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ABSTRACT

Our server, CLICK: http://mspc.bii.a-star.edu.sg/
click, is capable of superimposing the 3D structures
of any pair of biomolecules (proteins, DNA, RNA,
etc.). The server makes use of the Cartesian coord-
inates of the molecules with the option of using
other structural features such as secondary struc-
ture, solvent accessible surface area and residue
depth to guide the alignment. CLICK first looks for
cliques of points (3–7 residues) that are structurally
similar in the pair of structures to be aligned. Using
these local similarities, a one-to-one equivalence is
charted between the residues of the two structures.
A least square fit then superimposes the two struc-
tures. Our method is especially powerful in estab-
lishing protein relationships by detecting similarities
in structural subdomains, domains and topological
variants. CLICK has been extensively benchmarked
and compared with other popular methods for pro-
tein and RNA structural alignments. In most cases,
CLICK alignments were statistically significantly
better in terms of structure overlap. The method
also recognizes conformational changes that may
have occurred in structural domains or subdomains
in one structure with respect to the other. For this
purpose, the server produces complementary align-
ments to maximize the extent of detectable similar-
ity. Various examples showcase the utility of our
web server.

INTRODUCTION

The 3D structures of biomolecules at near atomic-level
resolution often give us unique insights into their evolu-
tion and function. This has been extensively studied for
molecules such as proteins, where similarity in 3D struc-
ture often implies homology (1–4). Given the rapid pace

with which new structures are deposited in the PDB (5), it
is crucial to have tools to classify and categorize these
structures and investigate them for similarities at different
levels. In the case of proteins, it has been beneficial to have
categorization based on 3D-fold types that follow the
primary sequence order (2–4). There are, however, several
structural features whose similarities do not follow pri-
mary sequence order. Detecting these similarities in topo-
logically different structures establishes new relationships
between proteins in the different categories mentioned
above. Frequently, these new relationships are of func-
tional significance (6).

The functionality of a biomolecule depends on the spa-
tial orientation of its chemically various atoms. Sometimes
different topologies result in similar/same functionality
(6–8). Methods (1,9–20) that align a pair of structures
imposing constraints on sequence order and topology may
be inadequate to establish such functional similarities. To
establish these relationships one needs to make use of non-
sequential and non-topological protein structure matching
programs (21–23). Here, we report on a web server that
uses the CLICK algorithm (24) to align the 3D structures
of any pair of biomolecules, independent of topology.

The CLICK algorithm aligns 3D structures by matching
cliques of points. Cliques are groupings of representative
atoms of the biomolecules within a certain spatial prox-
imity. Any pairwise distance among clique members is less
than a set threshold. Points in a clique could also be
assigned values for features such as secondary structure,
solvent accessibility and depth. A pair of biomolecules is
structurally aligned by matching cliques with similar fea-
tures. In general, any pair of constellation of points can be
aligned using CLICK and thus comparison between dif-
ferent types of biomolecules (for example, DNA with
RNA) is also possible. To the best of our knowledge,
this is the first web server equipped with this capability.
We hope that our server is useful for a wide range of
biomolecule structural analysis, especially in detecting con-
formational change, similarity of structural motifs (both
local and global) and evolutionary relationships.
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METHOD

Briefly, the CLICK algorithm consists of four sequential
steps (for a comprehensive description of the method, see
Supplementary Material).

Extracting features

Residues of a biomolecule are featured by the Cartesian
coordinates of one or more representative atoms. If the
biomolecules in question are proteins, additional struc-
tural features such as side-chain solvent accessibility, sec-
ondary structure and residue depth (25–26) are computed.

Forming cliques

We define a n-body clique as a subset of n points, where
the Euclidean distance between any pair within the clique
is within a predefined threshold. For each of the two struc-
tures to be compared, all possible n-body (n in the range of
3–7) cliques are computed from the representative atoms.

Clique matching

Cliques are matched by the superimposition of their
Cartesian coordinates subject to the matching of other
features. The objective here is to establish local structural
similarities.

Alignment

Clique matching identifies structurally equivalent residues
in the two structures. Using these equivalences, a final 3D
least squares fit is performed to superimpose the two struc-
tures. The matching of cliques is not necessarily unique,
i.e. multiple structural alignments are possible to be
generated. The chosen alignment is the one that maximizes
structure overlap.

USER PERSPECTIVE

Input

The web server is freely accessible at http://mspc.bii.a-star.
edu.sg/click without login requirements.

Input biomolecular structures can be submitted by spe-
cifying the four-letter code for existing structures de-
posited in the PDB, or by uploading structures in PDB
format. In addition to the four-letter code, users can
specify the identity of particular chains from the two
structures. This specification is however optional as
CLICK produces alignments irrespective of the number
of chains in the PDB structure. By default, it considers
all residues in the PDB file.

Users are given the options to select one or more rep-
resentative atoms (default: Ca atom) for individual
residues of the molecule. For protein structure alignments,
residue solvent-accessible surface area, secondary struc-
ture and depth information can be included as structural
features to guide the alignment. These additional features
are not yet operable for aligning other biomolecular struc-
tures. When four-letter PDB codes are specified, by
default solvent-accessible surface area and secondary
structure features are selected.

