manually, which is also true for related methods such as

SBGN:ER [24] and MIM [25] (see Discussion). Several recent models make use of the ECM

([10,12,14,32] and others).

In this work, we introduce three new methods that together constitute a new visualization

framework for rule-based models. First, we introduce a novel compact rule visualization, which

is more concise than conventional representations of rules and does not require visual com-

parison to convey the action of the rule. Second, we develop the atom-rule (AR) graph for

showing regulatory interactions that can be efficiently derived from rules without pairwise

comparisons. The bipartite AR graph displays a global view of how rules interact through the

structures present in a model. Finally, because the raw AR graph is too dense for many applica-

tions, we present an AR graph compression pipeline that integrates expert knowledge and gen-

erates more readable diagrams. These methods are compatible with rules from the three

widely-used frameworks of BioNetGen [1–3], Kappa [4–6] and Simmune [7,8] and also with

the proposed interchange format SBML-multi [33]. We have provided an implementation in

BioNetGen 2.2 [3], which is already available to users and to frameworks that incorporate Bio-

NetGen, such as PySB [34] and Virtual Cell [18,19].

The remainder of the paper is organized as follows. In Methods, we briefly describe the new

visualization methods and apply them to simple examples. In Results, we apply the methods to

larger and more complex models, including a test set of 27 rule-based models from the litera-

ture. We use standard measures of graph readability to show that our methods produce more

readable diagrams than current alternatives. In Discussion, we present additional comparisons

with existing tools and discuss the potential benefits of the new tools for analysis of rule-based

models.

Methods

The frameworks of BioNetGen [1–3], Kappa [4–6] and Simmune [7,8] share similar rule-

based representations for which several formal treatments have been presented in the literature

(BioNetGen [35–37], Kappa [4,5,22]). The visualization tools developed in this work have

been implemented in BioNetGen, but operate on features of rule-based modeling common to

all three frameworks. We recommend Chylek et al. [38] for a recent review of rule-based

modeling, Sekar et al. [39] for a BioNetGen tutorial, and Hogg et al. (Supplement) [36] for a

description of the BioNetGen formalism. In this section, we use a simple rule-based model to

introduce reaction rule syntax and semantics, then demonstrate our new visualization

approaches, namely compact rule visualizations and atom-rule graphs. S1 Appendix provides

a more detailed theoretical foundation as well as specifications for algorithms and rendering

conventions. S2 Appendix provides a step-by-step tutorial for applying methods to a complex

signaling model from Suderman and Deeds [40].

Reaction rules

In a rule-based model, molecules are structured objects composed of components. Fig 2A

shows the BioNetGen language (BNGL) specification of molecules Enz and Sub representing

enzyme and substrate respectively, along with corresponding visualizations. Enz has compo-

nent sub and Sub has components enz, p1 and p2. By convention, a component with a binding

function is named after the molecule that it binds. So, sub on enzyme and enz on substrate rep-

resent binding sites for substrate and enzyme respectively. Components p1 and p2 represent

phosphorylation sites.

Automated visualization of rule-based models
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A component may have one or more modifications available to it, called internal states.

For example, components p1 and p2 may be in the unphosphorylated state Y or phosphory-

lated state pY. Bonds can occur between pairs of components. Here, component sub on an Enz

molecule can bind component enz on a Sub molecule to form an enzyme-substrate complex.

Patterns, which are constructed from molecules, components, internal states and bonds, spec-

ify the reactants and products of a reaction rule. In Fig 2B, we show the BNGL specification of

a simple enzyme-substrate system. Each rule requires a rate constant, with reversible rules,

such as R1, requiring rate constants for both forward and reverse directions. In Fig 2C, we

visualize the rules using a conventional approach.

Each reaction rule explicitly encodes model assumptions about a reaction mechanism.

Structural features specified on the reactant side and modified on the product side constitute

the reaction center. In rule R1 and its reverse, the sub-enz bond is formed in the forward

direction and removed in the reverse direction, which indicates that R1 models reversible

enzyme-substrate binding. In rule R2, the unphosphorylated state of p1 is transformed to the

phosphorylated state, which indicates that R2 models phosphorylation of component p1. Anal-

ogously, rule R3 models phosphorylation of component p2.

Fig 2. Visualizing rules of an enzyme-substrate system. (A) Structured molecule types Enz and Sub,

their respective components (enclosed in ‘()’) and their available internal states (prefixed by ~), shown in

BioNetGen syntax and graphic. (B) Reaction rules specifying the adding and removing of an enzyme-

substrate bond (binding partners tagged by !1) and phosphorylation of components p1 and p2, shown in

BioNetGen syntax. The reactants and products of a reaction rule are called patterns. (C) Conventional rule

visualization by drawing reactant and product patterns separately. (D) Compact rule visualization displays

operations (purple nodes) that transform the reactant patterns in each rule. On operation nodes, outward

edges indicate that a new structure is produced (bond in R1, state pY in R2 and R3) and inward edges

indicate that a structure is consumed (bond in _reverse_R1, state Y in R2 and R3). To see operation nodes

with their labels, see S1 Fig.

https://doi.org/10.1371/journal.pcbi.1005857.g002
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Features that remain the same on both sides of a rule constitute reaction context, which

describes the local conditions necessary for the mechanism to occur. In rules R2 and R3, the

sub-enz bond is present on both sides of the rule, which indicates that the respective phosphor-

ylation mechanisms require the enzyme-substrate binding interaction. Features omitted on

both sides of the rule are assumed not to affect the reaction mechanism. Components p1 and

p2 are omitted in rule R1 and its reverse, which specifies that binding and unbinding mecha-

nisms are independent of p1 and p2. Similarly, rules R2 and R3 specify that phosphorylation at

p1 is independent of p2 and vice versa.

