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Next-generation sequencing techniques have been rapidly emerging. However, the massive sequencing reads hide a great deal of
unknown important information. Advances have enabled researchers to discover alternative splicing (AS) sites and isoforms using
computational approaches instead of molecular experiments. Given the importance of AS for gene expression and protein diversity
in eukaryotes, detecting alternative splicing and isoforms represents a hot topic in systems biology and epigenetics research. The
computational methods applied to AS prediction have improved since the emergence of next-generation sequencing. In this study,
we introduce state-of-the-art research on AS and then compare the research methods and software tools available for AS based on
next-generation sequencing reads. Finally, we discuss the prospects of computational methods related to AS.

1. Introduction

Alternative splicing (AS) refers to the production of pre-
mRNA via gene transcription to generate a number ofmature
mRNAs based on different splice modes, thereby increasing
protein diversity. Since alternative splicing was discovered,
studies have identified a large number of AS events in
the human gene transcription process [1]. Based on high-
throughput deep sequencing data, AS occurs in approx-
imately 95% of the human genome [2]. AS is an important
regulatory mechanism involved in the regulation of eukary-
otic gene expression and proteome diversity [3]. The process
is closely linkedwithmanydiseases, including cancer anddis-
eases of the nervous system [4–6].Thus, scholars inmedicine,
genetics, bioinformatics, and other fields have directed con-
siderable research interest towards AS with the aim of
identifying additional splicing events that could facilitate a
deeper understanding of the AS regulatory mechanism.

Splice site recognition represents a key step in selec-
tive splicing research. Splice sites are used to predict the
positions of exon/intron structures and splice site features,
and splice site recognition is the traditional strategy used
to predict alternative splice sites. Many algorithms, software,

and databases for sequence alignment have emerged due to
the application of first-generation sequencing. The research
resources designed specifically for AS have gradually become
richer, including a common ASD AS database [7]. However,
the cost of first-generation sequencing is high; considerable
efforts have been directed towards the goal of creating thou-
sand- and hundred-dollar genome sequencing technology in
the postgenomic era.Thus, the high throughput and low cost
of next-generation sequencing technologies have provided a
new stage for scientific research [8, 9].

AS was discovered in 1977 [10]. Subsequently, researchers
realized the importance of AS due to its ability to regulate
gene expression and facilitate protein diversity [11, 12]. The
advantages of next-generation sequencing technology have
opened a new stage of sequencing, and the study of the
massive amounts of data generated by RNA-seq technology
has become an important research direction.

RNA-seq (high-throughput RNA sequencing) represents
a new method for the analysis of gene expression and tran-
scriptomes.Many software tools and databases have appeared
with the capacity to generate short sequence alignments
and predictions on the basis of the alternative splice sites
identified using RNA-seq.
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Figure 1: Five types of alternative splicing.

In this study, we outlined the methods, software tools,
and databases available for AS research under two-generation
sequencing technologies. The effect of these factors on AS
research was analyzed. Using RNA-seq data produced by
the Illumina/Solexa sequencing platform as an example, we
compared three common splice site prediction programs
(HMMSplicer [11], SOAPsplice, and TopHat [8]) under con-
ditions of different depths and sequence read lengths. The
performance of each type of software was evaluated under
different conditions by comparing the number of accurately
predicted sites, the accuracy rate, and the error rate. Finally,
we discussed the problems and challenges associated with
using deep sequencing data to study AS.

2. Discovering Alternative Splicing Sites from
Long DNA Sequences

In addition to experimental methods, researchers predict
potential AS events through the comparison between EST
expression sequence tags and gene sequences. A large number
of analyses and studies have validated the significance of the
3󸀠 terminal splice acceptor site and 5󸀠 terminal splice donor
site in splicing events. Figure 1 summarizes the five AS forms.

The study by Fairbrother et al. [13] on exons in the human
genome revealed that the splicing enhancers ESE and ESS
serve an important regulatory function in selective splicing.
Black [14] demonstrated that the splicing enhancer ISE and
silencer ISS are also important for the selection of splicing
sites and recognition of exons and introns. Thus, the AS pro-
cess in eukaryotic genes is determined not only by a splicing
factor but also by a complex regulatory process.

Themeans of selective splicingmainly include the follow-
ing.

(1) Comparison analysis based on ESTs, mRNA, and
gene fragments: EST comparative analysis was one
of the earliest AS research methods. This method
can identify certain AS events. However, EST has its
own limitations, such as incomplete data, influence
from genetic pollution, sensitive 3󸀠 terminal, and high
cost [15, 16]. Common comparison software programs

include BLAT [17], Clustal [18], SIM4 [19], Ecgene
[20], ASPIC [21], Spidey [22], GeneSeqer [23], and
GMAP [24].

