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Abstract: Severe asthma is characterized by different endotypes driven by complex pathologic mech-
anisms. In most patients with both allergic and non-allergic asthma, predominant eosinophilic airway
inflammation is present. Given the central role of eosinophilic inflammation in the pathophysiology
of most cases of severe asthma and considering that severe eosinophilic asthmatic patients respond
partially or poorly to corticosteroids, in recent years, research has focused on the development of
targeted anti-eosinophil biological therapies; this review will focus on the unique and particular
biology of the eosinophil, as well as on the current knowledge about the pathobiology of eosinophilic
inflammation in asthmatic airways. Finally, current and prospective anti-eosinophil therapeutic
strategies will be discussed, examining the reason why eosinophilic inflammation represents an
appealing target for the pharmacological treatment of patients with severe asthma.
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1. Introduction

Asthma is a widespread chronic airway disease characterized by variable expiratory
airflow limitation and bronchial hyperresponsiveness sustained by inflammation and
remodeling of the airways [1].

Asthma is a complex and heterogeneous disease with considerable variations be-
tween different individuals and different possibilities of clinical presentation in terms
of severity, age of onset and allergic condition [2]; these clinical characteristics are the
expression of different inflammatory endotypes, which are the result of complex cellular
and molecular pathobiological pathways including eosinophilic, neutrophilic, mixed and
paucigranulocytic cellular patterns [3,4].

These endotypes are also involved in the pathogenesis of severe asthma [5], a clinical
condition in which patient control requires treatment with medium or high dosages of
inhaled corticosteroids (ICS)/long-acting β2-adrenergic agonists (LABA) combinations
eventually supplemented with other drugs such as long-acting muscarinic antagonists
(LAMA), leukotriene modifiers, oral corticosteroids (OCS) and/or targeted biological
molecules [6,7].

The diagnosis of severe asthma is often not easy and requires an accurate assessment
of the patient’s clinical and functional characteristics, as well as the levels of biomarkers
such as peripheral eosinophilia or FENO (fractional exhaled nitric oxide) and the possible
presence of comorbidities. Severe uncontrolled asthma also tends to be refractory to
treatment, despite adherence to therapy and correct inhalation technique [6]. Exacerbations
also play an important role in the natural history of the disease. Exacerbations are defined
as episodes of worsening symptoms, associated with airflow obstruction and requiring
patients to intensify treatment or go to the hospital, and more than 50% of patients with
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severe asthma have been shown to have frequent exacerbations [8,9], to the point of that the
studies were completed in order to highlight if there were particular characteristics capable
of defining the phenotype of frequent exacerbation. Interestingly, among these studies, a
history of smoking, high short-acting β2-adrenergic agonists (SABA) use, the presence of
sinusitis, and a lower age of onset of asthma were identified as risk factors for developing a
frequent flare-up phenotype in the asthma cohort. Serious European U-BIOPRED [10].

Clinical, functional, and biological characteristics have been identified to cope with the
difficulties in diagnosing and managing patients correctly. Clinically, these patients report
poor symptom control despite maximal therapy and may present with upper airway comor-
bidities such as chronic rhinosinusitis with nasal polyposis [11]. Functionally, persistent
airflow limitation with air trapping is common in these patients. The search for biomarkers
such as IgE and the presence of positive allergy tests can be useful in distinguishing allergic
etiology. Furthermore, the serum dosage of eosinophils is particularly useful in clinical
practice [12].

Indeed, relevant eosinophilic airway inflammation is present in many patients with
severe asthma regardless of their allergic condition. In fact, the International Severe Asthma
Registry (ISAR) showed that eosinophilic asthma could be present in the majority (over
80%) of subjects with the most severe clinical phenotypes [13,14].

The development of airway eosinophilia is dependent on pathological networks in-
volving close interactions between innate as well as adaptive immunity occurring in type 2
(T2) asthma following the involvement of group 2 innate lymphoid cells (ILC2) and T helper
2 (Th2) lymphocytes; these cells produce several cytokines including interleukin-5 (IL-5),
-4 (IL-4) and -13 (IL-13). IL-5 represents the main regulator of the biology of eosinophils,
including their differentiation, maturation, survival and activation [15].

Considering the pivotal role of eosinophilic inflammation in the pathophysiology of
severe T2 asthma and given that patients with this type of asthma respond partially or
poorly to corticosteroids (CS), in recent years research has focused on the development of
targeted anti-eosinophil biological therapies. Pharmacological strategies against IL-5 or
its receptor have fulfilled a crucial unmet need for the treatment of CS-dependent severe
eosinophilic asthmatic patients who are greatly affected by side effects of oral corticosteroid
(OCS) maintenance therapy.

In this article we will examine the current understanding about the pathobiology of
eosinophilic inflammation, discussing the reason why this pathologic process represents an
appealing target for the pharmacological treatment of severe eosinophilic asthma.

2. Eosinophil Structure and Biology

Eosinophils are granulocytes with unique biology. The fact that these cells have been
largely preserved during evolution strongly suggests that they play relevant physiological
functions. Eosinophils have traditionally been classified as effector cells with prevalent
cytotoxic activity, although recent evidence indicates that these cells may play a role in a
wide range of homeostatic and regulatory functions [16].

In homeostatic conditions, 0 to 500 eosinophils per microliter can be found in the blood,
with a limited lifespan of 8–18 h in circulation. In inflammatory condition, eosinophils can
be triggered and subsequently release their contents as a result of the action of various
agents, including cytokines, lipid mediators and proinflammatory molecules.

2.1. Eosinophil Structure

Eosinophils are polymorphonuclear leukocytes, usually measuring 10–16 µm in di-
ameter, with a segmented bilobed nucleus. Characteristic of this cell is the presence of a
large number of molecules with pleiotropic functions, such as cationic granule proteins,
chemokines, cytokines, growth factors, immunomodulatory molecules, lipid mediators,
mainly accumulated within the intracellular compartment (Figure 1). Eosinophils also have
a large array of transmembrane proteins (integrins) and surface receptors which mediate
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the interaction with the micro-environment and allow the response to multiple stimuli
(Figure 1) [17].
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Figure 1. Eosinophil structure, granules, surface receptors, exosomes and EETs. Eosinophils are
supplied by a large number of proteins, receptors and enzymes that allow them to interact with
the microenvironment and express a number of receptors on their surface, including receptors for
cytokines, chemokines and lipid mediators, which are involved in cell growth, survival, adhesion,
migration and activation. In addition to receptors, adhesion molecules such as integrins are expressed
on the cell surface, which allows eosinophils to migrate and react to several stimuli. The effects
of eosinophils are largely achieved due to the content of their granules. Primary granules include
Charcot-Leyden/galectin-10 protein, a characteristic eosinophilic protein implicated in asthma and
parasitic infections, as well as a constituent part of so-called eosinophilic extracellular traps, whose
other major constituents are nuclear or mitochondrial DNA strands. Specific or secondary granules
contain four main cationic proteins: MBP, ECP, EPX and EDN. In addition, some of the content of the
granules is released through particular vesicles called sombrero vesicles. Each of them has different ef-
fects, clarified in the text. Lipid bodies contain prostaglandins, thromboxane and leukotrienes, which
participate in allergic inflammation, fibrosis and thrombosis. Finally, eosinophils are able to release
exosomes that fuse with the cell membrane, which are involved in epithelial damage. CLC/Gal-10:
Charcot-Leyden crystal proteins; ECP: eosinophil cationic protein; MBP: major basic proteins; EPX:
eosinophil peroxidase; EDN: eosinophil-derived neurotoxin; MHC class II: Mayor histocompatibility
complex-II; EET: eosinophilic extracellular traps. See the text for further explanation.
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2.1.1. Eosinophil Granules