Conventional rule visualization

The site graph is a nested graph used to represent patterns [22], such as the reactants and

products in Fig 2C. In this work, we use site graph to refer to the visualization scheme where

nodes representing molecules, components and internal states are nested hierarchically and

bonds are shown as edges between components.

In conventional rule visualization, as shown in Fig 2C, each reactant and product pattern

is drawn separately as a site graph. To distinguish reaction center and reaction context, e.g., to

identify that rule rule R2 transforms the internal state of p1 and requires the sub-enz bond, the

viewer has to visually compare the graphs from each side of the rule. This imposes a high men-

tal load for complex rules, especially when a large amount of context obscures a much smaller

reaction center.

Compact rule visualization

In this work, we introduce compact rule visualization (Fig 2D), which does not require visual

graph comparison and avoids drawing reaction context twice. We describe its derivation in S1

Appendix. Briefly, we identify and merge structures common to both sides of the rule, then

use special nodes called graph operation nodes to represent the modifications performed.

The directions of edges on the graph operation node indicate whether a structure is consumed

or produced by that operation. In Fig 2D, each rule is shown with the respective operation

node, namely AddBond (R1), DeleteBond (_reverse_R1), and ChangeState (R2, R3) respec-

tively. BioNetGen also supports creating and deleting molecules (AddMol, DeleteMol) and

multiple operations per rule (S1 Fig).

To interpret compact rule visualization, the viewer looks for graph operation nodes, which

are visually distinguishable from molecule, component and internal state nodes. The structures

adjacent to the graph operation nodes constitute the reaction center, whereas the remaining

structures constitute reaction context.

Atom-rule graphs

In this work, we introduce atoms and atom-rule graphs, which enable visualizing the regula-

tory architecture represented by a set of reaction rules.

Atoms are elementary structural features found in patterns. In Fig 3A, using BioNetGen

syntax as well as site graph visuals, we show instances of various types of atoms present in the

product pattern of rule R2. They include:

• molecule atoms, such as Enz and Sub,

• free binding site atoms, such as Sub(p1)

• internal state atoms, such as Sub(p1~pY)

• bond atoms, such as Enz(sub!1).Sub(enz!1)

Automated visualization of rule-based models
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The Atom-Rule (AR) graph indicates the relationship of a rule with various atoms, which

can be reactant, product and/or context. We describe its derivation in detail in S1 Appendix.

Briefly, a reactant or product edge is drawn if an instance of the atom is present in the reaction

center, on the left or right side of the rule respectively. A context edge is drawn if an instance is

present in the reaction context. In Fig 3D, we show AR graphs derived from the rules in Fig

2C, with atomic node labels in BioNetGen syntax. For convenience, the molecule atoms are

omitted if there are no molecules added or deleted in the rule.

To interpret the AR graph, one views each atom as a class of actionable sites present in the

model. For example, Sub(p1~Y) represents the class of unphosphorylated states on p1 compo-

nents that can potentially be acted upon by phosphorylation mechanisms. Then, one interprets

each edge as an interaction between a mechanism and a class of sites. A reactant or product

edge respectively indicates that a mechanism has a consumption or production effect on that

particular class of sites. A context edge indicates that the mechanism requires that particular

class of sites as a local condition. For example, from the AR graph of rule R2 in Fig 3B, we infer

that R2 consumes unphosphorylated p1, produces phosphorylated p1, and requires that p1 be

unbound and that enzyme be bound to substrate.

Fig 3. Atom-rule (AR) graphs. (A) Atoms, which are elementary structural features, shown in BioNetGen

syntax and graphic. (B) Atom-rule graphs derived from the individual rules in Fig 2B. (C) The full atom-rule

graph of the model, merged from individual graphs in panel B. AR graphs have three edge types: reactant

(dark color, pointed towards rule), product (dark color, pointed away from rule), and context (light color,

pointed towards rule), which indicate whether an instance of an atom is present in the rule’s reaction center

(reactant/product) or reaction context.

https://doi.org/10.1371/journal.pcbi.1005857.g003
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The model AR graph, as in Fig 3C, is a bipartite graph between rules and atoms that is con-

structed by merging AR graphs of individual rules. Paths on the model AR graph that alternate

between rules and atoms represent signal flows. A particular set of rules will always produce the

same AR graph, which is a complete representation of signal flow in that rule set between atoms

and rules.

Compressing AR graphs

To build compact pathway diagrams that convey function, we provide a pipeline for reducing

the complexity of the model AR graph (Fig 4A) while preserving relevant regulatory features.

