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Abstract Lysosomes are essential for cellular recycling, nutrient signaling, autophagy, and patho-
genic bacteria and viruses invasion. Lysosomal fusion is fundamental to cell survival and requires 
HOPS, a conserved heterohexameric tethering complex. On the membranes to be fused, HOPS 
binds small membrane-associated GTPases and assembles SNAREs for fusion, but how the complex 
fulfills its function remained speculative. Here, we used cryo-electron microscopy to reveal the struc-
ture of HOPS. Unlike previously reported, significant flexibility of HOPS is confined to its extremities, 
where GTPase binding occurs. The SNARE-binding module is firmly attached to the core, therefore, 
ideally positioned between the membranes to catalyze fusion. Our data suggest a model for how 
HOPS fulfills its dual functionality of tethering and fusion and indicate why it is an essential part of 
the membrane fusion machinery.

Editor's evaluation
This landmark study reports the cryo-EM structure of HOPS, a heterohexameric tether that partic-
ipates in the fusion of late endosomes, autophagosomes, and AP-3 vesicles with lysosomes. The 
structure provides a convincing update of earlier, lower-resolution models. Interestingly, the SNARE-
binding module is attached to the core of the complex. These results suggest possible mechanisms 
by which HOPS could catalyze SNARE-dependent fusion.

Introduction
Lysosomal fusion underlies a plethora of cellular processes. It is essential in the maintenance and 
upkeep of eukaryotic membranes and fundamental to secretion, endocytosis, and autophagy (Saftig 
and Puertollano, 2021). Macromolecules from different trafficking pathways end up in lysosomes 
where they are degraded (Klionsky et al., 2021; Saftig and Puertollano, 2021). This process relies 
on multiple fusion events within the endomembrane system. In general, fusion depends on SNAREs, 
which are present on opposite membranes and zipper into four-helix bundles with the help of Sec1/
Munc1 (SM) proteins (Jahn and Fasshauer, 2012; Südhof and Rothman, 2009; Wickner and Rizo, 
2017). Each assembled SNARE complex contains three Q-SNAREs (Qa, Qb, and Qc) and one R-SNARE, 
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which are categorized according to the interaction of the glutamine and arginine residues in the 
central hydrophilic layer of the otherwise hydrophobic interfaces within the SNARE complex (Jahn 
and Fasshauer, 2012; Südhof and Rothman, 2009; Wickner and Rizo, 2017). Prior to fusion, special-
ized tethering complexes establish tight links between organelles and interact with SM proteins to 
promote fusion (Baker and Hughson, 2016; Kuhlee et al., 2015; Ungermann and Kümmel, 2019). 
Despite their central position in trafficking, the underlying mechanics of tethering complexes and how 
they catalyze membrane fusion remain unresolved.

The heterohexameric HOPS complex mediates fusion of late endosomes, autophagosomes, and 
AP-3 vesicles with mammalian lysosomes or vacuoles in yeast (van der Beek et al., 2019; Spang, 
2016; Wickner and Rizo, 2017), and is probably the best-studied tethering complex. Fusion assays 
using yeast vacuoles or reconstituted SNARE-bearing proteoliposomes showed that HOPS is essential 
for membrane fusion at physiological SNARE concentrations (D’Agostino et al., 2017; Mima et al., 
2008; Zick and Wickner, 2016). HOPS is the target of viruses such as SARS-CoV2 (Miao et al., 2021), 
and its inactivation blocks Ebola infections (Carette et al., 2011). Furthermore, multiple HOPS muta-
tions can cause severe diseases ranging from Parkinson’s to lysosomal disorders (van der Beek et al., 
2019; Sanderson et al., 2021; van der Welle et al., 2021).

Five out of six HOPS subunits (Vps11, Vps16, Vps18, Vps39, and Vps41) are predicted to share 
a similar architecture, comprising an N-terminal β-propeller and a C-terminal α-solenoid domain 
(Figure 1A). Vps11 and Vps18 form the core and carry conserved C-terminal RING finger domains 
(Rieder and Emr, 1997), which are essential for HOPS formation (Hunter et al., 2017), but also show 
E3 ligase activity on their own (Segala et al., 2019). At the opposite sites, Vps41 and Vps39 bind to 
membrane-anchored small GTPases (the Rab7-like Ypt7 in yeast) (Bröcker et al., 2012; Lürick et al., 
2017; Ostrowicz et al., 2010), while Vps16 and the SM protein Vps33 establish the SNARE-binding 
module (Baker et al., 2015; Graham et al., 2013). Low-resolution negative-stain electron microscopy 
(EM) analyses revealed the overall arrangement of HOPS (Bröcker et al., 2012; Chou et al., 2016), 
yet were insufficient to localize the exact position of its subunits and suggested significant flexibility 
within the particle.

eLife digest Our cells break down the nutrients that they receive from the body to create the 
building blocks needed to keep us alive. This is done by compartments called lysosomes that are filled 
with a cocktail of proteins called enzymes, which speed up the breakdown process. Lysosomes are 
surrounded by a membrane, a barrier of fatty molecules that protects the rest of the cell from being 
digested. When new nutrients reach the cell, they travel to the lysosome packaged in vesicles, which 
have their own fatty membrane. To allow the nutrients to enter the lysosome without creating a leak, 
the membranes of the vesicles and the lysosome must fuse.

The mechanism through which these membranes fuse is not fully clear. It is known that both fusing 
membranes must contain proteins called SNAREs, which wind around each other when they interact. 
However, this alone is not enough. Other proteins are also required to tether the membranes together 
before they fuse. To understand how these tethers play a role, Shvarev, Schoppe, König et al. studied 
the structure of the HOPS complex from yeast. This assembly of six proteins is vital for lysosomal 
fusion and, has a composition similar to the equivalent complex in humans.

Using cryo-electron microscopy, a technique that relies on freezing purified proteins to image them 
with an electron microscope and reveal their structure, allowed Shvarev, Schoppe, König et al. to 
provide a model for how HOPS interacts with SNAREs and membranes. In addition to HOPS acting as 
a tether to bring the membranes together, it can also bind directly to SNAREs. This creates a bridge 
that allows the proteins to wrap around each other, driving the membranes to fuse.