Eosinophil cytoplasm is packed with different types of granules (Figure 1). The
two major types of large granules present within mature human eosinophils are specific
granules and immature specific granules. The specific granules, also called “secondary
granules”, consist of a dense crystalline nucleus surrounded by a membrane, a unique
morphology found only in eosinophils. [18]; these granules contain a large variety of
mediators, including basic proteins, cytokines, chemokines, growth factors and enzymes,
which are able to produce tissue inflammation and damage. The main represented specific
granule substances are eosinophil cationic protein (ECP), major basic proteins (MBP-1
and MBP-2), eosinophil peroxidase (EPX) and eosinophil-derived neurotoxin (EDN) [19].
Specific immature granules, also called “primary granules” are tendentially smaller than
specific granules and are the principal location of Charcot-Leyden crystal (CLC) protein
(a member of the carbohydrate-binding family of galectin-10).

In eosinophils have also been identified a third intracellular compartment, the lipid
bodies, is specifically committed to the production of eicosanoid mediators of inflammation.

Eosinophil sombrero vesicles (EoSVs) are not granules, but distinct tubular vesicles
that tend to curl into a hoop-like morphology, giving rise to the term. EoSVs derive
from specific granules and travel to the cell membrane to discharge their contents to the
extracellular domain.

2.1.2. Eosinophil Surface Receptors

Eosinophils display a vast array of receptors and surface molecules, which allow
them to integrate with the innate and adaptive branches of the immune system involved
in inflammatory responses and homeostasis. While many are selectively expressed on
eosinophils such as interleukin-5Rα, CC-chemokine receptor 3 (CCR3), sialic acid-binding
immunoglobulin-like lectin 8 (Siglec-8), the epidermal growth factor-like module containing
mucin-like hormone receptor 1 (EMR1) appears completely unique to the eosinophil. The
wide range of receptors present on eosinophils makes theme very versatile cells, with the
ability to react to the stimulus, co-stimulate cells in antigen presentation and migrate to
tissues in both physiological and pathological conditions [17].

• Cytokine Receptors

Eosinophils display receptors for IL-3, IL-5, and granulocyte–macrophage colony-
stimulating factor (GM-CSF), the three main cytokines involved in differentiation and
maturation of these cells. The heterodimeric receptor for IL-5 is likely to be the most
important cytokine receptor expressed by eosinophils, since IL-5 plays a fundamental
role in all stages of eosinophil biology. The alpha-subunit, IL-5Rα, is specific to IL-5,
while the beta-subunit is shared with the receptors for IL-3 and GM-CSF. Eosinophils also
possess specific receptors for various other cytokines and growth factors, including IL-4,
IL-13, IL-33, thymic stromal lymphopoietin (TSLP), and transforming growth factor-β
(TGF-β) [18].

• Adhesion Receptors

Eosinophils express various types of membrane adhesion receptors, primarily integrins
and selectins, which are up regulated by a wide range of pro-inflammatory cytokines and
chemokines.

Integrin molecules are trans-membrane glycoproteins made up of an α and a β chain
that includes the very late antigen-4 (VLA-4, CD49d/CD29) and the complement receptor
CR3 (CD11b/CD18), also known as macrophage-1 (Mac-1) antigen.

Selectins are surface glycoproteins belonging to three groups (E-, L-, and P-selectin),
in particular, L-selectin (CD62L) and P-selectin glycoprotein ligand-1 (CD162) are constitu-
tively and highly expressed on circulating eosinophils [20].

Adhesion molecules act in a coordinated way, allowing eosinophils to roll and adhere
to endothelia, thus facilitating their migration and accumulation at the sites of inflammation.
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• Chemoattractant Receptors

Eosinophils express on their surface various seven-transmembrane spanning G protein-
coupled receptors for chemokines. Among them, CCR3 is an important, highly expressed
receptor that binds to all three subtypes of eotaxin (a selective eosinophilic chemo-attractant)
and to other chemokines, including the monocyte-3 chemoattractive protein (MCP-3) and
MCP-4. The relevant role of CCR3 in asthma pathology is also supported by the evidence
that the airways of patients with asthma contain more cells expressing mRNA for CCR3 and
its ligands than non-asthmatic controls [21]. CCR1 is another key chemokine receptor on the
surface of eosinophils, activated by chemoattractant cytokine ligand-3 (CCL-3) and CCL-5
(also known as RANTES: regulated on activation, normal T cell expressed and secreted).

• Fc Receptors

The eosinophil displays various immunoglobulin (Ig) receptors and related family
members involved in functional activities in which eosinophils are involved, including
antibody-mediated cellular cytotoxicity (ADCC) for helminths and other immunomodu-
latory functions and pathological activities in diseases associated with eosinophilia. Fc
receptors for IgA, IgD, IgE, IgG and IgM, localized on the membrane of eosinophils, pro-
mote interaction with the adaptive immune system.

The high-affinity Fc-epsilon R1-alpha (FcεR1) binding IgE is usually expressed in
very small quantities in a trimeric form (without a β chain) and seems to have no role in
eosinophil activation [22]. In contrast, cross-linking of FcαRI and FcγRII, with IgA and IgG,
respectively, has been shown to induce eosinophil activation [23].

• Major Histocompatibility Complex-II

Eosinophils express major histocompatibility complex class II (MHC-II) and co-stimulatory
molecules such as CD80 and CD86, necessary for T-cell activation and proliferation. Lung
eosinophils of asthmatic patients undergoing allergen challenges express higher levels of
HLA-DR (a subtype of the MHC-II molecule) than blood eosinophils [24].

