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Abstract

Increased production of biomass crops in North America will require new agricultural land, intensify the cultivation of land
already under production and introduce new types of biomass crops. Assessing the potential biodiversity impacts of novel
agricultural systems is fundamental to the maintenance of biodiversity in agricultural landscapes, yet the consequences of
expanded biomass production remain unclear. We evaluate the ability of two candidate second generation biomass
feedstocks (switchgrass, Panicum virgatum, and mixed-grass prairie) not currently managed as crops to act as post-breeding
and fall migratory stopover habitat for birds. In total, we detected 41 bird species, including grassland specialists and
species of state and national conservation concern (e.g. Henslow’s Sparrow, Ammodramus henslowii). Avian species richness
was generally comparable in switchgrass and prairie and increased with patch size in both patch types. Grassland specialists
were less abundant and less likely to occur in patches within highly forested landscapes and were more common and likely
to occur in larger patches, indicating that this group is also area-sensitive outside of the breeding season. Variation in the
biomass and richness of arthropod food within patches was generally unrelated to richness and abundance metrics. Total
bird abundance and that of grassland specialists was higher in patches with greater vegetation structural heterogeneity.
Collectively, we find that perennial biomass feedstocks have potential to provide post-breeding and migratory stopover
habitat for birds, but that the placement and management of crops will be critical factors in determining their suitability for
species of conservation concern. Industrialization of cellulosic bioenergy production that results in reduced crop structural
heterogeneity is likely to dramatically reduce the suitability of perennial biomass crops for birds.
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Introduction

In North America, land-use changes associated with the

expansion of contemporary bioenergy crops are generally

expected to reduce biodiversity in affected regions [1,2]. However,

because biomass production systems (including crop selection,

production and management strategies, feedstock storage and

delivery) may profoundly differ in their ability to support native

biodiversity, the selection of biomass crops is critical to predicting

the ecological consequences of the new biofuel economy. For

example, increased corn-ethanol production is likely to lead to

further biodiversity losses [2,3], but preference for next-generation

perennial biomass crops such as switchgrass (Panicum virgatum) or

mixed-grass prairie [4] may actually provide vast new acreage of

available habitat for animals that require perennial grassland to

survive and reproduce [2].

Perennial feedstocks can attract a number grassland bird species

during the breeding season [5,6,7], but could also represent

demographically important habitats during the non-breeding

season. This potential is of particular concern for two reasons.

First, grassland birds have experienced more dramatic and rapid

population declines than any other group in North America [8]

and represent an important component of native biodiversity likely

to be impacted by the expansion of bioenergy crops. Second,

much research has focused on factors shaping the stability of

breeding and wintering grassland bird populations [9], but the

post-breeding and migratory habitat requirements of this imper-

iled avifauna remains almost unstudied. This, despite the

importance of these habitats to survival [10,11]. Consequently,

at a time when bioenergy crops are potentially transforming

agricultural landscapes, their ability to provide important stopover

and post-breeding habitat may play a significant role in the

conservation of grassland bird populations.

Our goal is to directly address this information gap by

comparing the bird communities in two important candidate

biomass feedstocks with potential to provide post-breeding and

migratory stopover habitat: Switchgrass and mixed-grass prairie.

We first ask if feedstocks differ in the species richness, species

density (species richness per unit area) and abundance of

migratory bird communities they support, and then investigate

how food availability and habitat structure and composition at

multiple spatial scales (microhabitat, patch, and landscape) shape

the distributions of birds during the fall migratory period. Because

the post-breeding and en-route habitat requirements of grassland

birds are poorly-known, we base our predictions about grassland

bird responses to crops on established bird-habitat relationships
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during the breeding and wintering periods. Grassland bird

diversity during the breeding season has been linked to plant

species diversity [12] and grassland birds exhibit well-understood

species-specific preferences for habitat structure [13]. Consequent-

ly, we predict that mixed prairie should support a greater diversity

and abundance of migrant birds than switchgrass monoculture.

We also investigate the following factors known to shape

distributions of migratory birds in other systems: Food availability

[14], habitat complexity [15], patch size [16] and the structure and

composition of the surrounding landscape [17].

Results

Bird community composition
We identified 95.1% of the 979 individuals detected within

transects to the species level. In total, we detected 41 bird species,

with greater total and obligate species richness in mixed-grass

prairie (total = 38; obligate = 8) than switchgrass (total = 30;

obligate = 7, Table 1). Several species of high state and national

conservation status (e.g. Grasshopper Sparrow, LeConte’s Spar-

row and Northern Harrier), occurred in both switchgrass and

mixed prairie. No detectable, consistent year-to-year difference in

community wide species richness (t = 0.48, df = 14, P = 0.69),

species density (t = 0.18, df = 14, P = 0.57) or abundance (t = 0.14,

df = 14, P = 0.55) was evident across study plots.