HOPS is a crucial component in the cellular machinery, and mutations in the complex can cause 
devastating neurological defects. The complex is also targeted by viruses – such as SARS-CoV-2 – 
that manipulate HOPS to reduce its activity. Shvarev, Schoppe, König et al.’s findings could help 
researchers to develop drugs to maintain or recover the activity of HOPS. However, this will require 
additional information about its structure and how the complex acts in the biological environment of 
the cell.

https://doi.org/10.7554/eLife.80901
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The way HOPS fulfills its function remains speculative, and multiple mechanisms have been 
proposed, including a role as a bulky membrane stressor (D’Agostino et al., 2017) or, conversely, as a 
highly flexible membrane tether (Bröcker et al., 2012; Chou et al., 2016). In the absence of detailed 
structural data, it remains obscure how HOPS facilitates lysosomal fusion.
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Figure 1. Composition and architecture of the yeast HOPS complex. (A) Domain architecture and size of HOPS subunits. Predicted domains and 
structural features are indicated. (B) Size exclusion chromatography (SEC) of the affinity-purified HOPS. Purification was done as described in Materials 
and methods. (C) Mass photometry analysis. Peak fractions from SEC were analyzed for size. (D) Purified HOPS. Proteins from affinity purification 
(eluate) and SEC (red dashes in (B)) were analyzed by SDS-PAGE. (E) Overall architecture of the HOPS complex. Composite map from local refinement 
maps (Figure S1-3) was colored by assigned subunits. One of the consensus maps used for local refinements was low-pass-filtered and is shown as a 
transparent envelope. (F) Atomic model of the HOPS complex. For the N-terminal fragments of Vps41 and Vps39, which were not resolved to high 
resolution by local refinements, AlphaFold models are used and manually fitted into the densities of consensus maps (Figure 1—figure supplements 1 
and 2). The triangular shape of the complex is highlighted with the approximate distance between the β-propellers of Vps41 and Vps39. (G) Schematic 
representation of the HOPS complex indicates central features.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Gels and graphs for Figure 1b, c and d.

Figure supplement 1. Cryo-EM data processing workflow.

Figure supplement 2. Consensus maps and corresponding local refinement maps.

Figure supplement 3. Cryo-EM analysis of HOPS.

Figure supplement 4. Biochemical analysis of HOPS mutants lacking N-terminal β-propellers.

Figure supplement 4—source data 1. Blots and gels corresponding the experiments.

https://doi.org/10.7554/eLife.80901


 Research article﻿﻿﻿﻿﻿﻿ Cell Biology | Structural Biology and Molecular Biophysics

Shvarev, Schoppe, König et al. eLife 2022;11:e80901. DOI: https://doi.org/10.7554/eLife.80901 � 4 of 20

Results
Structure of the HOPS complex
Previously, structural studies were hampered by 
the low stability and flexibility of the complex, 
which required fixation through mild crosslinking 
for sample preparation and confined struc-
tural studies to negative stain analyses (Bröcker 
et al., 2012; Chou et al., 2016). To enable high-
resolution cryo-EM of non-crosslinked HOPS, we 
vastly improved and accelerated our purification 
protocols and removed any delays during the 
sample preparation procedure (Figure  1B–D). 
Single-particle analysis including extensive clas-
sifications followed by local refinements led to a 
composite structure with resolutions between 3.6 
and 5 Å (Figure 1E and Figure 1—figure supple-
ments 1–3).

HOPS forms a largely extended, slender struc-
ture extending approximately 430  Å in height and 130  Å in width, resembling a triangular shape 
(Figure 1E–G, Video 1). In the center of the modular complex, Vps11 and Vps18 align antiparallel 
through their elongated α-solenoids, establishing a large interface area of 1972 Å2 (Figure  1E-G, 
Figure 2, Figure 2—figure supplement 4), which resulted in the highest resolution obtained within 
HOPS (Figure 1—figure supplement 3) and is comparable with protein interfaces in other complexes 
with similar structural elements as in HOPS (e.g. Kschonsak et al., 2022). Interestingly, AlphaFold 
predicts a long unstructured region within Vps11 (Q760 to D784), resulting in an upper and lower part 
of the subunit. However, this region is clearly resolved and organized in our density. In our model, the 
two core subunits create a central assembly hub for the four other subunits (Vps39, Vps41, Vps16, 
and Vps33) that fulfill specific functions and localize to the periphery of the complex. The N-termini 
of Vps11 and Vps18 are located distally from the core and each carries a β-propeller, which can be 
deleted without affecting the complex formation (Figure 3A and D, Figure 1—figure supplement 
4). At the C-termini, both Vps11 and Vps18 have long α-helices which are followed by RING finger 
domains (Figures 1E–G, 2A and B, Figure 2—figure supplement 1). Both features are key elements 
for the stability of the modular architecture and serve as anchor points for the additional subunits. In 
agreement, HOPS, carrying mutations in the RING finger domains of Vps11 (vps11-1) (Peterson and 
Emr, 2001), selectively lost Vps39, whereas only Vps41 was obtained from a similar Vps18 mutant.

Vps41 and Vps39 provide the Ypt7-interaction sites at their peripheral N-terminal regions. Their 
extended C-terminal helices, similar to those of Vps11 and Vps18, are tightly interlocked through 
coiled-coil motifs with the long C-terminal α-helices and RING finger domains from the respective 
core subunits (Vps41 with Vps18, and Vps39 with Vps11) (Figure 2A and B). Additional stability of 
Vps39 within the complex is provided by the interaction of the long α-helix at the C-terminus of 
Vps39 with the β-propeller of Vps18 (Figure 2D). In our density, peripheral portions of both Vps41 
and Vps39 are least well resolved indicating their considerable flexibility. Multi-modular classification 
analyses revealed angular re-orientations of about 9° for Vps41 and 20° for Vps39 (Figure 2—figure 
supplement 3A-D) relative to the core, resulting in variable positions of the N-terminal β-propellers. 
At the top, Vps41 reaches out by approximately 100 Å in length and, similarly, Vps39 forms an elon-
gated arch at the bottom (Figure 1E–G), positioning both Ypt7-interacting units at the farthest ends 
of the complex.