Output

The structure alignment is shown on two lines, one line per
structure. The number and chain identifier of the first
aligned residue on both structures precedes the listing of
the residue one-letter codes. Each time the alignment frag-
ments (probably because of topological differences), the
number and chain identifier of the last residue in the
fragments are also listed. Accompanying each alignment
is a 3D rendition of the structural superimposition using
Jmol. (Figures 1 and 2)
Should there be conformational changes in the proteins

being compared, CLICK first reports the largest align-
ment, in terms of number of residues aligned. The
method then seeks to compare the regions of the proteins
that were not aligned first. The detection of further struc-
tural similarity results in additional output alignments,
shown one below the other in the aforementioned format.
The alignments are downloadable in PIR (Protein

Information Resource) format and in CLICK format
that shows one equivalent representative atom match per
line. Also downloadable are the coordinates of the
superimposed structures in PDB format.
Statistics relevant to the alignment including structure

overlap, root mean square deviation (RMSD), fragment
score, topology score, number of representative atoms in
the two structures, length of the match and the number of
identical residue matches are displayed in a table. Detailed
help pages explain the significance of the different align-
ment measures.
Users can also download an executable file of the

CLICK program along with associated library files used
in the server.

Examples

We demonstrate the versatility of the server with five dif-
ferent types of alignments. (i) A conventional structural
alignment between a pair of proteins (PDB codes 1ANG
and 7RSA) that are �35% identical in sequence and
similar in overall topology. (ii) An alignment between
two protein structures (1UBP chains A, B and C; and
1E9Y chains A and B) with multiple chains. Chains A
and B of 1UBP superimpose onto chain A of 1E9Y, and
chain C of 1UBP superimposes onto chain B of 1E9Y.
This showcases the feature of CLICK to align structures
regardless of chain breaks. (iii) An alignment between two
proteins (PDB codes 1IWM chain A and 1OXE chain A)
that are structurally similar and topologically different.
The fragmented alignment is a result of the different
topology. (iv) Multidomain proteins, where individual
domains in one structure (PDB 1AIV) have a structural
equivalence in the other (PDB 1OVT), but the relative
orientations between domains differ in the two structures.
Domain swapping and rigid body shift detection belong to
this category. (v) An alignment showcasing the general
utility of CLICK. Two DNA double-helical fragments
bound to proteins (PDB codes 1YSA and 2AYG) are
aligned with one another. The representative atom used
in this instance was C30. In principle, for such examples,
representative atoms could have been used for amino acid
and nucleotides residues at the same time.
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IMPLEMENTATION

The program run time increases with both sizes of input
structures and number of best matched cliques. On
average CLICK took 1 s to perform a single alignment
of a pair of proteins each of size �150 residues on an
Ubuntu 8.04 Linux platform with 3.00GHz CPU (Core
2 Duo E8400) and 3.5 GB primary memory.

PERFORMANCE

The performance of CLICK was compared with other
popular structural alignment methods. For protein struc-
ture comparisons, three different data sets consisting of
9357, 64 and 89 pairs of structures were used. For
details on each of these data sets, refer to
Supplementary Tables S1a and b, S2a and b, and S3a
and b. Over each of these datasets, the alignment accuracy
of CLICK was compared with other popular protein
structure alignment programs including MUSTANG
(21), Geometric Hashing (C-alpha Match) (27–29),
SALIGN (19), DALI (22,30) and alignments from the

HOMSTRAD database (4). All these programs were run
using default parameters, and no effort was made to
adjust the parameters for specific cases. With the excep-
tion of SALIGN, CLICK alignments are statistically sig-
nificantly better than those of the other methods
compared in terms of structure overlap. In all of these
datasets, the structure overlap from CLICK alignments
was never below 40%.

CLICK was also compared with programs that align
RNA 3D structures, including ARTS (31,32) and SARA
(33,34). See Supplementary Tables S4a and b for details.
The structure overlap of CLICK in this comparison was
also statistically significantly better.

CONCLUSION

The CLICK method formalizes the biomolecular structure
superimposition problem as one of feature-point
matching. The features include Cartesian coordinates,
solvent-accessible surface area and residue depth. The
method is flexible and can be easily implemented with

Figure 1. A snapshot of the server showing the output of a structural alignment of two topologically different yet structurally similar proteins that
belong to a different SCOP families, PDB codes 1iwm:A (salmon and SCOP entry: b.125.1.2) and 1oxe:A (green and SCOP entry: d.22.1.1),
according to CLICK. (A) 3D representation of the superimposition is shown in an embedded JMol viewer. (B) The measures of alignment
accuracy such as structure overlap (coverage), RMSD, sequence identity, topology score and fragment score. (C) The sequence alignment
between the two proteins as inferred from the structural alignment. The conserved residues are shown in bold and red lettering. (D) Download
links to the resulting sequence alignment in PIR format, the detailed alignment and matched residue (atom) pairs in text format, as well as the link to
download the superimposed coordinates of the two structures, in PDB format.
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other features considered important in different contexts.
We have extensively benchmarked the method over
various protein and RNA structure data sets. The
accuracy of CLICK alignments, in terms of structure
overlap, is on par or statistically significantly better than
several other existing methods for protein and RNA align-
ments. CLICK performs structural superposition on pairs
of structures based on similarity of local structural
packing, and thus is capable of aligning structures with
dissimilar topologies, conformations or even molecular
types. These unique properties make CLICK a utilitarian
tool for detecting divergent evolution due to topology
changes, convergence evolution where substructures of
proteins are similar to one another, and conformational
change such as domain swap and rigid-body shift where
the relative orientation of domains change. This server
now sets the stage for interesting investigations including
topology-independent structural motif detection,
biomolecular structure design and super-secondary struc-
ture classifications in not just proteins but also in mol-
ecules such as RNA, DNA, etc.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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