• Pattern Recognition Receptors (PRRs)

Pattern Recognition Receptors are membrane proteins expressed on the surface
of eosinophils that are directly stimulated during host innate immune responses from
pathogen-associated molecular patterns (PAMPs) and damage-associated molecular pat-
terns (DAMPs); these PRRs promote the interactions of eosinophils with invading microor-
ganisms (especially helminths) and with the surrounding microenvironment. Among a
variety of homeostatic and anti-infective activities, PRRs regulate the immune response
and tissue damage [25]. Toll-like receptors (TLRs) are one of the most represented subtypes
of PRR expressed by eosinophils (as well as many other cell lines) on their surface and
even on endosomes [26]. Other significant PRRs expressed by eosinophils also include
proteinase-activated receptors PAR-1 and -2. The latter could play a relevant role in the acti-
vation of eosinophils in response to proteases released by aeroallergens such as dust mites,
fungi, or pollen [18]; moreover, there are other types of PRRs with partially overlapping
characteristics of the previous mentioned, like retinoic acid-inducible gene-I-like receptors,
nucleotide-binding oligomerisation domain-like (NOD-like) receptors, and the receptor for
advanced glycation end products (RAGE) [25].

• Lipid Mediator Receptors

Eosinophils express specific receptors for lipid mediators such leukotrienes,
prostaglandins, and platelet-activating factors involved in eosinophil chemotaxis and
transmigration.

• Siglec-8

Sialic acid-binding immunoglobulin-like lectin (Siglec)-8 is an inhibitory receptor
selectively expressed on human eosinophils, but information about its function in asthma
pathology is still limited. Siglec-8 gene expression in asthma sputum cells is associated
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with type 2-high profiles of asthma and recent observation that administration of an
antibody targeting Siglec-8 can induce selective eosinophil apoptosis, suggesting that it
could represent a potential therapeutic target for eosinophil-mediated disease [27].

• Inhibitory Receptors

Other inhibitory receptors regulating the survival and the activation of eosinophils,
include CD300a, killer activating receptors, potassium inwardly-rectifying channel, and
FcgRIIb [24].

2.1.3. Intracellular Receptors

The eosinophil has many intracellular receptors that regulate its function (such as
some toll-like receptors and the glucocorticoid receptor). In the intracellular compartment
of eosinophils, a splicing variant of the glucocorticoid receptor (GR-A) is present in large
quantities [28]. GR-A is the pro-apoptotic isoform and is five times higher in eosinophils
than in neutrophils, which is why eosinophils are much more susceptible than other cells
to the therapeutic actions of glucocorticoids, such as apoptosis [29].

2.2. Eosinophil Biology

A series of sequential processes regulate the particular biology of eosinophils; these
events occur in different compartments, from the bone marrow to the blood and peripheral
tissues, in physiological or pathological conditions. All the different phases, from matu-
ration to degranulation, are regulated by the interaction of the eosinophil with a series of
molecules that include transcription factors, adhesion molecules and cytokines.

2.2.1. Eosinophil Differentiation and Maturation

Eosinophils are generated and developed in the bone marrow from multipotent
hematopoietic stem cells, which create a population of committed progenitors of the
eosinophilic lineage (EoPs) that in turn are capable of further differentiating into mature
eosinophils, their terminal form [30].

Human EoPs are characterized by the expression of surface receptors such as CD34,
CD38, and mainly high-affinity α subunit of the IL-5 receptor (IL-5Rα, or CD125) [31].
Differentiation of eosinophils normally occurs in the bone marrow; however, eosinophils
can also develop from CD34+ EoPs which are found outside the bone marrow, blood
and particularly lung tissue [32,33]. Increased levels of EoPs been identified in peripheral
blood of atopic subjects compared to non-atopic controls [34]. Likewise, an increase in the
number of CD34+/IL-5Rα+ EoPs has been identified in the bronchial mucosa of asthmatics
compared to non-asthmatic controls [30]; moreover, the demonstration that blood EoPs
have a greater response in vitro to IL-5 in patients with severe eosinophilic asthma than in
milder asthmatics suggests a possible clinically relevant role of in situ eosinophilopoiesis
in severe eosinophilic asthma [35].

Under homeostatic conditions, in healthy subjects, eosinophilopoiesis is mainly regu-
lated by multiple transcription factors including GATA-binding protein 1 (GATA-1), Purine
Rich Box-1 (PU.1), and the CCAAT-enhancing binding protein (c/EBP) family [36]. GATA-1
is thought to have the most important role, as disruption of the GATA-1 gene in mice results
in a strain completely devoid of eosinophils [37].

The development of mature eosinophils in blood and peripheral tissues also depends
on the synergistic contribution of cytokines such as IL-5, IL-3 and GM-CSF [18,38,39].

Eosinophils are fully differentiated after 7 days of maturation in the bone marrow.
Mature cells are subsequently released in peripheral circulation, with a lifespan up to
24 h [40,41].

2.2.2. Eosinophil Migration and Activation

Under physiological conditions, the main migration site of eosinophils is the gastroin-
testinal tract from the stomach to the intestine. A minority of them also migrate to the
lymph nodes, thymus, liver, spleen, uterus and mammary gland [41,42].
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This recruitment in different tissues can take place as early as 8–12 h after entry into
circulation, mainly through the binding of the CCR3 to different chemokines, such as
CCL11 (eotaxin-1), CCL24 (eotaxin-2) and CCL26 (eotaxin-3) [42].

When within tissues, eosinophils can survive for up to 15 days, primarily exerting
an immunomodulatory function, but also promoting tissue repair as well as antimicrobial
and antifungal immunity [41,42]. In inflammatory conditions, eosinophils can infiltrate
tissues where they are not normally found or are minimally present, such as large and small
airways and esophagus [43], in consequence of a series of extremely well-established steps.
In particular, during allergic inflammation and bronchial asthma, circulating eosinophils
adhere to the vascular endothelium and roll along it before pouring into lung tissue. Initial
contact with the endothelium depends on the binding of the eosinophil cell membrane
P-selectin glycoprotein ligand-1 (PSGL-1) to the adhesion receptor P-selectin to the ac-
tivated endothelium [44]. The binding of integrin very late antigen-4 (VLA-4) to the
vascular cell adhesion molecule-1 (VCAM-1) promotes the activation and extravasation of
eosinophils [44]. IL-13 causes increased eosinophilic expression of P-selectin and increased
P-selectin-mediated adhesion to endothelial cells [18,45].

In patients with severe asthma EoPs can also migrate to airways, where they differen-
tiate to mature cells in situ [35].

Under physiological conditions, activation, survival, and recruitment of eosinophils
are largely driven by IL-5, a cytokine produced by type 2 helper T cells (Th2) that plays
a prominent role in the regulation of eosinophils, EoPs, mast cells and type 2 innate
lymphoid cells (ILC2). Indeed, IL-5 is a key regulator cytokine for eosinophils acting
at multiple functional levels and time points during their lifespan. Epithelium-derived
alarmins, including IL-33, IL-25, and thymic stromal lymphopoietin (TSLP) partly trigger
the production of IL-5 [46–49].