The SNARE-binding element, composed of Vps16 and the SM protein Vps33, branches out to 
the lateral side of the complex approximately at the center of the structure (Figures 1E–G and 2). 
Vps16 shares a large interface with the coiled-coil motif formed by Vps18 and Vps41 and the N-ter-
minus of Vps18, which is stabilized through interactions between hydrophobic and charged residues 
(Figure 2C). Vps33 is in immediate contact with the structured loop of Vps18 (residues 824–831) that 
connects the elongated helix with the RING finger domain (Figure 2C). This, as well as the role of 
RING finger domains in the interlocking of other subunits, explains, why mutations at RING domains 
result in devastating human diseases and HOPS dysfunction (van der Beek et al., 2019; Edvardson 

Video 1. Overall architecture of HOPS tethering 
complex: transition between ribbon and molecular 
surface representation.

https://elifesciences.org/articles/80901/figures#video1

https://doi.org/10.7554/eLife.80901
https://elifesciences.org/articles/80901/figures#video1
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et al., 2015; Robinson et al., 1991; van der Welle et al., 2021; Zhang et al., 2016) and cause failure 
of correct HOPS assembly (Figure 2—figure supplement 2). Overall, the SNARE binding module 
appears to be stably connected to the central core, while only the short C-terminal section of Vps16 
α-solenoid (residues 739–798) displays high variability and is not resolved in our structure.

HOPS couples tethering to fusion activity
Tethering complexes bridge membranes by binding small GTPases, but also harbor or bind SM 
proteins (Ungermann and Kümmel, 2019). Reconstituted vacuole fusion is strictly HOPS and Ypt7-
dependent at physiological SNARE concentrations (Langemeyer et  al., 2018; Zick and Wickner, 
2016), suggesting that HOPS is not just a tether, but part of the fusion machinery (Baker et al., 2015; 
Wickner and Rizo, 2017). However, so far, it was unknown how tethering and fusion activities of HOPS 
may be linked mechanistically. To address this, we first analyzed the N-terminal β-propellers of Vps41 
and Vps39, the likely binding sites with Ypt7 (Lürick et al., 2017; Ostrowicz et al., 2010; Plemel 
et al., 2011). The intrinsic low affinity between HOPS and Ypt7 (Lürick et al., 2017) prevented recon-
stitution of the complex for structural studies, therefore, we instead relied on AlphaFold predictions. 
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Figure 2. Vps11 and Vps18 C-termini as central interaction hubs for all other subunits. Atomic model of HOPS with highlighted interaction sites 
between subunits. (A, B) Coiled-coil motifs followed by the RING finger domains (violet) are the key structural features of HOPS. (A) The Vps18 C-
terminal hub. Vps18 and Vps41 interact via the coiled coil and the Vps18 RING finger domain (displayed as non-transparent cartoons). (B) The Vps11 
C-terminal hub. Vps11 interacts via its RING finger domain and the coiled coil with Vps39 (displayed as non-transparent cartoons). (C) Connection of 
the SNARE binding module (Vps33 and Vps16) to the backbone of HOPS via interactions with the structured loop at the RING finger domain and the C-
terminus of Vps18 (displayed as non-transparent cartoons). (D) Vps39 connects by its C-terminal helix the β-propeller of Vps18, which provides additional 
stability in this part of HOPS.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Figure supplement 1. Comparison of Vps11 and Vps18 RING finger domains.

Figure supplement 2. Key role of the RING finger domains of Vps11 and Vps18 in HOPS stability.

Figure supplement 2—source data 1. Mass spectrometry raw data.

Figure supplement 3. Flexibility analysis of the HOPS complex.

Figure supplement 4. Interactions between core subunits Vps11 and Vps18.

https://doi.org/10.7554/eLife.80901
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Figure 3. HOPS couples tethering and fusion activities. (A) Schematic representations of HOPS wild-type (as in 
Figure 1G) and mutants lacking N-terminal β-propeller domains (indicated by pink asterisks). (B) Tethering assay. 
Fluorescently labeled liposomes loaded with prenylated Ypt7-GTP or none were incubated with HOPS and mutant 
complexes. Tethering was determined as described in Materials and methods. Data shown from three biological 
replicates, bars indicate standard deviation. (C) Fusion assay. Fusion of proteoliposomes carrying vacuolar SNAREs 
were preincubated with Ypt7-GDI, GTP, and Mon1-Ccz1. For fusion, HOPS wild-type or mutant and the soluble 
Vam7 SNARE were added (Langemeyer et al., 2020; Langemeyer et al., 2018). Analysis was done as described 
(Zick and Wickner, 2016). See Materials and methods. Data shown from three biological replicates, bars indicate 
standard deviation. (D) Representative 2D class averages obtained from negative-stain analyses of wild-type HOPS 
and mutants. Pink asterisks indicate missing densities in the mutants.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Figure supplement 1. Ypt7 interaction with Vps41 and Vps39.

Source data 1. Raw data for tethering (Figure 3B) and fusion assay (Figure 3C).

https://doi.org/10.7554/eLife.80901
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Additionally, we solved the structure of the β-propeller of Chaetomium thermophilum Vps39 by X-ray 
crystallography, which largely confirmed the predicted model (Figure 3—figure supplement 1A). 
Surprisingly, in the AlphaFold model, Ypt7 binding occurs at the α-solenoid of Vps39 where it does 
not directly interact with the β-propeller (Figure 3—figure supplement 1C), as originally expected. 
Furthermore, the binding site on Vps39 is placed approximately 5–6  nm above the membrane if 
Ypt7-anchored HOPS is in an upright position on supported lipid bilayers (Füllbrunn et al., 2021). 
Membrane-bound Ypt7 can still reach this site due to its 10 nm long hypervariable domain (not shown 
in the prediction).

In the predicted complex of Vps41 (residues 1–919) with Ypt7 (residues 1–185), the GTPase binds 
directly to the Vps41 β-propeller, as anticipated. However, it interacts on the opposite side from 
the membrane-interacting amphipathic lipid-packing sensor (ALPS) motif (Cabrera et  al., 2010; 
Figure 3—figure supplement 1B), suggesting that the hypervariable region of Ypt7 is required for 
binding, in analogy to Vps39. Curiously, in the predicted model, the ALPS motif faces away from the 
membrane which would hamper membrane binding. We noted, however, that this distal region of 
Vps41 (Figure  3—figure supplement 1B) displays substantial flexibility. The β-propeller of Vps41 
might, therefore, be oriented differently in the structure than predicted by AlphaFold, which may 
bring the ALPS motif in contact with the bilayer if Vps41 is bound to Ypt7. Nevertheless, future exper-
imental data will need to confirm the predicted AlphaFold model of Vps41 and Vps39 interaction with 
Ypt7.