(2) Using gene chip high-throughput technology: gene
chip technology has facilitated the research upsurge
in the whole gene transcriptome. A large number of
AS events have been identified using this technology.
Johnson et al. [1, 25] discovered many exon-skipping
events by analyzing microarray data. However, the
disadvantage of this method is that probe density is
limited, and designing a probe based on the known
sequence and data analysis is difficult.

(3) Using machine learning methods for theoretical
prediction: machine learning techniques have been
widely used in various tasks in the field of bioin-
formatics, such as protein remote homology detec-
tion [26–29], microRNA identification [30, 31], pro-
tein binding site prediction [32], domain boundary
identification [33, 34], DNA-binding protein pre-
diction [35–37], protein structure prediction [38],
enzyme classification [39, 40], gene regulation net-
work construction [41], heat shock protein classifica-
tion [42, 43], replication origin prediction [44, 45],
nucleosome positioning sequence identification [46–
48], CpG island methylation status prediction [49],
translation initiation site prediction [50], promoter
prediction [51], and microarray clustering [52, 53].
Thesemachine learning basedmethods have achieved
promising predictive performances. Therefore, some
researchers have also applied common machine
learning methods for theoretical predictions, such
as support vector machine (SVM) [54, 55], weight
matrices, the hidden Markov model, the quadratic
discriminant function [56], and the neural network
model [57]. The programs used for predicting splice
sites based on these algorithms include HMMgene
[58], NetGene2 [59, 60], geneID [61], GeneSplicer
[62], and SpliceMachine [63].
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3. Discovering Alternative Splicing
Sites from Short Reads

The next-generation high-throughput sequencing technol-
ogy developed rapidly after its emergence, thus enabling
sequencing technology to move a step closer towards the
thousand-dollar genome project. RNA-seq represents a new
approach for gene expression and transcriptome studies.
Currently, traditional AS research methods coexist with the
development of the next-generation research methods. An
increasing number of studies have been devoted to the devel-
opment of new algorithms. In summary, next-generation
high-throughput sequencing technology can provide a broad
platform for AS due to its high efficiency and inexpensive-
ness.

However, RNA-seq also has shortcomings. The main
challenge stems from read length. The read length of first-
generation sequencing (i.e., Sanger sequencing) reaches
approximately 1000 bp. The initial read length of RNA-seq
was only approximately 25 bp.The read length is still relatively
short, despite reaching 100 bp using Illumina/Solexa double-
end sequencing [64].

3.1. Data Preprocessing. The first step in predicting an alter-
native splice site is to position the read on the reference
transcriptome using RNA-seq data. However, the general
analysis tools often position the reads on the reference
genome because the transcriptome itself is not complete [8].
Short RNA-seq read lengths and incomplete transcriptomes
cause the accuracy of this step to directly influence the
accuracy of the prediction.

Some data found in read mapping can cross two exon-
exon junctions [65].This “read in junction” cannot be directly
positioned on the genome sequence. This finding represents
the key to studying alternative splice sites and identifying the
critical region for exploring undetected splice events. There-
fore, the processing strategy used to splice the read in junction
is the key to predicting splice sites [66]. One approach for
the treatment of read in junction is to position the reads
onto the reference genome according to the currently known
annotation of the exons. ERANGE [67] uses this method.
Obviously, identifying new splice events is difficult using this
approach. Another approach is to completely position the
reads on the reference genome so that they can be divided into
several different clusters. Reads with overlapping areas are
classified into the same cluster. An exon region is delimited in
each cluster [65]. Finally, the reads in junctions are positioned
on the possible junctions. New splice events can be identified
because the reads are based on known exon annotations.The
splice site prediction software TopHat [8] uses this strategy.

Numerous software programs are specifically designed
for the read mapping of RNA-seq data. These programs
adopt the following algorithms: (1) the Smith-Waterman
algorithm, such as BFAST [68] and SHRiMP [69]; (2) the two-
way Burrows-Wheeler transform (BWT) algorithm, such as
SOAPAligner [70]; (3) the BWT algorithm, such as Bowtie
[71] and BWA [72]; and (4) the spaced-seed vacancy seed
algorithm, such as MAQ [73]. Data compatibility should also
be considered along with the choice of software. The formats

of RNA-seq data generated by various sequencing platforms
are different [74]. Thus, software versatility is affected by the
styles and variety of formats it supports. Bowtie and BWA are
relatively efficient, whereas SOAPAligner, BFAST, and MAQ
have good tolerance for mismatches.