In the context of eosinophilic asthma, the increase in eosinophils in the airways begins
after exposure of the epithelium of the airways to various allergens or antigens, thus
triggering the activation of an immunological cascade that directs eosinophils into the
airways through the stimulation by Th2 cytokines and chemoattractants [50]. When helper
T cells are activated by allergens, they switch to the Th2 phenotype and begin secreting
IL-4, IL-5, and IL-13 [22,40].

IL-5 and RANTES are the most relevant inducers of eosinophil migration in the
asthmatic lung [51]. The airway epithelium is also involved in the secretion and production
of these Th2 cytokines through the production of IL-33, and IL-25, which are secreted
after any type of epithelial insult [52–54]; these alarmins also activate ILC2s from the
innate immune system, which also secrete and produce IL-5, IL-4, and IL-13 [55]; it is
interesting to consider that the action of the epithelial alarmins IL-25, IL-33 and TSLP
on eosinophilopoiesis is both indirect, since the secretion of IL-5 occurs by the ILC2, but
it is also direct, since IL-33 can precede and promote IL-5 signaling in the eosinophil
development process [56].

In addition the relevant role in promoting the proliferation, differentiation, and mat-
uration of EoPs expressing IL-5Rα in the bone marrow, IL-5 is able to induce the release
of eosinophils into the bloodstream, as well as the activation and survival of mature
eosinophils at the tissue level, acting in combination with eotaxines [57].

The cytokines IL-3 and GM-CSF are also implicated in the activation and survival of
tissue eosinophils through induction of Bcl-xL expression, but their action is less specific
than that of IL-5 [16,58,59].

2.2.3. Eosinophil Degranulation

Once activated, eosinophils migrate from the peripheral blood to the inflammation
site, in which they modulate the inflammatory response through the release of granules
and therefore their contents [44,51]. Different degranulation processes are able to release
specific granule contents (Figure 2):
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Figure 2. Following different stimulations, eosinophils can release the contents of the granules by
classical exocytosis, compound exocytosis, piecemeal degranulation (PMD) or cytolysis. Conventional
exocytosis consists of the release of granule content by fusion of the granule itself to the cellular
membrane (panel A). Compound exocytosis is another type of exocytosis in which granules in which
granules merge with each other before interacting with the cellular membrane (panel B). Piecemeal
degranulation is the progressive and selective release of vesicles from specific granules and the
unloading of their contents after the fusion with the cellular membrane (panel C). Cytolysis is a
non-apoptotic form of cell death with rupture of the nuclear and plasma membrane, subsequent
release of nuclear DNA and deposition of specific intact granules in the extracellular space. After
cytolysis, there may be the release of eosinophilic extracellular traps (EETs), giving this peculiar form
of cell death the characteristic name of EETosis (panel D).

(a) conventional exocytosis, in which the fusion of the granule directly with the cell
membrane determines the release of the content of the specific granule itself;

(b) compound exocytosis, another type of exocytosis in which intracellular fusion of
granules occurs prior to interaction with the plasma membrane and extracellular release;

(c) piecemeal degranulation (PMD), the most common mechanism of eosinophil
degranulation, in which vesicles (that can be round or tubular) are released from specific
granules and move towards the cell membrane to unload their content into the extracellular
space [60]. Tubular vesicles tend to fold into a peculiar morphology and are therefore called
“sombrero vesicles” [18];

(d) Cytolysis, a rapid non-apoptotic cell death in which the formation of vacuoles
within cells occurs, with rupture of the nuclear and plasma membrane, the subsequent
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release of nuclear DNA and deposition of specific intact granules in the extracellular space.
In this way, eosinophils release eosinophil extracellular traps (EETs), which consist of DNA
fibers from the cellular nucleus [61]. Activated eosinophils are also capable of rapidly
releasing other substances in addition to granule proteins into the extracellular space, such
as bactericidal traps obtained from the combination of mitochondrial DNA and granule
proteins; this type of cell death, which is characteristic of eosinophils, is also known as
EETosis (“eosinophil extracellular trap cell death”) [31,62].

Finally, eosinophils can release exosomes into the extracellular environment; it has
been demonstrated that eosinophils of asthmatic patients release greater amounts of extra-
cellular vesicles (EVs) than those released by the eosinophils of healthy subjects [63]. EVs
are important mediators produced by cellular processes [64]; this evidence strengthens the
hypothesis that eosinophilic exosomes can be considered independent functional units,
since, even in the absence of the cell of origin, they seem to be able to feed eosinophilic
inflammation; however, exosomes and microvesicles are not the same entity: exosomes are
generated by the fusion of multivesicular bodies (MVBs) with the plasma membrane, and
microvesicles are shed by the outward vesiculation of the plasma membrane [65,66]. The
pathogenetic relevance of eosinophil-derived EVs makes them a potential diagnostic and
phenotypic biomarker of asthma, in particular of severe eosinophilic asthma [67,68].

2.3. Eosinophil Heterogeneity

Eosinophils were previously thought to be terminally differentiated cells upon their
release from the bone marrow into the bloodstream, instead latest evidence demonstrated
that eosinophils are able to further differentiate and mature in peripheral tissues, resulting
in sub-populations with distinct phenotypic and functional profile [69].

Previous evidence from Mesnil et al. showed in mouse models a large population of
eosinophils with a distinctive ring-shaped nucleus, both in absence of inflammation and
following the development of dust-induced airway allergy, demonstrating the existence
of lung resident eosinophils (rEosinophils) [70]; these cells, exclusively found in the lung
parenchyma, express the surface receptors CD62L and CD125, intermediate levels of Siglec-
F and low levels of CD101. Interestingly, even if they present the IL-5 surface receptor and
react to IL-5 in vitro, rEosinophils seemed not to depend on IL-5 for their development [71],
whereas the development of allergen-induced inflammatory eosinophils (iEosinophils) is
known to be dependent on the activity of IL-5 [70] In addition, rEosinophils appear to have
a more regulatory gene profile than iEosinophils, and mice without rheosinophils showed
increased Th2 responses to inhaled allergens. Indeed, in allergic conditions, a large number
of iEosinophils showing a segmented nucleus is recruited [70]. iEosinophils express low
levels of CD62L, intermediate levels of CD125 and elevated levels of Siglec-F and CD101
on their surface, and are mainly concentrated in peribronchial areas [71].

Unlike mouse models, humans appear to have different eosinophil subsets based on
cell density, in particular, normodense and hypodense eosinophils have been identified [72].