Vps39 binds Ypt7 far stronger than Vps41 (Auffarth et al., 2014; Lürick et al., 2017), and may be 
assisted by Vps18 to sandwich Ypt7, whereas Vps41 binds to Ypt7 apparently alone (Figure 3—figure 
supplement 1D). Such a dual interaction could explain both tighter binding and a preferred orienta-
tion of HOPS on membranes (Füllbrunn et al., 2021). To test the functional importance, we generated 
HOPS complexes lacking the β-propeller of Vps11, Vps18, or Vps41 (Figure 3A). All complexes were 
purified in equimolar stoichiometry (Figure 1—figure supplement 4A), and interacted with Ypt7, but 
not the Golgi Rab Ypt1 in GST pull-down assay, suggesting that at least one Rab-binding site is main-
tained in all truncated complexes (Bröcker et al., 2012; Lürick et al., 2017; Ostrowicz et al., 2010; 
Zick and Wickner, 2016; Zick and Wickner, 2012; Figure 1—figure supplement 4B).

To determine the activity of HOPS mutants, we compared tethering and fusion. For tethering, we 
incubated liposomes bearing Ypt7-GTP with each complex and quantified clustering after centrifuga-
tion (Füllbrunn et al., 2021; Lürick et al., 2017). HOPS lacking the Vps41 β-propeller was inactive as 
shown (Lürick et al., 2017), whereas HOPS with truncated Vps11 or Vps18 was fully functional and 
as efficient as wild-type HOPS (Figure 3B). In contrast, when added to SNARE and Ypt7-GTP bearing 
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The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Point mutations affecting HOPS function.

https://doi.org/10.7554/eLife.80901
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liposomes, only wild-type HOPS, but none of the mutant complexes promoted fusion (Figure 3C). 
This was particularly puzzling for HOPS lacking either the Vps18 or Vps11 β-propeller as they had 
full tethering activity (Figure 3B). Therefore, we compared the structural features of HOPS mutants 
with the wild type using negative stain EM. Deletions of the β-propellers of Vps41, Vps11, or Vps18 
indeed resulted in a loss of protein density at the expected positions, while preserving the densities 
of all other subunits (Figure  3D). Interestingly, HOPS complexes lacking β-propellers in Vps11 or 
Vps18 showed an alteration in the relative orientation of Vps39 within the complex in some 2D class 
averages. This observed structural variation might be a result of the increased flexibility of mutant 
HOPS due to the lack of structural support by β-propellers of Vps18 and Vps11. We conclude that 
the β-propellers of Vps18 and Vps11 contribute to the overall structure of the HOPS complex or may 
play a stabilizing role during the fusion process, which would explain, why they are essential for the 
full activity of HOPS.

Discussion
Our data suggest a working model of how HOPS catalyzes fusion at lysosomes and vacuoles 
(Figure 4). According to our structure, the three major ligand binding sites of HOPS are arranged 
in a triangular fashion. While the two Ypt7-binding sites show significant conformational variability, 
the SNARE-interacting unit is firmly connected to the stable backbone formed by Vps11 and Vps18. 
For tethering, HOPS Vps39 and Vps41 bind Ypt7 on target membranes. During this process, HOPS 
remains upright on membranes (Füllbrunn et al., 2021). Then, the SM protein Vps33 and possibly 
other sites on HOPS (Krämer and Ungermann, 2011; Baker et al., 2015; Lürick et al., 2017; Lürick 
et al., 2015; Song et al., 2020) bind SNAREs from the opposing membranes, and zipper them up 
toward their membrane anchor (Figure 4). Note, that this process can be blocked by Orf3a in the 
COVID-19 SARS-CoV-2 virus (Miao et al., 2021). In our model, the backbone of HOPS dampens the 
movement of the vesicles and acts as a lever arm holding on to SNAREs during zippering (D’Agostino 
et al., 2017). This three-point arrangement would cause membrane stress and could explain how 
HOPS catalyzes membrane fusion (Figure 4). The physiological function of HOPS can be bypassed if 
large complexes are redirected to SNAREs at the fusion site (D’Agostino et al., 2017; Song et al., 
2017), which can even promote fusion of deficient SNARE complexes (Orr et al., 2022; Song et al., 
2021). Zippered SNAREs may then dissociate from HOPS and allow access for α-SNAP and NSF to 
recycle SNAREs (Zhang and Hughson, 2021).

How tethering complexes contribute to fusion poses a long-standing question in the field. The 
process necessitates the binding of two opposing membranes and exact coordination of the zippering 
procedure of membrane-bound SNAREs. Previous analyses suggested strong flexibility along the 
entire HOPS structure, which was interpreted as a hallmark of tethering complexes and an essential 
prerequisite to their function (Bröcker et al., 2012; Chou et al., 2016; Füllbrunn et al., 2021; Ha 
et al., 2016). Structural models of a largely open HOPS, based on negative stain EM. Chou et al., 
2016, supported the importance of HOPS structural flexibility. Flexibility was also observed in our 
previous negative stain EM structure (Bröcker et al., 2012). Instead, our cryo-EM data, collected on a 
highly pure and homogeneous sample that was not modified by any crosslinker or other fixative agents 
like negative stain, show that HOPS flexibility is limited. Taking the obtained resolution as a measure 
of sample flexibility (Rawson et al., 2016), we conclude that the backbone and the SNARE-binding 
module are the least flexible parts of HOPS and appear to be stably associated with each other. In 
contrast, the membrane interacting units of Vps41 and Vps39 show some flexibility with 10–20° move-
ments between particles, which substantially reduced their resolution (Figure 2—figure supplement 
3). We relate this flexibility to their function within HOPS, where it may dampen the motion of HOPS 
between membranes and stabilizes the SNARE interaction, which are necessary for fusion (Laage and 
Ungermann, 2001; Krämer and Ungermann, 2011; Lürick et al., 2015; Baker et al., 2015; Song 
et al., 2020). Mammalian HOPS contains the same six subunits as yeast HOPS, which are generally 
highly conserved and will therefore function similarly (van der Beek et al., 2019; van der Kant et al., 
2015). Our structure can hence be used to map disease prone mutations (Figure 4—figure supple-
ment 1) and may thus explain the consequences on HOPS function.