Briefly, it involves:

1. Removing low-priority atoms and rules (Fig 4B).

2. Sorting atoms into groups (Fig 4C).

3. Sorting rules into groups (Fig 4D).

4. Merging groups of nodes and their incident edges (Fig 4E).

The output of this pipeline is the compressed model AR graph.

To decide which atoms and rules to remove (Step 1) as well as which atoms belong together

as groups (Step 2), we take a semi-automated approach. An automated heuristic grounded in

commonly encountered biological scenarios makes a first pass through the full AR graph and

outputs a template file containing the choices made by the heuristic. To account for nuances of

individual systems, the user can edit this template to make alternate choices and import it back

into the visualization tool (see tutorial in S2 Appendix for a demonstration). Following this, an

automated procedure examines each rule on the graph, the edges incident on the rule and the

atom groups adjacent to the rule, then groups rules that share the same edge signature (Step

3). Currently, we support two types of edge signature: strict, which examines all three edge

types, and permissive, which examines only reactant and product edges. Finally, an automated

procedure replaces each group of nodes with a single representative node (Step 4). Edges inci-

dent on individual nodes are merged onto the representative node. A particular set of pipeline

inputs (edge signature, template) will generate the same compressed AR graph, but these

inputs can be tuned to produce different compressed AR graphs.

Each step in the pipeline has a specific interpretation. Atoms and rules that are removed

represent structures and mechanisms with low functional priority, which are typically free

Fig 4. Compressing AR graphs. (A) The full model AR graph from Fig 3C. (B) Removing atoms and rules

with low priority, such as free binding sites, unphosphorylated states and the unbinding rule. (C) Grouping

structurally similar atoms, e.g., Sub_pY = phosphorylated states of p1 and p2, Enz|Sub = bond linking Enz

and Sub. (D) Grouping rules with similar edge signatures, e.g., rules R2 and R3 both have a context edge

from Enz|Sub and a product edge into Sub_pY. (E) Each group is merged into a single node that combines all

incident edges. Panels B-C are semi-automated, whereas panels D-E are fully automated.

https://doi.org/10.1371/journal.pcbi.1005857.g004
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binding sites, unphosphorylated states, unbinding rules and dephosphorylation rules. Atom

groups represent functional categories of biological structures, e.g., the set of phosphorylation

sites on a receptor. Rule groups represent categories of similarly acting mechanisms, e.g., phos-

phorylation mechanisms active at a particular group of sites. Merging groups is equivalent to

reducing the resolution of the graph from individual sites and processes to broad categories of

those elements. Permissive grouping also introduces a weaker semantic for the context edge

on the compressed graph: a merged group node with a context edge implies that at least one of

its members prior to merging had the same context edge.

Implementation

An implementation of the methods described here is freely available as part of the open source

BioNetGen distribution at http://bionetgen.org. A typical procedure involves calling a “visual-

ize()” method from the BioNetGen model file with arguments for user input as well as a tem-

plate file with edits, if applicable. The default template file can also be automatically generated

as a text file. The typical visualization output is a file in GML format (graph modeling lan-

guage) [41,42] encoding nodes, node labels, edges, edge directions and style attributes of nodes

and edges such as color and shape. To lay out the graph, i.e., assign specific coordinates to

nodes, we recommend using a third party application such as the yEd graph editor (http://

yworks.com/yed), which was also used for the graphs shown in this paper. The tutorial in S2

Appendix provides a detailed walkthrough of the visualization tools using the model from

Suderman and Deeds [40] as an example.

Graph complexity analysis

We compiled a list of 27 rule-based models from the literature, which we list in S1 Table and

attach in S1 Dataset. The models had 2239 rules in total, with the number of rules per model

ranging from 6 to 625. We applied to these models a suite of nine visualization tools: contact

map, conventional rule visualization, compact rule visualization, Simmune Network Viewer,

rule influence diagram and atom-rule graphs at various steps in the complexity reduction pipe-

line: full model AR graph, AR graph with background removed, AR graph compressed using a

strict edge signature, and AR graph compressed using a permissive edge signature. The com-

pression pipeline was applied automatically by making default choices for prioritizing and

grouping nodes. On the output graphs, we computed number of nodes (n) and number of

edges per node (e/n), counting hierarchical relationships between nodes also as edges. We

present these statistics in the Results section.

Computational complexity analysis

Pseudocode for the algorithms underlying the tools as well as a detailed accounting of computa-

tional costs is available in S1 Appendix. Briefly, for compact rule visualization, the rate-limiting

step is building a correspondence map between left and right sides of the rule. Given a maximum

finite rule size, the cost can be considered as O(1) per rule. Examining the rule with the correspon-

dence map to synthesize the AR graph is also O(1) per rule. Merging AR graphs of individual

rules, grouping rules and merging groups are all O(n), where n is the number of rules.