Arthropod communities
We captured 9,545 individual arthropods from 101 families.

Mean arthropod biomass and richness were greater in mixed

prairie than switchgrass (Table 2).

Vegetation structure
Microhabitat principal component 1 was higher in switchgrass

patches than prairie, indicating a higher proportion of grass vs.

forbs and a higher density of vegetation (Table 2). Microhabitat

heterogeneity was also slightly lower in switchgrass patches. The

forb cover index in switchgrass plots (mean = 1.3, SD = 0.61) was

less than that of mixed prairie (mean = 2.1, SD = 0.56). The index

exceeds 1.0 in switchgrass plots because some of these patches

have been invaded to some degree. Switchgrass plots were

generally smaller than prairie plots, but the range of values for

landscape-scale habitat variables were generally comparable

between crop types (Table 2).

Avian community metrics
Global models provided a reasonable fit to the data and several

global generalized linear models exhibited moderate levels of

overdispersion (Table S1). Competing models of community-wide

species richness indicated a positive relationship with patch size

(Table 3, Figure 1a). One indicated a positive, but non-significant,

relationship between community-wide bird species richness and

arthropod richness, but the variable was non-significant. This was

the only top model of any metric of the avian community to

indicate a relationship with arthropod richness or biomass. Top

models of species density indicated that density was higher in

patches with greater microhabitat structural heterogeneity

(MHET) within landscapes characterized by increased urbaniza-

tion. Species density was also associated with reduced land cover

of open and semi-natural habitats (higher values of LPC2_500),

but had a non-significant p-value (Table 3).

Microhabitat heterogeneity was important in explaining total

(Figure 1b) and obligate species abundance, appearing in all top

models. Landscape-scale variables linked to abundance metrics

differed for each subset of the avian community (Table 3).

Table 1. Bird species (N = 41) detected in 15 prairie and 15
switchgrass patches in southern Michigan.

Common Name Prairie Switchgrass

American Crow (Corvus brachyrhynchos) X

American Goldfinch (Spinus tristus) X X

American Robin (Turdus migratorius) X

American Tree Sparrow (Spizella arborea) X

Ammodramus sparrow spp.* X

Barn Swallow (Hirundo rustica) X X

Black-capped Chickadee (Poecile atricapillus) X

Bobolink (Dolichonyx oryzivorus)* X X

Clay-colored Sparrow (Spizella pallida) X X

Chipping Sparrow (Spizella passerina) X X

Chimney Swift (Chaetura pelagica) X

Cooper’s Hawk (Accipiter cooperii)1 X X

Common Snipe (Gallinago gallinago) X

Common Yellowthroat (Geothlypis trichas) X X

Dark-eyed Junco (Junco hyemalis) X

Eastern Bluebird (Sialia sialis) X

Eastern Meadowlark (Sturnella magna)* X X

Field Sparrow (Spizella pusilla) X

Grasshopper Sparrow (Ammodramus savannarum)1* X X

House Wren (Troglodytes aedon) X X

Indigo Bunting (Passerina cyanea) X X

LeConte’s Sparrow (Ammodramus leconteii)* X X

Lincoln’s Sparrow (Melospiza lincolnii) X X

Northern Harrier (Circus cyanus)1* X X

Nelson’s Sparrow (Ammodramus nelsoni)2 X

Palm Warbler (Dendroica palmarum) X X

Ring-necked Pheasant (Phasianus cholchicus) X X

Red-tailed Hawk (Buteo jamaicensis) X X

Red-winged Blackbird (Agalaius phoeniceus) X X

Ruffed Grouse (Bonasa umbellus) X

Savannah Sparrow (Passerculus sandwichensis)* X X

Sedge Wren (Cistothorus platensis)* X X

Song Sparrow (Melospiza melodia) X X

Spizella sparrow spp. X X

Sharp-shinned Hawk (Accipiter striatus) X

Swamp Sparrow (Melospiza Georgiana) X X

Tennessee Warbler (Vermivora peregrina) X

Tree Swallow (Tachycineta bicolor) X X

Turkey Vulture (Cathartes aura) X X

Vesper Sparrow (Pooecetes gramineus)* X

White-crowned Sparrow (Zonotrichia leucophrys) X X

White-throated Sparrow (Zonotrichia albicollis) X

Yellow-rumped Warbler (Dendroica coronata) X X

38 (8) 30 (7)

*Obligate grassland species, Michigan species of conservation concern1,
Audubon Watchlist species2 [18].
Species totals in parentheses represent obligate grassland species richness
totals for prairie (n = 8) and switchgrass (n = 7).
doi:10.1371/journal.pone.0016941.t001

Alternative Biomass Feedstocks as Bird Habitat
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Community-wide abundance was positively related to LPC2_500

and land cover diversity at the 1500m-radius scale in another. The

abundance of grassland obligates was positively related to patch

size (one model) and negatively related to LPC1_1500, indicating

higher abundance in less-forested landscapes at that scale. With

the exception of patch size, top models of obligate species

occurrence emphasized similar variables to those explaining

obligate abundance: MHET, and LPC1_1500. In an ancillary

analysis, we found that model selection of obligate species

occurrence using the Bayesian Information Criterion produced

qualitatively similar results, emphasizing the same important

independent variables as AICc.