Due to low binding affinities, no structures of tethering complexes bound to Rabs have been 
solved. Here, we used AlphaFold to predict the interfaces of HOPS with its bound Rab7-like Ypt7 
protein to understand the positioning of HOPS during tethering (Figure 3—figure supplement 1). 

https://doi.org/10.7554/eLife.80901
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We suspect that this low binding affinity helps tethering complexes to also let go of the Rab when 
fusion progresses (Figure 4). Even though long coiled-coil tethers such as EEA1 can promote SNARE-
mediated membrane fusion (Murray et al., 2016), their cooperation with Rab GTPases in fusion is 
likely quite different from the mechanism proposed here (Ungermann and Kümmel, 2019).

Some tethering complexes such as CORVET, CHEVI, or FERARI have attached SM proteins (van 
der Beek et al., 2019; Solinger et al., 2020), others such as COG, GARP, Exocyst, and Dsl cooperate 
with SM proteins (Ungermann and Kümmel, 2019), which may catalyze fusion similar to HOPS. For 
each of these complexes, in vivo models for their function exist, yet proteoliposome fusion assays in 
the presence of the required small GTPases are either not available or not yet completely developed 
(Balderhaar et al., 2013; Ha et al., 2016; Lee et al., 2022; Maib and Murray, 2022; Ren et al., 2009; 
Rossi et al., 2020; Solinger et al., 2020). We expect that similar approaches as established for HOPS 
will further support the key role of tethering complexes and reveal their cooperation with SM proteins 
in SNARE-mediated membrane fusion.

The overarching principle suggested here for HOPS is not limited to lysosomal fusion but may 
extend to synaptic transmission, where the tether Munc13 and the SM protein Munc18 cooperatively 
catalyze the N- to C-terminal zippering of SNAREs during fusion (Lai et al., 2017; Rizo, 2022; Stepien 
et al., 2022; Stepien and Rizo, 2021). Both Munc18 and Vps33 interact similarly with the N-terminal 
part of the SNARE domains of the R- and Qa-SNARE and may promote assembly until the central 
zero-layer of the SNARE domain (Baker et al., 2015; Stepien et al., 2022).

During HOPS-mediated fusion, SNARE zippering beyond the zero-layer could then proceed, while 
the Vps33 lets go of the forming four-helix bundles (Stepien et al., 2022). However, HOPS binds both 
the N-terminal extensions of the Qa-SNARE Vam3 and other SNAREs, possibly via different binding 
sites along the HOPS complex (Laage and Ungermann, 2001; Lürick et al., 2015; Song et al., 2020). 
This association may thus maintain the force on membranes to catalyze full fusion, even if the SM 
protein lets go of the assembling SNARE complex (Figure 4). In agreement, HOPS complexes with 
deficient Vps33 can catalyze fusion of proteoliposomes only if the SNARE density is high (Baker et al., 
2015). In turn, vacuoles expressing a Qa-SNARE Vam3 variant lacking the N-terminal extension, which 
is needed to bind HOPS, show diminished fusion (Laage and Ungermann, 2001). This suggests that 
HOPS supports SNAREs by templating the association of R- and Qa-SNAREs and by binding the 
N-terminal regions of SNAREs.

We believe that the deletion of the β-propeller in Vps11 or Vps18 result in a similarly deficient 
HOPS due to a less stable backbone (Figure 3). In either case, coupling between a stable backbone of 
HOPS and SNARE binding may be impaired and could result in less specific activity as fusion catalysts. 
Future experiments are required to determine the precise reason for their fusion deficiency.

Overall, our insights provide a novel blueprint to understand HOPS function, dynamics, and regu-
lation both in fusion and in other functions of its subunits (van der Beek et al., 2019; Elbaz-Alon 
et al., 2014; Hönscher et al., 2014; González Montoro et al., 2021; González Montoro et al., 
2018; Wong et al., 2020), and imply a general role of tethering complexes as a catalytic part of the 
fusion machinery.

Materials and methods
Yeast strains
Yeast strains used in this study are listed in Supplementary file 1. In general, HOPS subunits were 
expressed under the control of the GAL1 promoter according to the standard protocol (Janke et al., 
2004). For HOPS subunit truncation (Vps41, Vps11, and Vps18) of the N-terminal part, the GAL1 
promotor was inserted into the genome at the respective position. The 3x-FLAG Tag was attached to 
the HOPS subunit Vps41, except for the 18 ΔN mutant.

Protein expression and purification from Escherichia coli
Rab GTPases for pulldown or tethering and fusion assays were expressed in Escherichia coli BL21 
(DE3) Rosetta cells. Cells were grown in Luria broth (LB) medium complemented with 35 µg/ml kana-
mycin and 30 µg/ml chloramphenicol. Cultures were induced at OD600=0.6 with 0.5 mM isopropyl-β-
d-thiogalactoside (IPTG) overnight at 16°C before harvesting by centrifugation (4800×g, 10 min, 4°C). 
Cells resuspended in buffer (150 mM NaCl, 50 mM HEPES/NaOH, pH 7.4, 10 % glycerol, 1 mM PMSF, 
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and 0.5-fold protease inhibitor mixture [PIC]) were lysed by a Microfluidizer (Microfluidics Inc) and 
centrifugated at 25,000×g, 30 min, 4°C. Supernatants were incubated with glutathione Sepharose 
(GSH) fast flow beads (GE Healthcare) for GST-tagged proteins or nickel–nitriloacetic acid (Ni-NTA) 
agarose (Qiagen) for His-tagged proteins for 2 hr at 4°C. The proteins were eluted with buffer (150 
mM NaCl, 50 mM HEPES/NaOH, pH 7.4, 10 % glycerol) containing 25 mM glutathione or 300 mM 
imidazole. Buffer was exchanged via a PD10 column (GE Healthcare). For tag cleavage, TEV protease 
was added after washing and incubated overnight. All proteins were stored at −80°C.