Results

Visualizing interactions of reaction rules

Visualizing individual rules promotes understanding the structural and kinetic assumptions

encoded in a model. Unlike conventional rule diagrams, which require visually comparing

Automated visualization of rule-based models
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reactant and product sides of a rule, compact rule visualization explicitly indicates which modi-

fication is performed on which set of structures. Specifically, it allows us to distinguish reaction
center, the site of action of a rule, from reaction context, the structural requirements that need

to be matched for the rule to fire. In Fig 5A, we show compact rule visualizations of four reac-

tion rules from the immunoreceptor signaling model of Fig 1. Rules R3 and R6 have AddBond

operations and represent two distinct binding modes of Lyn kinase to the β domain of FcεRI

receptor. In R3, the U domain of Lyn binds the unphosphorylated β domain (constitutive

binding), whereas in R6, the SH2 domain of Lyn binds the phosphorylated β domain (activated

binding). Rules R4 and R7 have ChangeState operations and represent phosphorylation of the

β domain in receptor dimers, with the active kinase being Lyn recruited through constitutive

and activated modes respectively.

To understand a model, it is important to know how rules interact with each other and

whether they form common motifs such as feedback or feedforward loops. For example, the

rules in Fig 5A constitute a positive feedback loop: phosphorylation of β domain (R4, R7) acti-

vates Lyn binding (R6), which in turn promotes β phosphorylation (R7), but this is not obvious

from conventional and compact rule visualizations. Current methods identify regulatory inter-

actions between pairs of rules through graph comparison [21], simulation [6,22], or manual

interpretation [23]. In contrast, the atom-rule graph, which is a bipartite graph showing regula-

tory interactions between rules and elementary structural features called atoms (see Methods),

is constructed efficiently by examining each rule’s reaction center and reaction context. In Fig

5B, we show an AR graph constructed from rules R3, R4, R6 and R7, and the feedback loop is

visible as a path on this graph.

Tuning display of regulatory complexity

The model AR graph for the full immunoreceptor model (Fig 6A) is a complete representation

of signal flow in the model, encompassing all 24 rules. The compression pipeline (described in

Methods) extracts the essential features of signal flow from the model AR graph and displays

them as a compact pathway diagram. The steps of the pipeline, which we apply to the model

AR graph in Fig 6A, include:

Fig 5. Visualizing Lyn-FcεRI interactions. (A) Lyn binds β domain of receptor that is unphosphorylated

(constitutive binding–rule R3) or phosphorylated (activated binding–rule R6) via U or SH2 domains

respectively. Recruited Lyn trans-phosphorylates β domain on the ligand-crosslinked receptor dimer

(constitutively recruited Lyn–rule R4, actively recruited Lyn–rule R7). (B) The compressed atom-rule graph

reveals a positive feedback loop between activated Lyn recruitment and receptor phosphorylation (highlighted

with bold lines).

https://doi.org/10.1371/journal.pcbi.1005857.g005
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1. Removing atoms and rules with low priority,

2. Grouping structurally similar atoms,

3. Grouping rules with similar neighboring atoms,

4. Merging groups of atoms and rules.

In Step 1, we remove unphosphorylated states, dissociation rules and dephosphorylation

rules from Fig 6A, producing the graph in Fig 6B. In Step 2, we group bonds that link the same

molecules (Lig|Rec, Lyn|Rec, Rec|Syk) and phosphorylation sites on molecules (Rec_pY,

Syk_pY), producing the atom groups shown in S2A Fig. In Step 3, grouping rules that share

similar reaction centers and contexts produces the rule groups shown in S2B Fig, whereas

dropping the context similarity requirement produces the more inclusive rule groups shown

in S2C Fig. In Step 4, merging groups shown in S2B and S2C Fig produces the compressed AR
graphs in Fig 6C and 6D respectively.

Unlike the full AR graph, the compressed graphs are compact and easier to understand. It is

also easier to trace specific signal flows on the compressed graphs, such as the feedback between

Lyn-receptor binding and receptor phosphorylation (edges marked x in Fig 6A–6D). Under

default settings, the whole pipeline is automated, but the resolution of the compressed graphs

and the quality of the output diagram can be tuned by providing user input, which includes cus-

tomizing the heuristics for Steps 1 & 2 and choosing the grouping strategy for Step 3. The strict

grouping used in Fig 6C resolves three variants of Syk phosphorylation under various contexts

(nodes 1–3) and constitutive and phospho-activated Lyn|Rec binding modes (nodes 4–5),

whereas the permissive grouping in Fig 6D merges variants of the same process and represents

them with a single node (nodes 6,7). A specific set of pipeline inputs reproducibly generates the

same compressed graph from the model and serves as diagram documentation.

Visualizing reaction rule libraries

To test the scaling of our approach to the growing set of large rule-based models [10,12,14,16],

we applied the AR graph compression pipeline to two extensive models of receptor signaling:

Fig 6. Atom-rule graphs of the immunoreceptor signaling model of Fig 1 at various levels of compression. (A) Full AR graph. (B) AR graph with low

priority nodes removed. (C,D) Compressed AR graph following grouping and merging of nodes with a strict edge signature (C) or a permissive edge

signature (D). For uncompressed versions of panels C-D, see S2B–S2C Fig.

https://doi.org/10.1371/journal.pcbi.1005857.g006
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the FcεRI rule library constructed by Chylek et al. [10] (17 molecule types, 178 rules), and the

ErbB signaling model constructed by Creamer et al. [14] (19 molecule types, 625 rules). The com-

pressed graphs for these libraries are shown in Figs 7 and 8 respectively. Unlike the manually con-

structed Extended Contact Maps (ECMs) [23] that were published with these models, the graphs

we show are pathway diagrams that were generated directly from the model specification. In S2

Appendix, we provide a tutorial on generating similar diagrams using the yeast pheromone signal-

ing model of Suderman and Deeds [40] (26 molecule types, 272 rules) as an example.