Discussion

To our knowledge, this work represents one of the first studies to

empirically assess the relative biodiversity value of candidate

bioenergy feedstocks (but see [3,7]) and to investigate the habitat

requirements of grassland birds along their migratory routes (but see

[19]). Few studies of post-breeding and stopover site selection have

simultaneously compared the influence of factors operating at

different spatial scales in explaining habitat use patterns of migratory

land birds (see also [17,20]). Most have focused efforts at a single small

spatial scale [17] and research has taken place almost exclusively

within forested ecosystems. We focused on both the entire bird

community and on grassland specialists to best understand how

factors intrinsic and extrinsic to bioenergy feedstocks may more

broadly affect the ability of agricultural landscapes to act as important

sources of migratory stopover and post-breeding habitat. Our results

support the contention that the ability of alternative biomass

feedstocks to support fall bird communities is linked to habitat

characteristics at several spatial scales and that habitat characteristics

favoring the settlement of specialist species differed from those

favoring species richness, per se.

Table 2. Summary descriptions of explanatory variables from mixed-prairie (n = 15) and switchgrass patches (n = 15) in southern
Michigan.

Variable Switchgrass Prairie t28 P

Within-patch

MHET Microhabitat heterogeneity index (0–2) 0.27 (0.25) 0.43 (0.13) 3.18 0.004

MPC1 Microhabitat principal component 1 0.26 (0.55) 20.24 (0.62) 1.40 0.18

AMAS Arthropod biomass (g / sample) 0.006 (0.014) 0.015 (0.012) 3.10 0.004

ARIC Arthropod richness (# families / sample) 21.99 (22.65) 43.7 (21.84) 3.31 0.002

Patch and landscape-scale

PSIZ Patch size (ha) 6.42 (6.38) 15.80 (13.45) 2.49 0.02

LPC1_500 Landscape principal component 1 (500m) 0.21 (0.21) 20.2 (0.96) 1.00 0.32

LPC2_500 Landscape principal component 2 (500m) 20.78 (1.36) 0.73 (0.49) 0.40 0.69

LDIV_500 Land cover diversity (500m) (0–1) 0.55 (0.17) 0.61 (0.22) 0.83 0.41

LPC1_1500 Landscape principal component 1 (1500m) 20.05 (0.85) 0.05 (1.14) 0.20 0.84

LPC2_1500 Landscape principal component 2 (1500m) 20.01 (1.23) 0.01 (0.76) 0.05 0.95

LDIV_1500 Land cover diversity (1500m) (0–1) 0.66 (0.66) 0.62 (0.09) 0.84 0.41

Means are given with standard deviations in parentheses. Critical and significance values of t-tests comparing mean values among habitats are given with P-values.
doi:10.1371/journal.pone.0016941.t002

Figure 1. Partial regressions of (log) patch size of biomass crop patches vs. community wide species richness within a patch (A), and
microhabitat structural heterogeneity vs. total bird abundance (B). Parameter estimates are based on model-averaged values. Top models
did not indicate a difference in species richness or abundance between switchgrass (n = 15, open circles) and prairie habitats (n = 15, filled circles).
doi:10.1371/journal.pone.0016941.g001

Alternative Biomass Feedstocks as Bird Habitat
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Within-patch factors
Switchgrass patches were structurally dense and uniform (less

heterogeneous) and had a lower forb composition than prairie

reconstructions (Table 2). These attributes generally reflect the

relative differences expected between agricultural monocultures

and polycultures, despite the fact that the switchgrass patches we

studied were not always strict monocultures. The most important

within-patch factor explaining variation in avian richness, species

density and abundance in both switchgrass and prairie patches was

microhabitat heterogeneity (MHET, Table 3, Figure 1b). Avian

richness and abundance during the fall migratory period

commonly exhibits a strong positive relationship with habitat

structural complexity in forested habitats [15,16,21,22,23], though

some studies have reported only weak relationships [17,24]. This

inconsistent relationship might result from the cumulative effects

of variable species-specific responses to habitat structure [25].