Purification of the 3xFLAG-tagged HOPS complex variants from yeast
Two liters of yeast peptone (YP) medium containing 2 % galactose (v/v) were inoculated with 6 ml of 
an overnight culture. Cells were grown for 24 hr and harvested by centrifugation (4800×g, 10 min, 
4°C). Pellets were washed with cold HOPS purification buffer (HPB, 1 M NaCl, 20 mM HEPES/NaOH, 
pH 7.4, 1.5 mM MgCl2, and 5% (v/v) glycerol). The pellet was resuspended in a 1:1 ratio (w/v) in HPB 
supplemented with 1 mM phenylmethylsulfonylfluoride (PMSF), 1× FY protease inhibitor mix (Serva) 
and 1 mM dithiothreitol (AppliChem GmbH) and afterward dropwise frozen in liquid nitrogen before 
being lysed in a freezer mill cooled with liquid nitrogen (SPEX SamplePrep LLC). The powder was 
thawed on ice and resuspended in HPB supplemented with 1 mM PMSF, 1× FY, and 1 mM DTT using 
a glass pipette, followed by two centrifugation steps at 5000 and 15,000×g at 4°C for 10 and 20 min, 
respectively. After centrifugation, the supernatant was added to 2 ml of anti-FLAG M2 affinity gel 
(Sigma-Aldrich) and gently agitated for 45 min at 4°C on a nutator. Beads were briefly centrifuged 
(500×g, 1 min, 4°C) and the supernatant was removed. Beads were transferred to a 2.5 ml MoBiCol 
column (MoBiTec) and washed with 25 ml of HOPS washing buffer (HWB, 1 M NaCl, 20 mM HEPES/
NaOH, pH 7.4, 1.5 mM MgCl2, and 20% (v/v) glycerol). FLAG-peptide was added and incubated on 
a turning wheel for 40 min at 4°C. The eluate was collected by centrifugation (150×g, 30 s, 4°C) and 
concentrated in a Vivaspin 100 kDa MWCO concentrator (Sartorius), which was previously incubated 
for 45 min with HWB containing 1% TX-100. The concentrated eluate was applied to a Superose 6 
Increase 15/150 column (Cytiva) for size exclusion chromatography (SEC) and eluted in 50 μl fractions 
using ÄKTA go purification system (Cytiva). Peak fractions were used for further analysis.

Mass photometry
Mass photometry experiments were done using a Refeyn TwoMP (Refeyn Ltd). Data were obtained 
using AcquireMP software and analyzed using DiscoverMP (both Refeyn Ltd). Glass coverslips were 
used for sample analysis. Perforated silicone gaskets were placed on the coverslips to form wells for 
every sample to be measured. Samples were evaluated at a final concentration of 10 nM in a total 
volume of 20 μl in the buffer used for SEC.

Cryo-EM sample preparation and data acquisition
Prior to cryo-EM analysis, HOPS samples were tested by negative-stain EM, using 2% (w/v) uranyl 
formate solution as previously described (Januliene and Moeller, 2021). Negative-stain micrographs 
were recorded manually on a JEM-2100Plus transmission electron microscope (JEOL), operating at 
200 kV and equipped with a XAROSA CMOS 20 Megapixel Camera (EMSIS) at a nominal magnification 
of 30,000 (3.12 Å per pixel). For cryo-EM, 3 μl of 0.6–0.9 mg/ml of freshly purified wt HOPS complex 
were applied onto glow-discharged CF grids (R1.2/1.3) (EMS) and immediately plunge-frozen in liquid 
ethane using a Vitrobot Mark IV (Thermo Fisher Scientific) with the environmental chamber set to 
100% humidity and 4°C. Micrographs were recorded automatically with EPU (Thermo Fisher Scien-
tific), using a Glacios microscope (Thermo Fisher Scientific) operated at 200 kV and equipped with a 
Selectris energy filter and a Falcon 4 detector (both Thermo Fisher Scientific). Images were recorded 
in Electron Event Representation (EER) mode at a nominal magnification of 130,000 (0.924 Å per pixel) 
in the defocus range from −0.8 to −2.8 µm with an exposure time of 8.30 s resulting in a total electron 
dose of approximately 50 e− Å−2.

Cryo-EM image processing
All cryo-EM data processing (Figure 1—figure supplement 1 ) was performed in cryoSPARC v3.3.1 
(Punjani et al., 2017). For all collected movies, patch motion correction (EER upsampling factor 1, 
EER number of fractions 40) and patch contrast transfer function estimation were performed using 
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cryoSPARC implementations. To solve the structure of the core part of HOPS (Figure  1—figure 
supplement 1E,F and Figure 1—figure supplement 2) reference-free blob particle picking on 2186 
pre-processed movies of the first data set and particle extraction using a box size of 672 pixels (px, 
0.924 Å per pixel) binned to 128 px was performed. Extracted particles were subjected to 2D classi-
fication to eliminate bad picks. Selected good 2D classes (representative good 2D classes are shown 
in Figure 1—figure supplement 3A) were used for template particle picking on 2186 movies from 
the first data set combined with additional 6580 movies from the second data set, preprocessed alike. 
After removal of duplicates, picked particles were extracted with the same box size and subjected 
to rounds of 2D classification, ab-initio reconstruction with multiple classes and 3D heterogeneous 
refinement to remove false positive particle picks. From the best class, particles were extracted using 
a box size of 672 px (0.924 Å per pixel) binned to 320 px and subjected to 2D classification. Particles 
from this 2D classification were also used for flexibility analysis (see below). 407,996 selected parti-
cles from good 2D classes were used for ab-initio reconstruction with six classes and followed by 3D 
heterogeneous refinement. This heterogeneous refinement resulted in two best classes containing 
130,009 and 116,151 particles, respectively, which were further refined individually. For each of both 
classes, a Non-Uniform (NU)-refinement was performed, followed by particle extraction with a box 
size of 672 px (0.924 Å per pixel, without binning) with homogeneous and NU-refinement after-
ward. Resulting consensus maps were used for local refinements of different parts of the structure 
(Figure 1—figure supplement 1A, Figure 1—figure supplement 2, and Figure 1—figure supple-
ment 3B-E). First consensus NU-refinement that reached global resolution of 4.2 Å (Fourier shell 
correlation [FSC]=0.143) was used for local refinements of the upper ‘core’ part of the complex (4 
Å) and the SNARE-binding module (3.6 Å), the second consensus NU-refinement, resolved to 4.4 
Å (FSC=0.143), was used for local refinements resolving bottom parts of the complex (4.4 and 5 Å).