The modeler can customize pipeline inputs to capture specific biochemical features in the

model as well as strike a balance between compression and resolution on the output graph. For

example, the default heuristic assumes that co-occurring phosphorylation sites can be grouped

together, but for the FcεRI model, we wanted to distinguish between co-occurring phosphory-

lation sites with opposing functions, specifically those on Src family kinases Lyn and Fyn

(SFKs). So, during atom grouping, we grouped functionally similar sites across molecules, e.g.,

the group SFK_Act_p contains activation-related phosphorylation sites on both Lyn and Fyn.

As a result, the output graph (Fig 7) resolves the regulatory interactions of a generic SFK rather

than Lyn and Fyn individually. Similarly, for the much larger ErBb model, creating functional

groups such as ligands, receptors, and receptor dimers caused a dramatic reduction in com-

plexity, with the output graph (Fig 8) showing signaling interactions of a generic ErbB recep-

tor. Alternatively, grouping Lyn sites separately from Fyn or EGFR and ErbB2 receptors

separately from ErbB3 and ErbB4 will produce graphs larger than those shown in Figs 7 & 8,

with regulatory interactions resolved in more detail.

The compressed AR graph offers a convenient venue for analysis and exploration of a rule-

based model. For example, on the FcεRI and ErbB graphs, we were able to identify well-

known pathways such as MAPK (transparent overlays in Figs 7 & 8) using a combination of

node clustering and visual inspection. Also, on the FcεRI graph, we were able to trace network

motifs encoded in the model (Fig 9) by Chylek et al. [10]. Without the compressed AR graph,

the same analyses would have required examining hundreds of complex rules in various com-

binations, which would have required significant effort. Thus, the compressed AR graph offers

a useful proxy for the rule-based model that is more amenable to analysis.

Comparing complexity of visualization tools

To assess the readability of various visualization tools, we examined the joint distribution of

graph size n and edge density e/n for each visualization when applied to 27 published rule-

based models (see Methods), where n and e refer to number of nodes and edges respectively.

In S3 Fig, we report these distributions for 9 visualization methods, and in Fig 10, we show

their geometric means. The choice of metrics follows from Ghoniem et al. [43], who deter-

mined that user performance on visual graph analysis tasks decays with increasing graph size

and edge density. Ghoniem et al. used much denser graphs than the ones in our test set, so we

replaced their edge density metric
p
(e/n2) with e/n, which has a higher coefficient of variation

for the graphs in our test set (2.54 vs 1.03), and therefore higher discriminatory power.

The results in Fig 10 confirm our qualitative observations on the readability of current visu-

alizations and the improvements present in our new ones. Contact maps are generally compact

with sparse edges as they only show structural composition and do not show individual mech-

anisms or signal flow. Rule visualizations, both conventional and compact, produce large

graphs with sparse edges as they show the patterns encoded in each rule. However, compact

rule visualizations are smaller than conventional ones as they make use of graph operation

nodes. Diagrams showing interactions of rules are typically dense, such as rule influence dia-

grams and full AR graphs. However, full AR graphs have much lower edge density than rule

Automated visualization of rule-based models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005857 November 13, 2017 12 / 23

https://doi.org/10.1371/journal.pcbi.1005857


influence diagrams as they use atoms to mediate interactions between rules. When the com-

pression pipeline is applied, AR graphs’ size and edge density can be reduced to approach that

of contact maps. This makes compressed AR graphs as readable as contact maps, while con-

veying substantially more information about the signaling architecture. The Simmune Net-

work Viewer, which is intermediate between rule visualizations and full AR graphs, is

discussed in detail below.

Fig 7. FcεRI library of rules. Compressed AR graph (63 nodes, 112 edges) generated from the FcεRI model of

Chylek et al. [10] with 178 rules. The uncompressed graph has 305 nodes and 1076 edges. The model elements

can be roughly classified into six subsystems shown above. The files needed to reproduce this diagram are

provided in S1 Dataset.

https://doi.org/10.1371/journal.pcbi.1005857.g007
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Discussion

In this work we have developed new visualization approaches for rule-based models. The

novel compact rule visualization conveys the mechanism underlying individual rules more

effectively than conventional visualizations. The atom-rule (AR) graph conveys interactions

between rules more efficiently than rule influence diagrams. A compression pipeline for the

Fig 8. ErbB library of rules. Compressed AR graph (79 nodes, 144 edges) generated from the ErbB model of Creamer et al. [14])

with 625 rules. The uncompressed graph has 930 nodes and 5269 edges. The model elements can be roughly classified into eight

subsystems shown above. The files needed to reproduce this diagram are provided in S1 Dataset.

https://doi.org/10.1371/journal.pcbi.1005857.g008
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AR graph flexibly accounts for nuances of specific biological systems and reproducibly gener-

ates compact pathway diagrams even for models with hundreds of complex rules. These tools

open the door for new forms of analysis for rule-based models such as network motif