Normodense eosinophils from healthy individuals generally sediment at a density
of 1.082 g/mL [72], while an increased number of hypodense eosinophils with a reduced
density of <1.082 g/mL have been found in blood, BAL and lung tissues of patients with
severe eosinophilic asthma [73,74]; these hypodense eosinophils were originally interpreted
as activated eosinophils [75], since it has been shown that when normodense eosinophils
are stimulated with GM-CSF, IL-3 or IL-5 and in the presence of fibroblasts, they switch to
hypodense [76].

Hypodense eosinophils have been considered a “true” functional and phenotypic sub-
set [77,78], since they highly react to activating stimuli. Indeed, after activation, hypodense
eosinophils show greater survival, adhesion, oxygen metabolism, superoxide production,
and antibody-dependent cytotoxicity than normodense [75].

Taken together, these studies have been useful in demonstrating that human lung
eosinophils can be heterogeneous, however more studies are required for a better under-
standing of these subpopulations [69].
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If the hypothesis of the existence of different subsets of human eosinophils is correct, it
can significantly affect the choice of treatment in patients with severe eosinophilic asthma,
between the total eradication of the eosinophilic lineage and the control of their IL-5-
dependent development program [79].

2.4. Overview of Eosinophil-Driven Pathological Conditions

Elevated peripheral blood and tissue eosinophil counts can be found in several con-
ditions, mainly allergic, rheumatological, infectious and neoplastic pathologies. Other
possible conditions associated with eosinophilia have also been described, such as drug
hypersensitivity, hematological and autoimmune diseases. Activation of eosinophils and
subsequent release of eosinophilic mediators (mainly cytokines and type 2 chemokines) are
potent pro-inflammatory effectors [80] and a significant association has been established
between eosinophilia and some systemic inflammatory diseases [81]. The involvement
of eosinophilia in inflammatory pathologies of the gastrointestinal, vascular, locomotor,
and in general of the various mucous surfaces of the organism is known in the literature,
and of course, eosinophils play key role in the pathogenesis of both upper and lower
airway inflammation, with a spectrum of pathologic manifestations ranging from allergic
rhinitis with or without nasal polyposis to asthma, and even allergic bronchopulmonary
aspergillosis [82].

3. Eosinophils in Pathobiology of Severe Asthma

The mechanisms that regulate the complex pathways involved in airway inflammation
in asthma can be broadly dichotomized into two different endotypes: type 2 (T2) endotype,
under the coordination of Th2 lymphocytes and ILC2, which produce IL-5, IL-4 and IL-13,
and non-type 2 (non-T2) endotype in which eosinophilia is absent [3].

Eosinophils are important effectors of T2 severe asthma, acting downstream of the in-
flammatory cascade stimulated by molecular mediators produced following inflammatory
stimuli both on an allergic basis and a non-allergic basis [15].

Differentiation, proliferation, activation, survival and degranulation of eosinophils
are mainly regulated by IL-5 produced by eosinophils themselves, Th2 lymphocytes, mast
cells, natural killer cells, and ILC2 [83,84]. The biological effects of IL-5 are mediated by
the interaction of the cytokine with the IL-5 receptor (IL-5R) which includes a specific α
subunit for IL-5 (IL-5Rα) and a non-specific βc chain that can bind IL-5, IL-3, and GM-
CSF [85]. IL-5 binding to IL-5Rα determinates the formation of a binary IL-5Rα/c receptor
complex, which drives the activation of an intricate signal transduction pathway, including
the JAK2–STAT1/3/5 complex that leads to proliferation, and a heterogeneous group of
kinases (Raf-1, MAPK, PI3K) which are responsible for numerous activities of IL-5 such
as activation, degranulation, survival and inhibition of apoptosis of eosinophils [86,87].
High levels of IL-5 have been detected in serum of patients with severe asthma, in whom
eosinophilopoiesis occurs not only in the bone marrow but also in the airways [86]. Fur-
thermore, IL-5 promotes eosinophil migration into the airways [88] synergistically with
eotaxins, which are powerful eosinophil chemoattractants [89]; moreover, in type-2 asth-
matic patients, IL-5 stimulates eosinophils to interact with the extracellular matrix protein
periostin, whose levels are upregulated when eosinophils infiltrate the airways [90]. Fi-
nally, as previously mentioned, IL-5 also represents a key signal for the degranulation of
eosinophils [91]. The release of the eosinophil granule content favors the damage of airway
epithelium and neural tissue, since granules contain cytotoxic proteins including eosinophil
cationic protein, eosinophil peroxidase, major basic protein and eosinophil-derived neuro-
toxin [18,92].

Eosinophils play a key role in the development of the major pathophysiological
changes associated with severe asthma, including mucus hypersecretion, tissue damage
and remodeling of the airways and consequent hyperreactivity of the airways (Figure 3);
these effects influence relevant clinical outcomes such as asthma severity and risk of
exacerbations.
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Figure 3. The centrality of the eosinophil in the pathophysiology of T2 asthma. The main effect can
be summarized in four peculiar activities: airway damage, airway remodeling, airway hyperrespon-
siveness, and mucus production. When activated eosinophils reach the airways, they release specific
granules whose contents have cytotoxic properties that can cause direct damage to the airways. The
content of these granules, especially MBP and EPO, is also able to stimulate mast cells and basophils
to release histamine, which contributes to bronchial hyperresponsiveness together with the direct
action triggered by the release of IL-13 and leukotrienes by the eosinophil itself. IL-13 also increases
mucus secretion by promoting the differentiation of goblet cells. Airway remodeling is associated
with smooth muscle cell hyperplasia and fibroblast proliferation, which are promoted by TGF-β
released both as a result of epithelial damage and as an exosomal content of eosinophils. TGF-β is
also responsible for structural changes to the extracellular matrix, by increasing the production of
collagen and glycosaminoglycans. IL-13: interleukin-13; MBP: mayor basic protein; EPO: eosinophil
peroxidase; TGF-β: transforming growth factor-β.

Several evidence suggest that eosinophils are also active in the airway remodeling
process in asthma, which consists of structural changes in the airways following repeated
damage and repair processes; these findings are in line with the hypothesis that eosinophils
can also act as regulators of morphogenesis and tissue repair. In asthma, airway remodeling
is characterized by smooth muscle hypertrophy, epithelial cell hyperplasia, goblet cell
metaplasia, and reticular basement membrane (RBM) thickening by deposition of collagen,
tenascin, and other proteins of the matrix, resulting in progressive loss of lung function [93].
In particular, RBM thickening appears to be more evident in eosinophilic asthma than
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in non-eosinophilic asthma [94]. The exact mechanisms underlying airway remodeling
processes in eosinophilic asthma are not yet fully understood; however, elevated TGF-β1
levels in the airways of asthmatic patients suggest a possible role for eosinophils [95,96],
which are one of the main sources of TGF-β1 and after their activation by IL-5 [15,96] are
able to release large amounts of TGF-β1 at the site of inflammation [97]. Furthermore,
eosinophils express other cytokines associated to airway remodeling, such as heparin-
binding epidermal growth factor (HB-EGF), nerve growth factor (NGF), TGF-α and above
all the Th2 cytokines IL-4 and IL-13 [98,99].