Alternatively, it could reflect the region- or habitat-specific

dependence of habitat structure in mediating 1) availability of or

accessibility to food [26] or 2) resource competition within or

between species [27], or 3) risk of predation [28]. Because

grassland birds are adapted to exploit particular ranges of

structural habitat conditions [e.g. 13] and space use [29], more

heterogeneous patches are more likely to provide habitat for

species with different structural preferences. Predator avoidance

behavior is an important determinant of grassland bird species’

response to variation in microhabitat structure, affecting the

tendency of certain species to flock [30]. For both of these reasons,

highly heterogeneous patches are likely to provide habitat for more

species. Regardless of the ultimate explanation, the pattern alone

implies that more structurally diverse biomass patches will support

denser, more abundant migrant communities with more grassland

specialists. Richness and abundance-based metrics were related to

patch-scale heterogeneity in habitat structure but not to the

average vegetations characteristics of plots. This suggests that, in

contrast to the breeding season, large structurally uniform areas

are not required to attract species with preference for a particular

microhabitat structure.

We detected several species of state and continental conserva-

tion concern in both feedstock types (Table 1). Raw species

richness in switchgrass was slightly lower than that of mixed

prairie, yet model selection indicated that feedstock type was a

poor predictor of all avian measured community metrics we

measured. Feedstock selection may still be important in shaping

vegetation structural attributes that are more broadly and

consistently linked to distributions of migrants. The eventual

industrialization of perennial bioenergy crops will aim to maximize

biomass production which, especially in monocultural systems, will

likely result in a uniformly tall, dense crop structure. Yet, because

prairie patches were generally more heterogeneous than switch-

grass monocultures, even high biomass mixed-prairie patches may

maintain the structural diversity necessary to support a relatively

high diversity of birds.

The high energetic demands of migration predict that food

availability should be an important component of habitat quality

for migrants and those individuals preparing to migrate

[15,17,21,25]. Yet, recent experimental evidence suggests that

arthropod abundance is not a proximate factor in habitat selection

during migration [23]. Because birds are flexible in both their

foraging behavior and the foods they select [31,32], behavioral

plasticity can allow migrants to effectively exploit unfamiliar and

unpredictable habitats during migration [25]. We found that

switchgrass supported a reduced diversity and richness of

terrestrial arthropods relative to mixed-prairie patches, a pattern

which also occurs in this system during the breeding season [3,7],

but found no evidence that the composition of migratory bird

communities was linked to arthropod biomass in crop patches.

Arthropods may be an important food source for subsets of the

avian community that depend heavily on invertebrate availability,

but other food resources are likely to influence migrant

distributions (e.g. seed, fruit).

Patch size
The richness of migratory bird communities increases with

patch size in forested systems [16,33]. We found this pattern to

hold for migrant communities exploiting both switchgrass patches

and prairies. It is unclear whether the observed richness-area effect

during migration is a result of migrating individuals being more

likely to intercept large patches (a.k.a ‘the target effect’) [34], or

some unmeasured fitness benefit associated with larger habitat

patches (e.g. reduced predation risk).

Many grassland specialist birds are ‘area-sensitive’ (i.e. more

likely to occur in large habitat patches than smaller ones) during

the breeding season [35], which can manifest as a positive

relationship between species density and patch size [36]. As

expected, community-wide species density did not increase with

Table 3. Models of avian richness, species density,
abundance, and occurrence for southern Michigan bird
communities in switchgrass (n = 15) and prairie patches
(n = 15).

Competing models K{

DAICC

or
DQAICC wi{

Species richness (community-wide)

1.14+0.85(PSIZ)*** 2 0 0.37

1.14+0.85(PSIZ)***+6.88(AMAS)ns 3 0.45 0.3

Species density (community-wide)

0.28+1.80(MHET)* 2 0 0.06

0.28+1.80(MHET)*+0.12(LPC2_500)ns 3 0.76 0.04

Abundance (community-wide)

20.16+3.22(MHET)***+0.26(LPC2_500)** 3 0 0.5

20.16+3.22(MHET)***+1.41(LDIV_1500)* 3 1.65 0.22

Abundance (obligate species)

21.35+5.30(MHET)*** 2 0 0.22

21.35+5.30(MHET)***20.2(LPC1_1500)* 3 0.61 0.16

Occurrence (obligate species)