Fig 9. Signaling motifs in the FcεRI library recovered from the compressed AR graph. (A) Positive

feedback loops enhance binding of Src family kinases Lyn and Fyn (denoted SFK) to receptor and Pag1

scaffold as well as Syk auto-phosphorylation. (B) Pag1 phosphorylated by SFKs recruits Csk, which

negatively regulates SFKs by phosphorylation. (C) A coherent feed-forward loop activates Plcg1 from

phosphorylated Lat. (D) An incoherent feed-forward loop involving enzymes PI3K and Inpp5d (a.k.a. SHP2)

regulates levels of phosphoinositide PIP3, which is phosphorylated at both 3’ and 5’ hydroxyl positions

(denoted PI_3P and PI_5P respectively).

https://doi.org/10.1371/journal.pcbi.1005857.g009

Fig 10. Comparison of readability metrics across visualization methods. Graph size and edge density

averaged over 27 models (geometric mean) for 9 automated visualizations: contact map (cmap), conventional

rule visualization (rv), compact rule visualization(crv), Simmune Network Viewer diagram (sim), rule influence

diagram (rinf), full model atom-rule graph (ar), AR graph with background removed (ar1), AR graph compressed

with strict edge signature (ar2) or permissive edge signature (ar3). The compression pipeline (ar1-3) is semi-

automated, but here it was applied automatically with default settings. The full dataset is shown in S3 Fig.

https://doi.org/10.1371/journal.pcbi.1005857.g010
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identification. In Supplementary Material, we show the theoretical foundation for these tools

(S1 Appendix) as well as a tutorial for how to apply them to a large rule-based model (S2

Appendix).

Philosophical perspective

Edward R. Tufte, a pioneer of modern data visualization and analytic design, argues that “uni-

versal cognitive tasks” underlie how humans perceive information and motivates that “cogni-

tive tasks should be turned into design principles” [44]. In the biochemical literature, diagrams

and text employ a number of such cognitive tasks, and our automated methods recapitulate

some of these. For example, one often describes a biochemical process using an action verb

such as “binds” or “phosphorylates”. Graph operation nodes in compact rule visualization (Fig

2D) play a similar role in conveying the action of a rule. Similarly, one uses “site” to denote a

molecular part that behaves distinctly or is targeted by a specific process. Atoms used in the

atom-rule graph (Fig 3A) have a similar interpretation as types of actionable sites. Literature

descriptions and diagrams also selectively emphasize active states over ground states and sig-

nal-activated processes over processes that attenuate the signal or occur in the background,

which allows the reader to filter redundant information. Removing low priority nodes on the

AR graph follows a similar principle (Fig 4B). Text descriptions routinely categorize molecules

and sites using principles such as homology and functional similarity [45–48], and use broad

terms to summarize information about specific molecules and sites. Grouping atoms and rules

using the described heuristics (Fig 4C–4D) and compressing the AR graph (Fig 4E) recapitu-

lates this approach.

Caveats

Whenever compression is applied to data, there exists a many-to-one relationship between the

uncompressed and compressed representations. In the context of visualization, a rule-based

model will generate the same conventional and compact rule visualizations and vice versa, but

different models can generate the same contact map, rule influence diagram and AR graph.

Therefore, one should use each tool at the resolution for which it is designed to be used. Com-

pact rule visualization should be used to show the mechanism underlying each rule. The AR

graph is less useful for this purpose, as it approximates each rule as a bipartite graph. Instead, it

should be used to infer interactions between rules through formal or informal approaches.

When applying the compression pipeline to the AR graph, one should verify that the choice of

inputs is biologically reasonable. If this is the case, then the compressed AR graph is useful for

both communicating the model to others as well as graph analysis.

Related work

In addition to the approaches discussed in Introduction (Fig 1A–1D) and Methods (Fig 2C),

we show examples of other currently available tools (Fig 11) and how they compare with com-

pact rule visualizations and atom-rule graphs.

The SBGN Process Description (Fig 11A) [24] is a visualization standard for reacting enti-

ties. It has the same limitation as conventional rule visualization, namely the need for visual

graph comparison.

The Kappa story (Fig 11B) [22] shows the causal order in which rules can be applied to gen-

erate specific outputs, and these are derived by analysis of model simulation trajectories. It is

complementary to the statically derived AR graph for showing interactions between rules, but

it does not show the structures that mediate these interactions nor does it provide a
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mechanism for grouping rules. Integrating Kappa stories with AR graphs is an interesting area

for future work.

The Simmune Network Viewer (Fig 11C) [26] compresses the representation of rules differ-

ently from the AR graph: it merges patterns that have the same molecules and bonds, but differ

in internal states. Like the AR graph, it shows both structures and rules, and it produces dia-

grams with much lower density (‘sim’ in Fig 10), but it obscures causal dependencies on inter-

nal states (S4 Fig).

The SBGN Entity Relationship diagram (Fig 11D) [24] and the Molecular Interaction Map

(Fig 11E) [25], like the Extended Contact Map [23], are diagrams of model architecture that

rely on manual analysis.