4. Targeting Eosinophils in Severe Asthma

Eosinophils are key biological targets for the treatment of severe eosinophilic asthma,
as these cells play a major role in the pathobiology of asthma.

Corticosteroids and anti-IL-5 / IL5r biologics are currently the most effective anti-
eosinophil therapies, although other drug strategies are currently being studied. Further-
more, given their involvement in type 2 inflammation and eosinophil recruitment, it is
worth mentioning drugs that target cytokines such as IL-4, IL-13 and alarmins such as
IL-25, IL-33 and TSLP; however, these drugs are not considered strictly “antieosinophils”,
as they reduce eosinophil counts via indirect mechanisms.

4.1. Corticosteroids

Corticosteroids (CSs) are the most common and powerful anti-inflammatory agents
used for the treatment of eosinophilic asthma [100,101]. The therapeutic effects of CSs
depend on their binding to cytoplasmic glucocorticoid (GR) receptors, which are mainly
represented by the functional isoform GRa, largely more expressed than the GRb variant,
which is alternately spliced and dysfunctional [102,103]. As a result of the interaction
with either inhaled or systemic corticosteroids, GRs dissociate from anchoring chaperone
molecules such as heat-shock proteins, and the active drug-receptor complex then translo-
cate to the nucleus of target cells [104]. Inside the nucleus, GRs bind as homodimers to
specific DNA nucleotide sequences named glucocorticoid response elements (GREs) [105].
Following this binding, coactivating protein complexes or corepressors are recruited and
their molecular interactions with GRs consequently lead to stimulation or inhibition of
gene transcription [106]. Through these mechanisms corticosteroids switch on several
genes which mainly encode anti-inflammatory proteins such as glucocorticoid-induced
leucine zipper (GILZ), that suppresses the bioactivities of the key pro-inflammatory tran-
scription factors activator protein-1 (AP-1) and nuclear factor-κB (NF-κB) [107]. Another
important anti-inflammatory protein whose expression is up-regulated by corticosteroids
is mitogen-activated protein kinase phosphatase-1 (MKP-1), which dephosphorylates
and inactivates the pro-inflammatory p38 subgroup of mitogen-activated protein kinases
(MAPKs) [108]. In addition to modulating gene expression at the GRE level, monomeric
GRs can also directly bind NF-κB and AP-1, thus forming protein-protein complexes that
repress the pro-inflammatory effects of these transcription factors by preventing their inter-
actions with specific DNA consensus sequences [109]; this latter event may be promoted by
corticosteroids also via GR-induced recruitment and activation of histone deacetylase-2
(HDAC2) [110], which results in deacetylation of core histones, nucleosomal DNA conden-
sation, and the consequent inaccessibility of nuclear binding sites for pro-inflammatory
transcription factors. Furthermore, corticosteroids can also act at a post-transcriptional level
by up-regulating the expression of tristetraprolin, a zinc finger protein that destabilizes
some cytokine mRNAs [111].

CSs possess a wide range of anti-inflammatory actions through the above molecular
mechanisms, including suppression of eosinophil maturation, survival, proliferation, ac-
tivation and chemotaxis, as well as induction of their apoptosis [112–114]. In particular,
corticosteroids repress eosinophil differentiation and promote eosinophil apoptosis by
blocking the production of key growth factors such as IL-3, IL-5 and GM-CSF [101,115].
Furthermore, corticosteroids are able to effectively inhibit the recruitment of eosinophils
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into the airways, mainly due to the CS-induced down-regulation of IL-13 synthesis, which
leads to a marked decrease in IL-13-dependent production of the chemoattractive eo-
taxin [116]. CSs have the ability, through inhibition of the biosynthesis of eotaxin and
RANTES (regulated upon activation, normal T cell expressed and secreted), to contribute to
the removal of eosinophils from the airways, responsible for attenuation of antigen-induced
bronchial eosinophilia [117]. In fact, in allergic asthmatics, CSs have demostrated to be able
to significantly lower the number of eosinophils in induced sputum and this effect is asso-
ciated with a strong reduction in the hyperreactivity of the airways to methacholine [118].
Furthermore, CSs reduce the attachment of eosinophils to bronchial epithelial cells and
this further therapeutically useful action appears to result from CS-dependent inhibition
of VCAM-1 expression in the airway [119]. CSs also decrease BAL levels of ECP, a highly
cytotoxic molecule released by activated eosinophils [120].

All these pharmacological properties place CSs in inhaled formulation among the
first-line drugs for the treatment of asthma, even in children [121]; however, despite
the multiplicity of corticosteroid antieosinophilic actions above described, many patients
with severe refractory eosinophilic asthma may exhibit various degrees of resistance to
corticosteroids [122]. Many mechanisms can sustain corticosteroid resistance in asthma,
including an exaggerated production of IL-5 and IL-13, an excessive expression of the
dysfunctional GRb isoform, and an impairment of histone deacetylases [123,124]. A further
cause of corticosteroid insensitivity is attributable to overactivation of p38 MAPK, which
phosphorylates GRs thus compromising their nuclear translocation and DNA binding
properties [125]. If inhaled or even oral corticosteroids are unable to provide satisfactory
clinical control in patients with severe eosinophilic asthma, biological antieosinophilic
therapies should be considered [116].

4.2. Anti-Eosinophil Biological Therapies

Based on the recommendations in step 5 of the Global Initiative for Asthma (GINA)
document, currently available strategies for the treatment of severe asthma with direct
anti-eosinophilic mechanism include inhibition of IL-5 and receptor antagonism of the
receptor for IL-5 [126]; these pharmacological options are indicated exclusively in severe
asthma, since there are currently insufficient data in the literature to prefer biological
therapy to conventional treatment in less severe forms of disease, and furthermore the
high cost of biologics limits their use in clinical practice in patients that respond to the
treatments recommended in the lower GINA steps.