25.30+4.90(PSIZ)** 2 0 0.16

25.30+4.90(PSIZ)**+12.42(MHET)**21.36(LPC1_1500)* 4 0.04 0.16

25.30+12.42(MHET)**21.36(LPC1_1500)** 3 0.15 0.15

{Number of parameters,
{Model Akaike weight,
*P,0.05$0.01,
**P,0.01$0.001,
***P,.001,
nsP.0.05.
The table lists the best models (DQAICc or DAICc,2.00) for 1) the entire bird
community, 2), breeding birds only, and 3) obligate grassland species. P-values
associated with model parameters are given. Response variables:
AMAS = arthropod biomass; ARIC: arthropod family richness; MPC1:
microhabitat principal component 1; MHET: microhabitat heterogeneity index;
CROP: biomass crop; PSIZ: log patch size; LPC1/LPC2: landscape principal
components; LDIV: landscape diversity index. Landscape composition and LDIV
variables are labeled with the relevant spatial scale (radius in meters from
center of each patch) at which they are computed.
doi:10.1371/journal.pone.0016941.t003

Alternative Biomass Feedstocks as Bird Habitat
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patch size during the migratory period, yet obligate species

abundance and occurrence were positively linked to patch size.

This is consistent with the findings of [33] who demonstrated that

forest-dwelling species that were area sensitive during the breeding

season were also area sensitive during the migratory period. Lack

of area-sensitivity at the community level in this study is not

surprising because many species are not restricted to grassland

patches.

Landscape structure and composition
Grassland specialist birds commonly avoid selecting breeding

habitat within highly forested landscapes [37,38,39], which is a

mechanism shaping area-sensitivity in this species group [35]. We

observed forest avoidance (1500m-radius scale) during migration

for obligate grassland species (Table 3). That species density and

abundance were not linked to forest cover during migration is

expected given that the overall species pool contains many species

unrestricted to grassland habitats.

Instead, top models of species density and abundance were

positively linked with decreasing cover of low, open habitat types

and increasing urban land cover. Other studies linking migrant

diversity and abundance to surrounding land cover composition

are lacking, but this result is surprising given that species richness

of breeding bird species decline in relation to increasing

urbanization at local and landscape scales [40]. Attraction to

urban areas could be explained by enhanced foraging opportu-

nities (e.g. bird feeders), reduced predation risk or flexibility in

habitat use by migrants in exploiting habitats not previously

considered to be suitable [41]. Recent research demonstrates that

even small patches of habitat in urban landscapes provide

adequate food and protection for some species of migrants that

are positively area-sensitive during the breeding season [42,43].

Alternatively migrants could be concentrating where few other

suitable habitats exist (e.g. more urbanized areas). Species density

was also positively associated with landscape diversity at the

1.5 km scale, suggesting that habitat diversity within landscapes

enhances the local diversity of migratory birds within focal

habitats. Collectively, these results imply that cultivation of

perennial-based biomass feedstocks in less-forested landscapes will

be required to enhance habitat for grassland specialists, but that

switchgrass and prairie reconstructions can provide post-breeding

or migratory stopover habitat for a broad diversity of bird species

even when they occur within urbanized or forested landscapes.

Conclusions
Assessing the biodiversity impact of novel production systems is

fundamental to reconciling the demands of biodiversity conserva-

tion and agricultural production [44]. Loss of native grassland

ecosystems throughout most of North America has exceeded 90%

[45], and agricultural grassland habitats have become critical to

the maintenance of populations of many grassland bird species

[46,47]. Our results suggest that candidate perennial biofuel

feedstocks have potential to provide a source of post-breeding and

migratory habitat to avifauna of high conservation importance.

The value of these habitats may be especially high where they

replace contemporary biomass crops (e.g. corn) [2,7]. While we

draw inferences from bird-habitat relationships based on extant

variation in within-patch habitat structure, most of the patches we

studied were not actively managed for biomass production.

Ultimately, biomass production systems could include chemical

inputs (e.g. fertilizers, herbicides) and the selection of high-biomass

genotypes that could reduce plant species diversity [48] and

structural heterogeneity, especially in monocultural systems.

Results of this study suggest that the latter effect is likely to

dramatically reduce the suitability of biomass crops as autumn

stopover habitat. Switchgrass and prairie are generally expected to

be harvested in September, but are somewhat flexible. Harvest

strategies that create within-crop structural diversity (e.g. strip

harvesting) or that produce a mosaic of harvested and unharvested

patches during the migratory period could be a useful manage-

ment tool [1,5,49]. Because crop management schemes may

profoundly affect the biodiversity and ecosystem services value of

biomass crops, empirical research is needed to understand how

harvest strategies and schedules and chemical inputs can alter the

value of crops to birds and other taxa. The value of stopover

habitat to migrants is commonly linked to the efficiency of

refueling which, in turn, can potentially affect migration timing

and success [50]. Because we found that arthropod biomass

differed between feedstocks, an explicit evaluation of the refueling

value of perennial monocultures vs. polycultures is needed. North

American countries have not yet adopted bioenergy-related

standards to protect biodiversity, but the development of such

policies should draw on lessons from a parallel situation in Europe

where biofuel expansion and reductions in targets for set-aside

programs have already had negative impacts on grassland bird

populations [51].