The rxncon regulatory graph (Fig 11F) visualizes the rxncon model format [27], which uses

atoms (called elemental states in rxncon) to specify contextual influences on processes. This

approach, which is also followed in Process Interaction Model[49], is less expressive than the

graph transformation approach used in BioNetGen, Kappa and Simmune (S5 Fig). The AR

graph we have developed generalizes the regulatory graph visualization so it can be derived

from arbitrary types of rules found in BioNetGen, Kappa and Simmune models.

Future work

The AR graph offers many advantages over existing methods, but there are a number of ways

in which it could be improved or generalized. There are alternate ways to show the content of

Fig 11. Other visualization approaches applied to the enzyme-substrate phosphorylation model of

Fig 2. (A) The binding rule drawn using SBGN Process Description conventions, which require visual graph

comparison. (B) Kappa story, showing the causal order of rules that produces sub_pp, which refers to doubly

phosphorylated substrate. (C) Simmune Network Viewer diagram, which merges patterns across rules and

hides certain causal dependencies (details in S4 Fig). Here, the Enz.Sub node merges all enzyme-substrate

patterns shown in Fig 2. (D) SBGN Entity Relationship. (E) Molecular Interaction Map. Panels D-E require

manual interpretation of the model, like the extended contact map. (F) rxncon regulatory graph visualization of

the rxncon model format, which can only depict a limited subset of reaction rules (details in S5 Fig).

https://doi.org/10.1371/journal.pcbi.1005857.g011
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the AR graph, for example, as a two-dimensional matrix [43]. The compression algorithms can

be extended to identify more complex relationships, for example, treating the consumption of

an active state as an ‘inhibits’ relationship, grouping enzyme-binding and catalytic processes

together as a Michaelis-Menten mechanism, etc. In the immediate future, we plan to add sup-

port for other features present in the BioNetGen model specification, such as compartmental

states, transport rules and dependencies encoded in rate laws [50,51].

Additionally, the AR graph opens up rule-based models to a wide variety of analysis and

visualization tools, as it transforms a complex rule-based model into a simple bipartite graph.

For example, simulation fluxes can be conveniently visualized on a bipartite graph by mapping

numeric values to node size or edge thickness [52]. Also, as rxncon developers have shown,

one can perform stochastic Boolean simulations on a bipartite graph [53]. Model reduction

approaches developed for rule-based models have previously used information on interactions

between structures and rules [54] that can now be obtained directly from the AR graph. The

AR graph also serves as a rich source of information that could be mined using formal

approaches. Potential areas where new methods can be developed include identifying model

subsystems (as in Figs 7 and 8) by graph partitioning [55], identifying network motifs (as in

Fig 9) by cycle detection [56], dynamically grouping atoms and rules using graph structure dis-

covery [57,58], etc. Thus, adoption of the AR graph could pave the way for novel applications

of graph analysis, data mining and machine learning to rule-based models.

Outlook

A natural future direction for signaling models is to explore the effects of complex input sti-

muli and crosstalk between pathways [59,60] on a comprehensive scale. This would require

integrating rules from multiple sources, such as databases constructed in tandem by different

groups (e.g. [10,12,14,34]). The recently published whole cell model of Mycoplasma genitalium
[17] makes effective use of databases to organize and visualize kinetic information [61–63] and

provides proof-of-concept of a database-oriented approach. Currently, models of signaling

from various receptors have as many as hundreds of rules [10,12,14] and this number is

expected to increase by an order of magnitude to cover more molecule types, receptors and

signal pathways. We expect that AR graphs will play a role in the construction, navigation and

visualization of the rule-based databases of the future, similar to approaches deployed on other

biological data (VisANT [64], ChiBE [65]). The AR graph will also be useful for frameworks

that implement rule-based data structures (SBML-Multi [33], BioPax Level 3 [66]) or integrate

rules with higher-order model composition (Virtual Cell [18,19], PySB [34]). Thus, in addition

to the immediate benefit of visualizing and understanding large models, the AR graph is

expected to be useful in developing the comprehensive cell models of the future.

Supporting information

S1 Fig. Graph operation nodes. Supported graph operation nodes for compact rule visualiza-

tion. AddBond and DeleteBond are placed adjacent to the pair of components on which a bond is

added or removed respectively. AddMol and DeleteMol are placed adjacent to the molecule that

is added or removed respectively. AddBond/AddMol nodes have edges pointed outward from the

graph operation node to indicate that a new structure is created, whereas DeleteBond/DeleteMol

nodes have edges pointed inward to indicate that an existing structure is destroyed. ChangeState

node is placed adjacent to the internal state that is modified. It has one incoming edge from the

initial state and one outgoing edge to the destination state. The labels of the graph operation

nodes are hidden in the main text figures, but are evident from the edge directions.