To better resolve distal parts of the complex, flexible Vps39 and Vps41 N-terminal fragments, the 
following approach was used (Figure 1—figure supplement 1B). Here, micrographs from the first two 
data sets were combined with micrographs from two additional data sets of 2841 and 8338 movies. 
After template picking, about 3896 million particles were extracted using a box size of 882 pixels 
(0.924 Å per pixel) and used for rounds of heterogeneous, homogeneous, and NU-refinements to 
obtain 3D reconstructions, which best resolve Vps39 and Vps41. At these steps, binning was applied 
for particle extractions. Then, particles belonging to one of such best classes were subjected to a 
round of NU-refinement followed by 3D variability analyses using masks covering either Vps39 or 
Vps41. The further 3D variability display procedures were used to better sort particles. Finally, the best 
particles were extracted with the same box size (882 pixels, 0.924 Å per pixel) without binning and 
used for local refinements of Vps39 or Vps41 (Figure 1—figure supplement 1B, Figure 1—figure 
supplement 3F,G).

For all local refinements, masks were generated in UCSF Chimera (Pettersen et al., 2004). During 
processing, no symmetry was applied. The quality of final maps is demonstrated in Extended Data 
Figure  3. All FSC curves were generated in cryoSPARC. Local resolutions of locally-refined maps 
(Figure S3B-G) were estimated in cryoSPARC and analyzed in UCSF ChimeraX (Pettersen et  al., 
2021). Data set statistics can be found in Supplementary file 2.

To analyze the flexibility of the complex, a different processing scheme was applied (Figure 1—
figure supplement 1A, dashed arrows). For this, a set of 383,881 good particles was selected after 
2D classification of 320 px-binned particles (initial box size of 672 px with 0.924 Å per pixel). These 
particles were subjected to either ab-initio reconstruction and heterogeneous refinement with ten 
classes (Figure 2—figure supplement 3A,B) or several refinement rounds followed by 3D variability 
analysis (Figure 2—figure supplement 3D). Prior to 3D variability analysis, ab-initio reconstruction 
with one class, homogeneous and NU-refinement were performed.

Model building and refinement
Models of HOPS subunits were initially generated using AlphaFold (Jumper et  al., 2021; Varadi 
et al., 2022) and docked into locally refined maps using ‘Fit in Map’ tool in UCSF ChimeraX (Pettersen 
et al., 2021). The N-terminal parts of Vps41 (residues 1–863) and Vps39 (residues 1–700) and the 
C-terminal part of Vps16 (from residue 739) with no well-resolved densities assigned, were removed. 
The AlphaFold model of Vps11 was initially split into two parts (‘Vps11top’, residues 1–760, and 
‘Vps11bottom’, residues 784–1025), which were first refined separately; the region predicted by 
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AlphaFold as unfolded (residues 761–783) was deleted. Fitting of the C-terminal parts of Vps11 (resi-
dues 784–1025) and Vps39 (residues 701–1045) was improved using Namdinator (Kidmose et al., 
2019). Afterward, models of single proteins were manually adjusted and refined in COOT (Emsley 
et al., 2010), followed by iterative rounds of refinements against corresponding locally refined and 
their composite maps in Phenix (Liebschner et al., 2019) and COOT. In Phenix Graphical User Inter-
face, real space refine tool (Afonine et al., 2018) with or without option ‘rigid body’ was used. After 
several refinement rounds, two separate models were created by joining models of the upper (Vps33, 
Vps16, Vps41, Vps18, and Vps11 top) and lower (Vps11 bottom, Vps39) parts of the complex. These 
partly combined models were subjected to further several iterations of refinements in Phenix and 
COOT. Afterward, the two refined models were fused into a single model, which was again refined 
in Phenix and COOT. Sequences of the model in the bottom part of the complex were changed to 
polyalanines (residues 784–1025 in Vps11, residues 1–493 in Vps18, and residues 701–1045 in Vps39), 
since no assignment of side chains was possible at the resolution obtained there. In other parts of 
the complex, where blurred densities did not allow unambiguous model building, respective short 
fragments of the model were also replaced by polyalanine chains or deleted. Afterward, the initially 
deleted part of Vps11 (residues 761–783) was built de novo according to the cryo-EM density (resi-
dues 769–783 were replaced by alanines). Finally, the complete model was subjected to another 
round of refinement in Phenix followed by manual refining in COOT. Model validation was performed 
using MolProbity (Williams et al., 2018). Figures were prepared using UCSF ChimeraX. Model refine-
ment and validation statistics can be found in Supplementary file 2.

ALFA pulldowns for mass spectrometry
One liter of YP medium containing 2% glucose (v/v) was inoculated with an overnight preculture. 
Cells were grown to OD600 1 at 26°C, followed by 1 hr incubation at 38°C. Cultures were harvested 
by centrifugation at 4800×g for 10 min at 4°C. Pellets were washed with cold Pulldown buffer (PB), 
150 mM KAc, 20 mM HEPES/NaOH, pH 7.4, 5% (v/v) glycerol, and 25 mM CHAPS. The pellet was 
resuspended in a 1:1 ratio (w/v) in PB. supplemented with Complete Protease Inhibitor Cocktail 
(Roche) and afterward dropwise frozen in liquid nitrogen before lysed in 6875D LARGE FREEZER/MILL 
(SPEX SamplePrep LLC). Powder was thawed on ice and resuspended in PB by using a glass pipette, 
followed by two centrifugation steps at 5000 and 15,000×g at 4°C for 10 and 20 min. The supernatant 
was added to 12.5 µl prewashed ALFA Selector ST beads (2500×g, 2 min, 4°C) (NanoTag Biotech-
nologies) and incubated for 15 min at 4°C while rotating on a turning wheel. After incubation, beads 
were washed two times in PB and four times in PB without CHAPS. Samples were digested using 
PreOmics sample kit (iST Kit, preomics) and analyzed in Q ExativePlus mass spectrometer (Thermo 
Fisher Scientific).