Materials and Methods

Study design and site selection
Fifteen sites of each of the two biomass crop treatments were

selected from established patches throughout southern Michigan

(Figure 2). We visited 19 sites in 2008 (prairie = 12, switch = 7) and

26 sites in 2009 (prairie = 11, switch = 15), and surveyed a subset of

plots in both years (prairie = 8, switchgrass = 7) to examine inter-

annual variation in the avian community. Market demand for

perennial biomass crops is still extremely low, improvement (e.g.

maximizing biomass, minimizing nutrient demand) of genotypes

for perennial biomass candidates (e.g. switchgrass) is ongoing, and

research investigating optimal species mixtures for polycultural

crops has not yet occurred, making it impossible to study the

impact of perennial biomass crops intensively managed for

biomass production. Grassland birds specialize in grasslands

differing in their physical structure [12] and bioenergy production

systems should focus on feedstocks and management techniques

that maximize biomass. Consequently, we chose to investigate

vegetation structural attributes we feel are most likely to be

affected by feedstock selection and management and relevant to

bird community composition: 1) vegetation height and density and

2) variation in vegetation structure. We first identified all known

patches planted in switchgrass and mixed-grass prairie throughout

the southern half of the southern peninsula of the state of

Michigan. Because most patches were not actively managed for

biomass production, but primarily for wildlife habitat or as native

community restorations, switchgrass patches were not always strict

monocultures. Within each treatment, we selected sites represent-

ing a range of crop height and stand structural heterogeneity from

within landscapes varying as much as possible in the amount of

non-crop habitat they contained. Because we wished to examine

the importance of patch size in shaping avian communities, we

also selected patches to vary as widely as possible in size (Prairie:

2–55ha; Switchgrass: 2–32.3ha). Study patches were located a

minimum distance of 5 km from other sites.

Bird Surveys
We surveyed the bird community associated with crop patches

in the fall of 2008 and 2009, making three visits to each patch:

Alternative Biomass Feedstocks as Bird Habitat
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1) Sep. 7–Sep. 15, 2) Sep. 23–Oct 1, and 3) Oct 7–16. While this

time period corresponds to the period of peak migratory

movement for migrant land birds in this region [52], birds in

study patches also include those dispersing post-fledging and

staging prior to migration as well as a small number of resident

species whose over-winter abundance is significantly reduced (e.g.

Melospiza melodia) [52]. No grassland specialist species over-winter

in this region. Species richness and abundance were estimated

based on two survey techniques: strip transects and area searches.

We chose these two techniques because area-search techniques

produce more accurate species richness estimates while rope-drag-

type strip transects (described below) produce more accurate

estimates of abundance for non-breeding grassland birds [53]. No

relevant distance sampling technique has yet been developed to

improve the accuracy of these techniques.

Fixed-width transects [54] were 100m long by 25m wide.

Because grassland birds are difficult to detect when not singing we

employed a rope drag technique in which a 25m-long rope

connecting two observers was dragged across vegetation to flush

birds, increasing their visual detectability and the likelihood of

birds to produce species-specific vocalizations that could be used in

identification. Flushed birds were identified visually when perched

or in flight and by species-specific call notes and were tracked until

they landed to ensure to avoid double-counting individual in the

same or other transects. This technique was specifically designed

to increase the detectability of grassland birds during the non-

breeding season and has been shown to increase observer

efficiency and bird detectability over fixed-distance point counts

[55]. Compared to traditional strip-transect surveys, this technique

employs twice as many observers, covers a relatively narrow strip

of habitat (25 m vs. $50 m) and allows observers to focus

attention on a more narrow angle of vision (90u vs. 180u).
Consequently, our technique should also provide substantial

improvements in detectability over typical strip-transects [55].

Individuals that could not be assigned to species were recorded as

‘‘unknown’’ or identified to the genus or family level (e.g.

Ammodramus spp.). Observations of individuals not identified to

the species level were used only to estimate community-wide

abundance. Bird surveys were conducted during the first four

hours after sunrise.

In order to obtain representative samples of bird communities in

patches differing in area without pseudo-replicating [37] we varied

the number of transects sampled per patch, then aggregated

information for each patch prior to analysis. The smallest patches

contained a single transect while the number of transects surveyed

per patch increased with patch size up to six in the largest patches.