4.2.1. IL-5 Inhibition

Mepolizumab is a humanized monoclonal IgG1/k antibody which binds to the α-
chain of IL-5, thereby preventing its interaction with the α subunit of the IL-5 receptor (IL-
5Rα) [127,128]. The efficacy of mepolizumab was initially demonstrated in some patients
with severe eosinophilic asthma who experienced recurrent disease exacerbations [129,130].
In particular, in these subjects, mepolizumab significantly reduced asthma exacerbations
and also lowered the number of eosinophils in the blood and sputum; these important
findings were subsequently reinforced by the results of the phase 2b/3 DREAM (Dose
Ranging Efficacy And safety with Mepolizumab) study, conducted in a larger population of
patients with severe uncontrolled eosinophilic asthma [131]. In addition, the phase 3 trials
MENSA (MEpolizumab as adjunctive therapy iN patients with Severe Asthma) and SIRIUS
(SteroId ReductIon with mepolizUmab Study) showed a decrease in the number of severe
asthma exacerbations, a higher quality of life, a better symptom control, and an increase
in FEV1 in asthmatic subjects with the above features, treated with mepolizumab [132,
133]. The SIRIUS study also showed that mepolizumab elicited a 50% decrement of OCS
intake [133]. The additional phase 3b MUSCA trial corroborated the positive impact of
mepolizumab on health-related quality of life [134]. Additionally, a post hoc meta-analysis
of MENSA and MUSCA showed a mepolizumab-induced improved exercise tolerance and
worked productivity in patients complaining of severe eosinophilic asthma [135]. After
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completing either MENSA or SIRIUS studies, many asthmatics were then enrolled in the
COSMOS open-label, phase 3b extension trial, which confirmed a good long-term safety
and efficacy profile of mepolizumab [136].

Recent real-world findings further validated the results of randomized controlled
trials, even suggesting that in clinical practice mepolizumab can be more effective than
previously shown, probably because of the higher numbers of blood eosinophils char-
acterizing the patients involved in many real-life experiences [137–139]. In this context,
mepolizumab super-responder patients, expressing very high levels of several biomarkers
of type 2 inflammation, have been identified [140]. Real-world studies also indicate that
mepolizumab shows similar efficacy in both atopic and non-atopic patients with severe
eosinophilic asthma [141]; these observations support the use of mepolizumab as an ef-
fective biological treatment switch for eosinophilic allergic asthmatics unresponsive to
omalizumab [142,143]. Additionally, mepolizumab has been shown to improve proximal
and distal airway airflow along the respiratory tree of patients with severe eosinophilic
asthma, as evidenced by significant increases in FEV1 and FEF25-75% [139].

Reslizumab is another humanized IgG4/k anti-IL-5 monoclonal antibody, which
has been evaluated in several randomized controlled trials included in the BREATH pro-
gram [144,145]. An initial phase 2 trial showed reduced blood and sputum eosinophil
numbers, and also induced a transient FEV1 increment, after use of reslizumab [146]. An ad-
ditional phase 2 study in patients with severe eosinophilic asthma showed that reslizumab
was able to significantly improve FEV1 and to elicit a trend toward symptom control im-
provement, especially in patients having high blood eosinophil counts and comorbid nasal
polyposis [147]. Subsequently, two phase 3 studies were conducted in severe asthmatics
with more than 400 blood eosinophils/mL, showing a decrease in the annual rate of asthma
exacerbations higher than 50%, with relevant improvements in symptom control and lung
function, after reslizumab treatment [148]; these data were later confirmed in subjects
complaining of late-onset eosinophilic asthma [149]. Similar to mepolizumab, reslizumab
was also able to promote significant increases in both FEV1 and FEF25-75% [150]. Such
positive therapeutic effects have been also confirmed by real-life experiences [151]. In
consideration of the evidence from both randomized trials and real-life studies, reslizumab
has been shown to be a biological drug with a good safety and tolerability profile [147].
Nevertheless, a pooled analysis of 6 trials including 1028 patients found that reslizumab
caused 3 cases of anaphylaxis [152]. One of these occurred in a patient with a history
of drug hypersensitivity, who experienced a reaction with dyspnea, chills, vomiting and
hot flashes. In the second case, the anaphylactic reaction presented itself as shortness of
breath, wheezing, inability to speak, swollen eyes, hot flashes, and desaturation. The third
reslizumab-related anaphylactic reaction occurred in a patient with a history of drug allergy
and hypersensitivity, with skin reactions, severe lower abdominal pain and severe burning
and itching in the genital area [152].

4.2.2. IL-5 Receptor Antagonism

The IL-5 receptor blocking strategy is effectively carried out by the humanized and
afucosylated IgG1/k monoclonal antibody benralizumab, which through Fab fragments
selectively binds to IL-5Rα, thus preventing its interaction with IL-5 [153]. Furthermore,
the constant Fc region of benralizumab binds to the FcγRIIIa receptor located on natural
killer (NK) cells, thereby triggering eosinophil apoptosis through antibody-dependent
cell-mediated cytotoxicity (ADCC), a mechanism strongly enhanced by afucosylation [153].
Benralizumab, therefore, has a double antieosinophilic action, exerted both through the
neutralization of IL-5 at the receptor level, and through a direct pro-apoptotic effect; this
monoclonal antibody has been thoroughly tested across the extensive WINDWARD pro-
gram which included the phase 3 SIROCCO and CALIMA trials, which demonstrated that
benralizumab is able to significantly reduce the number of severe eosinophilic asthma exac-
erbations and improve symptom control and respiratory function [154,155]. The positive
effect exerted by benralizumab on pulmonary function was also documented by the phase
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3 BISE trial, which detected a quite relevant FEV1 increase in patients with eosinophilic
asthma and a blood eosinophil count of at least 300 cells/mL [156]. Additionally, the
phase 3b ANDHI study showed that benralizumab, in addition to reducing the number
of asthma exacerbations and increasing both FEV1 and PEF, also improved health-related
quality of life and symptom control [157]. ZONDA and PONENTE trials were very useful
because they demonstrated the powerful OCS sparing effect of benralizumab in subjects
with severe eosinophilic asthma [158,159]. Furthermore, the BORA Phase 3 extension study
reported a high long-term drug safety and tolerability profile of benralizumab [160]. Both
placebo-controlled trials and real-life observations suggest that benralizumab is an effective
add-on biologic treatment for allergic and non-allergic people with severe eosinophilic
asthma [161–163]. As a result, real-world studies have also shown that benralizumab can
be successfully used as a biological switching therapy for allergic patients with severe
eosinophilic asthma who are not fully responsive to omalizumab [68]. Combining the
results of controlled and real-life studies of severe eosinophilic asthma, benralizumab has
proven to clearly be a biologic drug that can deplete blood eosinophils, decrease asthma ex-
acerbations and OCS consumption, as well as improve symptom control, airflow limitation
and lung hyperinflation [162–165].

4.2.3. Currently Available Biological Therapies Indirectly Targeting Eosinophils

In addition to biological strategies aimed at inhibiting the proliferation and eliminat-
ing circulating eosinophils, there are currently other pharmacological agents capable of
intercepting the pro-inflammatory and pro-remodeling activities of the eosinophil, thus
acting as indirect anti-eosinophil drugs.