GST pulldowns
Nucleotide-specific interaction of the Rab-GTPase Ypt7 with purified HOPS variants was analyzed 
in GST pulldowns using GST-Ypt7 or GST-Ypt1 as a negative control. About 125 µg purified Rab-
GTPases was preloaded with 1 mM GDP or GTP in the presence of 20 mM EDTA and wash buffer 
(150 mM NaCl, 50 mM HEPES-NaOH, pH 7.4, 2 mM MgCl2, 0.1 % Triton X-100) in a water bath for 
30 min at 30°C. For nucleotide stabilization, 25 mM MgCl2 was added. Prewashed GSH Sepharose 
4B (GE Healthcare) was added to loaded Rab-GTPases and incubated for 1 hr at 4°C on a turning 
wheel. Beads were centrifuged for 1 min at 300×g before adding 25 µg of respective HOPS variants, 
followed by 1.5 hr incubation at 4°C on a turning wheel. Beads were washed three times with wash 
buffer, followed by two elution steps with 600 µl wash buffer containing 20 mM EDTA. After an incu-
bation at room temperature for 20 min while rotating, the supernatant was TCA precipitated. About 
10% of the final sample was loaded on a 7.5% SDS gel next to 5% of protein input. Samples were 
analyzed via western blot using antibodies against the FLAG-Tag. Beads were boiled in 50 µl Laemmli 
buffer. About 2% of the sample was loaded on an 11% SDS gel for Coomassie staining as Rab-GTPase 
loading control. Bands were quantified relative to the Rab-GTPase content.

Tethering assay
HOPS-mediated tethering assays were performed as described (Füllbrunn et  al., 2021). For this, 
ATTO488 labeled liposomes were prepared and loaded with prenylated Ypt7 (Langemeyer et al., 
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2018). About 50 nmole liposomes was incubated with 50 pmole pYpt7:GDI complex together with 
GTP for 30 min at 27°C. For reactions, 0.17 mM Ypt7-loaded liposomes were incubated with different 
concentrations of HOPS complex or buffer (300 mM NaCl, 20 mM HEPES-NaOH, pH 7.4, 1.5 mM 
MgCl2, 10 % (v/v) glycerol) for 10 min at 27°C, followed by sedimentation for 5 min at 1000×g. The 
overall tethered liposomes in the pellet fraction were determined in a SpectraMax M3 fluorescence 
plate reader (Molecular Devices) comparing the ATTO488 fluorescent signal of the supernatant before 
and after sedimentation.

Fusion assays
Fusion assays and the purification of all proteins were performed as described (Langemeyer et al., 
2018) with a protein to lipid ratio of 1:8000. Reconstituted proteoliposomes (RPLs) were composed of 
the vacuole mimicking lipid (VML) mix (Zick and Wickner, 2014). One population of RPLs carried the 
SNARE Nyv1 and the other set contained Vti1 and Vam3. RPLs were preloaded with prenylated Ypt7 
with the help of 100 mM Mon1-Ccz1 and 0.5 mM GTP (Langemeyer et al., 2018). Then, 25 nM HOPS 
complex, 50 nM Sec18, 600 nM Sec17, and finally 100 nM Vam7 were added. Fusion of liposomes was 
followed by content mixing of the RPLs and subsequent increase in fluorescence which was monitored 
in a SpectraMax M3 fluorescence plate reader (Molecular Devices).

Cloning and protein purification of CtVPS391-500
Codon-optimized synthetic DNA (GenScript) encoding amino acids 1–500 of Vps39 from C. ther-
mophilum (CtVp391-500; NCBI XP_006691033) was subcloned into a modified pET28a expression 
vector yielding an N-terminally His6-SUMO-tagged fusion protein (His6-SUMO-CtVps391-500). In 
short, His6-SUMO-CtVps39 was purified by Ni-NTA affinity chromatography followed by proteolytic 
cleavage with SUMO protease at 4°C overnight. SEC was performed to separate CtVps391-500 from 
the expression tag and SUMO protease and yielded >95% pure protein. To obtain phase information 
for structure determination, selenomethionine-substituted CtVps391-500 was prepared according to 
well-established methods (Doublié, 1997).

Limited proteolysis and protein crystallization
Since initial crystallization approaches did not yield protein crystals suitable for X-ray structure deter-
mination, flexible parts of CtVps391-500 were removed by limited proteolysis with α-Chymotrypsin 
(Merck) at 37°C for 10 min. Limited proteolysis was stopped by addition of protease inhibitors (Pierce 
Protease Inhibitor Tablets, EDTA-free, Thermo Fisher Scientific), and an additional SEC in buffer 
containing 20 mM BIS-TRIS pH 6.5, 200 mM NaCl, and protease inhibitors (1:1000) was performed 
as a final polishing step. Best crystals were obtained by seeding at 12°C and a protein concentration 
of 7.5 mg/ml in a crystallization condition containing 0.1 M MES pH 7.25 and 20% PEG 2000 MME. 
Selenium-derivative crystals were flash-cooled in liquid nitrogen in latter condition with 25% glycerol 
as cryoprotectant.

Crystal structure determination
Anomalous X-ray data were collected from a single crystal at 100K at beamline P13, EMBL Hamburg, 
Germany and diffraction data were processed using XDSAPP3 (Krug et al., 2012). Phase determina-
tion using single-wavelength anomalous dispersion at the selenium peak was not successful. A manu-
ally trimmed AlphaFold (Jumper et al., 2021) model of CtVps39 1-500 was used as a search template 
in molecular replacement and yielded a single solution with a TFZ score of 24.8 in ​phenix.​phaser 
(Adams et al., 2010; Liebschner et al., 2019; McCoy et al., 2007), which was then used for MR-SAD 
phasing in phenix.autosol (Adams et al., 2010; Liebschner et al., 2019; Terwilliger et al., 2009) 
and subsequent density modification and automated model building using phenix.autobuild (Adams 
et al., 2010; Liebschner et al., 2019; Terwilliger et al., 2009). Iterative cycles of model building in 
COOT (Emsley et al., 2010) and refinement using ​phenix.​refine (Afonine et al., 2012; Liebschner 
et al., 2019; Terwilliger et al., 2009) led to a final model of CtVps391-500 with Rfactors of Rwork 
26.9% and Rfree 29.8%. The model contained no Ramachandran outliers with 96.74% residues within 
favored regions. Crystallographic statistics are summarized in Supplementary file 3. PYMOL and 
UCSF ChimeraX were used for visualization and graphical analysis.

https://doi.org/10.7554/eLife.80901
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