Transects were oriented and surveyed in a linear series such that

no transect began or ended closer than 50m from the edge of each

patch and one transect ran through the geographic center of the

patch. Grassland bird communities exhibit ‘area-sensitivity’, or

increased species density (species richness per unit area) in larger

habitat patches [36]. We calculated patch-scale species density as

the median value of species richness within each transect in a

patch, combining data from both site visits. We calculated patch-

scale abundance as the median value of total bird abundance

within each patch, combining data from both site visits. We used

species density as a metric to test the hypothesis that avian

communities are also area-sensitive during the post-breeding and

migratory period in both prairie and switchgrass crops.

To estimate patch-scale species richness, we used area searches

to survey portions of each patch not covered by transects. To

maintain observer effort proportional to the size of each patch,

observers walked at a regular pace though each patch in a

systematic pattern such that one observer passed within 75 m of

every point in a patch exactly once. Species detected during strip-

transect surveys, including those detected at a distance of .50 m,

were pooled with detections from area searches to provide an

estimate of bird species richness within each patch.

Within-patch habitat structure
During the second site visit we characterized vegetation

structure of crops within each 100 m-long transect to determine

Figure 2. Map of the study region in the southern peninsula of Michigan. Locations of mixed-grass prairie (n = 15, filled circles) and
switchgrass (n = 15, open circles) study sites are indicated.
doi:10.1371/journal.pone.0016941.g002
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how microhabitat gradients may affect spatial distributions of

birds. We randomly selected five non-overlapping sampling points

within each transect at which we recorded vertical density of

vegetation and canopy coverage. Vertical density (an index of

biomass) [56] was quantified by measuring the minimum height of

visual obstruction from 4m in each cardinal direction from a

Robel pole at a height of 1m [57]. Canopy coverage was estimated

on the basis of non-overlapping percentages of forbs and grass

using a Daubenmire quadrat viewed from 1.5 m directly above

[58]. Cover estimates were assigned an index number correspond-

ing to a range of vegetation coverage (1 = 0–5%, 2 = 5–25%,

3 = 25–50%, 4 = 50–75%, 5 = 75–95%, 6 = 95–100%). Mean

values of microhabitat variables were computed at the patch-

scale. We also used variation in density within patches to calculate

a patch-scale index of habitat heterogeneity originally created to

capture variation in habitat structure relevant to grassland birds

[59]. The index is based upon the sum of the difference between

the maximum and minimum values of density taken within each

transect and the sum of the mean values of the density metric for

each transect:

X Max density{Min densityð ÞP
�xx

Patch and landscape variables
Settlement behavior in grassland birds is frequently linked to

landscape composition at larger spatial scales (1000–1600m)

[36,37,38], but more local scales may be relevant during

migration. We characterized landscape composition and diversity

within 0.5 km and 1.5 km radii surrounding study sites using the

2009 Cropland Data Layer (56 m resolution) [60]. We categorized

patches as containing cropland (e.g. corn, soybeans), herbaceous

perennial habitats (including grasslands), forest, urban land (.60%

impervious surface). We pooled all other land cover classes into a

fifth category (,1% of total area) that were excluded from

analyses. The accuracy of land-use categories was directly verified

during site visits. The proportion of the landscape within 0.5 and

1.5 km of each site in these cover types was calculated using

ArcGIS 9.3 [61]. We used the Patch Analyst 4.0 extension to

ArcGIS to calculate a modified Simpson’s Diversity Index [62].

We used principal components analysis to reduce the number of

within-patch vegetation structural and landscape-scale variables at

the 0.5 km and 1.5 km scales into component variables. We

employed an orthogonal rotation method that minimizes the

number of variables with high loadings on each axis. Microhabitat

variables were moderately correlated (Table S2) and we extracted

a single principal component describing microhabitat structure

(MPC1) accounting for 46% of the total variation (eigenvalue 1.38,

Table S3) which described a gradient of increasing grass cover and

density and decreasing forb cover (Table S4). Landscape

components were correlated (Table S5). The first landscape

component at the 500-m-radius (LPC1_500) accounted for 50% of

the total variation (eigenvalue 2.01, Table S6) and described a

gradient of increasing row crops and open habitats and decreasing

forest cover in the landscape (Table S7). The second landscape

component at the 500-m-radius (LPC2_500) accounted for 31% of

the total variation (eigenvalue 1.24) and described a gradient of

increasing urbanization and reduced open and semi-natural

habitats. The first landscape component at the 1500-m-radius

(LPC1_1500) accounted for 46% of the total variation (eigenvalue

1.86, Tables S8, S9) and described a gradient of increasing forest

and decreasing row crops in the landscape (Table S10). The

second landscape component at the 1500-m-radius (LPC2_1500)

accounted for 32% of the total variation (eigenvalue 1.29) and

described a gradient of increasing open habitats and decreasing

urbanization.