Dupilumab is a fully human IgG4 monoclonal antibody capable of suppressing the
biological actions of IL-4 and IL-13 through selective binding to IL-4Rα, shared by these
two cytokines for the activation of their receptor mechanisms [166]; this drug is effective
in severe asthmatics with at least 150 eosinophils per microliter of blood and / or at
least 25 parts per billion (ppb) of FeNO and has therapeutic effects including rapid and
relevant improvements in asthma exacerbations, symptom control, airflow limitation, lung
hyperinflation and OCS intake [167–169].

Tezepelumab is a fully human anti-TSLP monoclonal antibody recently approved by
the FDA for the adjunctive maintenance therapy of severe asthma, without phenotype
or biomarker limitation. In patients with moderate to severe asthma, tezepelumab can
act independently of blood eosinophil counts, decreasing the rate of asthma exacerbation
by 56% and improving symptom control, lung function and quality of life-related to
health [170,171]. Very recent studies have shown that tezepelumab was also able to induce
a marked decrease in the number of eosinophils in both BAL and bronchial biopsies
obtained from adult asthmatics [172]. Finally, due to the ability of TSLP to favor the switch
of naïve Th lymphocytes to a Th17 cell line, tezepelumab may have potential beneficial
effects in the treatment of Th17 cell-driven non-type 2 asthma [173,174].

4.3. Experimental Anti-Eosinophil Therapies

The newly developed anti-eosinophil therapies include chemokine receptor antago-
nists, prostanoid receptor blockers and pro-apoptotic antibodies, as well as inhibitors of
kinases and transcription factors, which are under ongoing evaluation in both animal and
human studies.

4.3.1. Chemokine Receptor Antagonists

Eosinophils express the CCR3 receptor, which is activated by the powerful eosinophil
chemoattractant eotaxin [101]. Using an experimental mouse model of allergic asthma, a
rat CCR3 anti-mouse monoclonal antibody was shown to effectively inhibit the ovalbumin-
induced increase in eosinophil counts in both BALF and lung biopsies [175]. When adminis-
tered before inhaled allergen challenge to patients with mild-to-moderate atopic asthma, the
selective oral CCR3 antagonist AXP1275 elicited a not significant trend towards a decrease
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in antigen-dependent airway eosinophilia, associated with a significant improvement in
bronchial hyperresponsiveness to methacholine [176]. Similar results were obtained uti-
lizing GW766994, another oral CCR3 antagonist [177]. TPI ASM8 is a complex construct
consisting of two modified phosphorothioate antisense oligonucleotides, including the
CCR3 antagonist TOP005 and TOP004, which are directed against the common βc subunit
of the receptors for IL-3, IL-5, and GM-CSF [178]. In comparison to placebo, TPI ASM8
significantly lowered by 46% allergen-induced airway eosinophilia in patients with mild
allergic asthma, and also reduced early and late asthmatic responses [178]; moreover, TPI
ASM8 dose-dependently suppressed the allergen challenge-induced increase in the airway
concentration of eosinophil cationic protein [179].

4.3.2. Antagonists of Prostaglandin D2 Receptor

Due to the widespread expression of the prostaglandin D2 receptor CRTH2 (chemoat-
tractant receptor-homologous molecule expressed on Th2 cells) on several immune-inflammatory
cells [180] including eosinophils, some oral CRTH2 antagonists have been tested in or-
der to evaluate their potential therapeutic effects on eosinophilic inflammation in the
airways [101]. When compared to placebo, the CRTH2 antagonist OC00049, subsequently
identified as timapiprant, significantly decreased sputum eosinophil counts and increased
FEV1 in patients with moderate persistent asthma [181–184]. In a preliminary phase 2 study
carried out in patients with chronic eosinophilic asthma, the CRTH2 antagonist fevipiprant
reduced sputum eosinophil numbers, and improved lung function and asthma-related
quality of life [185]; however, in the subsequent LUSTER-1 and LUSTER-2 phase 3 trials
fevipiprant was not able to guarantee in patients with severe asthma a significant reduction
of disease exacerbations, which represented the primary study endpoint [186].

4.3.3. Inducers of Eosinophil Apoptosis

Human eosinophils express on their cell membrane the inhibitory receptor named
Siglec-8 [187]. The binding of the monoclonal antibody lirentelimab/AK002 to Siglec-8 trig-
gered a mechanism of antibody-dependent cellular cytotoxicity leading to eosinophil apop-
tosis and to the consequent reduction of sputum eosinophils from asthmatic subjects [27].
Therefore, antibody-mediated induction of eosinophil apoptosis currently appears to be a
promising therapeutic approach for the treatment of diseases characterized by eosinophilic
inflammation, such as type 2 asthma [188].

4.3.4. Inhibitors of Kinases and Transcription Factors

Since proinflammatory type 2 cytokines exert their biological actions via activation of
complex signaling modules mediated by JAK (Janus kinases)/STAT (signal transducers
and activators of transcription) pathways [84,189], these molecules can be targeted by
experimental therapies of eosinophilic asthma under current investigation. In particular,
the JAK-3 specific inhibitors tofacitinib and CP-690550 markedly reduced the numbers of
BAL eosinophils in murine models of allergen-induced lung inflammation [190,191].

The transcription factor GATA-3 is a suitable potential target for experimental therapies
for type 2 asthma. Indeed, GATA-3 promotes the commitment of naïve Th0 cells towards
the Th2 lineage thus up-regulating the production of type 2 cytokines, also including
IL-5 [192,193]. In this regard, during the last decades, an interesting research strategy has
evolved, leading to the development of GATA-3 DNAzymes, consisting of single-stranded
catalytic DNA molecules which selectively cleave GATA-3 mRNA [194]. In atopic asthmatic
patients, a placebo-controlled trial showed that the inhaled GATA-3-specific DNAzyme
SB010 successfully attenuated allergen-induced sputum eosinophilia, and also decreased
plasma levels of IL-5 [195].

5. Conclusions

Eosinophilic airway inflammation is a key “treatable trait” in patients with severe
asthma. For patients exhibiting this trait who have an incomplete response to corticos-
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teroids, novel biologic therapies have been developed and are available in clinical practice;
these drugs have been shown to significantly improve symptom control, reduce exacerba-
tion rates and oral glucocorticoid use in many but not in all severe asthmatic patients; it
is not yet clear which patients will respond to which biologic agents. Thus far, it seems
that anti-IL-5 is most efficacious in patients with high blood eosinophil counts; however,
it is possible that eosinophils’ plasticity and adaptability and their pleiotropic responses
to the most disparate stimuli are at the basis of the relative impossibility, at least with the
currently available drugs, to definitively “cure” from severe asthma.

So, immediate future challenges should include determining which eosinophil-reducing
treatment is more effective for patients with severe eosinophilic asthma.
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