(TIF)
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S2 Fig. Groups on the atom-rule graph. (A) On the full AR graph of Faeder et al. [9], the

default heuristic groups phosphorylation sites on the same molecules (e.g., Rec_pY) and bind-

ing interactions between the same pairs of molecules (e.g., Lyn|Rec). Then, an algorithm

groups rules that share the same edge signature, i.e., if they have the same edges to the same

adjacent atom groups. (B) A strict edge signature accounts for all three edge types and resolves

rule variants that have the same reactant/product edges but different context edges (e.g., R12

and R13), i.e., it does not group them together. (C) A permissive edge signature ignores con-

text edges, which results in broadly defined groups (e.g., rules R10-R13) that do not resolve

contextual rule variants. The labels of the rule nodes and rule group nodes are hidden in the

main text figures.

(TIF)

S3 Fig. Distribution of readability metrics for various visualization methods. Graph size

and edge density of 27 rule-based models (blue) and their geometric mean (red) for 9 types of

visualizations: (A) contact map, (B) conventional rule visualization, (C) compact rule visualiza-

tion, (D) Simmune Network Viewer, (E) rule influence diagram, (F) full model atom-rule

graph, (G) model AR graph with low-priority nodes removed, then (H) compressed using a

strict edge signature, or (I) a permissive edge signature. The geometric means for each visuali-

zation type are also plotted in Fig 10.

(TIF)

S4 Fig. Comparison of AR graph and simmune network viewer. (A) A model in which three

sites on a protein are activated in sequence. (B) The sequence is evident on the AR graph. (C)

The sequence cannot be seen on the Simmune Network Viewer diagram because the three pat-

terns used have the same molecule stoichiometry {A = 1} and are represented by the same

node, which obscures information mediated through state changes.

(TIF)

S5 Fig. Comparison of AR graph and rxncon regulatory graphs. (A) In BioNetGen, complex

reaction mechanisms are specified as reaction rules and the AR graph is inferred by analyzing

the specified rules. The reaction rule shown models trans-phosphorylation of receptor R in the

ligand-crosslinked dimer configuration by recruited kinase K, a frequently encountered mech-

anism in biochemical signaling. (B) In rxncon, regulation is specified using the rxncon syntax

and directly visualized as the regulatory graph. Reaction mechanisms are reconstructed from

the specified regulatory interactions and are limited to a small set of mechanisms, e.g., the cur-

rent version of rxncon does not natively support trans-phosphorylation reactions.

(TIF)

S1 Appendix. Detailed methods, algorithms and rendering conventions.

(DOCX)

S2 Appendix. Tutorial.

(DOCX)

S1 Table. List of models.

(DOCX)

S1 Dataset. Supplementary material for tutorial.

(ZIP)

S2 Dataset. Supplementary material for readability analysis.

(ZIP)
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53. Flöttmann M, Krause F, Klipp E, Krantz M. Reaction-contingency based bipartite Boolean modelling.

BMC Syst Biol. 2013; 7: 58. https://doi.org/10.1186/1752-0509-7-58 PMID: 23835289

54. Conzelmann H, Fey D, Gilles ED. Exact model reduction of combinatorial reaction networks. BMC Syst

Biol. 2008; 2: 78. https://doi.org/10.1186/1752-0509-2-78 PMID: 18755034

55. Buluc A, Meyerhenke H, Safro I, Sanders P, Schulz C. Recent Advances in Graph Partitioning. arXiv.

2013; 1–36.

56. Johnson DB. Finding All the Elementary Circuits of a Directed Graph. SIAM J Sci Comput. 1975; 4: 77–

84.

57. Coble JA, Rathi R, Cook DJ, Holder LB. Iterative Structure Discovery in Graph-Based Data. Int J Artif

Intell Tools. 2005; 14: 101–124. https://doi.org/10.1142/S0218213005002016

58. Cook DJ, Holder LB, Djokok S. Scalable discovery of informative structural concepts using domain

knowledge. IEEE Expert. 1996; 11: 59–68. https://doi.org/10.1109/64.539018

59. Hunter T. The age of crosstalk: phosphorylation, ubiquitination, and beyond. Mol Cell. 2007; 28: 730–8.

https://doi.org/10.1016/j.molcel.2007.11.019 PMID: 18082598

60. Hunter T. Signaling—2000 and Beyond. Cell. 2000; 100: 113–127. https://doi.org/10.1016/S0092-8674

(00)81688-8 PMID: 10647936

61. Karr JR, Sanghvi JC, Macklin DN, Arora A, Covert MW. WholeCellKB: Model organism databases for

comprehensive whole-cell models. Nucleic Acids Res. 2013; 41: 1–6. https://doi.org/10.1093/nar/

gks1039

62. Karr JR, Phillips NC, Covert MW. WholeCellSimDB: a hybrid relational/HDF database for whole-cell

model predictions. Database (Oxford). 2014; 2014: 1–8. https://doi.org/10.1093/database/bau095

PMID: 25231498

63. Lee R, Karr JR, Covert MW. WholeCellViz: data visualization for whole-cell models. BMC Bioinformat-

ics. BMC Bioinformatics; 2013; 14: 253. https://doi.org/10.1186/1471-2105-14-253 PMID: 23964998

64. Hu Z, Chang YC, Wang Y, Huang CL, Liu Y, Tian F, et al. VisANT 4.0: Integrative network platform to

connect genes, drugs, diseases and therapies. Nucleic Acids Res. 2013; 41. https://doi.org/10.1093/

nar/gkt401 PMID: 23716640
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