Arthropod richness and biomass
Arthropod food availability has been linked to the distributions

of post-breeding and migratory birds [14,63]. We sampled

terrestrial arthropods via sweep net samples of above-ground

vegetation near the geographic center of each patch during the

second site. Each of two within-patch sweep sample transects

began at a distance of 50m in opposite directions from the patch

center on a north-south axis. Each sample consisted of fifty sweeps

taken while slowly moving toward the plot center. Both within-

patch samples were combined and sealed in plastic bags and

transferred to 90% ethanol solution for storage. Individuals were

later identified to the family level and their length measured. We

estimated individual mass using published length-regression

estimates [64,65] and then computed total arthropod biomass at

the patch-level. Patch-scale estimates of arthropod family richness

were obtained using the Chao 1 asymptotic richness estimators in

the program EstimateS [66].

Statistical analysis
We tested for spatial autocorrelation among sites by comparing

residuals of bird community models by using the Moran’s index (I)

as a function of spatial distance [67] using the R package [68].

Because correlograms of Moran’s I at various distance lags and the

resulting correlogram [69] showed no evidence of spatial

dependence among observations we did not take into account

any spatial autocovariate in the models.

We took a model selection approach to determine the relative

importance and effect size of 11 environmental variables and

feedstock type (Table 2) in explaining variation in the richness,

species density, occurrence and abundance of 1) grassland obligate

bird species and 2) the entire avian community. We considered

species grassland obligates based on published research demon-

strating that their breeding habitat is entirely or largely restricted

to natural or semi-natural grassland habitat (sensu [70], see

Table 1). Because bird communities may undergo annual

variation that could bias model selection, we tested for differences

among years in community metrics using paired t-tests for sites

that were visited in both years of the study.

We modeled the richness of the avian community using

generalized linear models with a Poisson distribution and log-link

function using SPSS version 15 [71]. For sites that were surveyed

during two years, we took the mean value of all independent

variables and median values of avian community metrics

combining both years. These sites were given twice the weight

in analyses. We modeled the likelihood of any obligate grassland

bird occurring in a crop patch using binary logistic regression [72].

Because species richness generally increases with patch size in an

asymptotic and non-linear fashion [73], we log transformed the

patch size prior to analysis.

We developed a set of a priori candidate models that reflected

our assessment of likely causes of variation in richness, species

density, occurrence and abundance. Our analyses included models

of each explanatory variable alone, and two- and three-variable

models that we determined to be ecologically relevant. Because

species-area relationships may differ by feedstock, we also included

models with interactions between patch size and feedstock type.

We evaluated the degree of support for logistic models using

Akaike’s second-order information criterion with a small sample

size adjustment (AICc) [74]. Because count data are commonly
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overdispersed, we used QAICc (quasi-AICc) which accounts for

potential overdispersion of generalized linear models [75]. We

judged degree of support for models using nAICc or nQAICc

values and normalized Akaike weights (wi). We considered models

with nAICc or QAICcƒ2 to have substantial support and models

with nAICc or QAICc.2 and ƒ4 w to have little to no empirical

support [75]. We assessed the fit of global generalized linear

models (models including all factors) using c-hat [76] and the fit of

the global logistic regression models with a goodness of fit test [75,

Supporting Text 1]. Relationships with dependent variations are

based upon model-averaged estimates [75].
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analysis. University of Montréal: Department of Biological Sciences.

69. Legendre P, Fortin MJ (1989) Spatial pattern and ecological analysis. Vegetation

80: 107–138.

70. Vickery PD, Tubaro PL, Dasilva JMC, Peterjohn BG, Herkert JR, et al. (1999)

Conservation of grassland birds in the Western Hemisphere. In: Vickery PD,
Herkert JR, eds. Ecology and conservation of grassland birds of the Western

Hemisphere. Stud Avian Bio 19. CamarilloCalifornia: Cooper Ornithological
Society. pp 2–26.

71. SPSS (2006) SPSS Version 15 for Windows. ChicagoIllinois: SPSS.

72. Hosmer Jr. DW, Lemeshow S (1989) Applied logistic regression. New York:

John Wiley and Sons.

73. Rosenzweig ML (1995) Species Diversity in Space and Time. Cambridge:

Cambridge University Press.

74. Akaike H (1973) Information Theory and an Extension of the Maximum

Likelihood Principle. In: Petrov BN, Csaki F, eds. Second International
Symposium on Information Theory. Akademiai Kiado: Budapest. pp 267–281.

75. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a
practical information-theoretic approach. Second edition. New York: Springer-

Verlag.

76. Burnham KP, Anderson DR (1998) Model Selection and Inference: A Practical

Information-Theoretic Approach. New York: Springer-Verlag.

Alternative Biomass Feedstocks as Bird Habitat

PLoS ONE | www.plosone.org 9 March 2011 | Volume 6 | Issue 3 | e16941