In addition to read mapping, we identified special soft-
ware devoted to read assembly (i.e., de novo assembly). Few
methods to study AS based on read assembly exist. However,
read assembly has special roles in other biological informa-
tion sciences. The typical read assembly software includes
SHARCGS [75], SSAKE [76], and ALLPATHS [77]. The
former two are assembled only for single sequence data, while
the latter can be assembled for a pair of sequences from
double-end sequencing. MAQ also has the ability to perform
read assembly. Finally, sequence read archive (SRA) files are
specialized for the storage of databases related to RNA-seq
data for NCBI for inclusion into an AS database.

3.2. Alternative Splicing Prediction. The commonAS site pre-
diction software includes ERANGE, QPALMA [78], TopHat,
MapSplice [79], SpliceMap, SOAPsplice, SplitSeek [80], and
HMMSplicer. Current studies using RNA-seq to identify AS
sites focus on locating splice sites, discovering new splice sites
located as distantly as possible, and conducting next-step AS
studies. Therefore, the accuracy and efficiency of predictions
are key factors for the prediction software. Moreover, accu-
racy should be improved in order to predict more splice sites,
while the error probability should be reduced; these factors
differ for selected algorithms.

ERANGEwas the earliest availablemethod. It was the first
program to use the read mapping method. In this method,
the read is positioned on the reference genome based on
known exon annotations. Thus, this method cannot be used
to identify a new splice site. QPALMA adopts the machine
learning strategy and trains support vector machines for site
identification using known splice sites. Vmatch has been
adopted for positioning. However, because the efficiency of
Vmatch is not high enough compared with Bowtie, Vmatch
is not used for comparing reads. TopHat first positions
the sequence on the reference genome using Bowtie. MAQ
successfully positions the sequence assembly on the reference
genome.Then, a possible splice site is recognized based on the
adjacent exons. Additionally, the sequences not positioned on
the reference genome are collected to establish the vacancy
seed index. Finally, the vacancy expansion is compared in
order to obtain the possible splice sites. According to a
test reported by the authors, TopHat processed 2.2 million
reads per hour, whereas QPALMA processed approximately
180,000. However, the performance will be poor when the
depth of sequencing is low or the intron is very short because
the algorithm adopts exon islands.

SpliceMap consists of four main steps: half-read map-
ping, seeding selection, site search, and paired-end filtering.
First, SpliceMap splits the read into halves. Alignment posi-
tioning is performed between each portion and the gene
sequence. Then, the remaining half is positioned on the
downstream region within the range of the longest intron.
This approach requires the read length to be at least 50 bp.
Therefore, SpliceMap cannot process read lengths <50 bp.
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When we compared SpliceMap with ERANGE, ERANGE
discovered 160,899 sites, whereas SpliceMap accurately pre-
dicted 127,043 sites. Moreover, 24,274 of the 151,317 sites
discovered by SpliceMap were not discovered by ERANGE,
of which 23,020 represent new splice sites. However, these
new sites are unconfirmed.TheMapSplice software appeared
after TopHat and SpliceMap. MapSplice is not based on the
characteristics of splice sites or the length of an intron. It
also has the potential to discover new sites and can adapt the
length of the read.

The emergence of SOAPsplice improved the evaluation
standard of splice site prediction software. SOAPsplice not
only depends on the number of recognition splice sites but
also emphasizes a high accuracy and low error rate. The
experiment described in the next section revealed that the
performance of SOAPsplice was comparatively outstanding.
SplitSeek is strict with regard to the format of the input data
and only supports data generated by ABI SOLiD. Moreover,
because the input data are processed by a complete ABI
transcriptome analysis tool, the application is not very wide.
HMMSplicer is similar to SpliceMap but possesses several
innovations. First, it divides the read into halves and com-
pares halves with the genome sequence. The exon boundary
(i.e., the 5󸀠 terminal) is obtained using the hidden Markov
model (HMM). Second, the remaining half is positioned
downstream the first half to determine the boundary 3󸀠
terminal of the intron. Both common (GT-AG, GC-AG, and
AT-AC) and uncommon splice sites are recorded during this
process. Finally, the scores of candidate loci are graded using
the scoring algorithm.

3.3. Aligning Spliced Reads to the Reference Genome. Read
lengths generated by all types of sequencing platforms are
growing concomitant with the development of deep sequenc-
ing and RNA-seq technology. In the early days, read lengths
were usually approximately 32 bp, and most of the software
programs did not consider the location of the spliced reads
on the reference genome. However, with the generation of
longer reads, new requirements were put forward for locating
software.

Reads mapping and alternative splicing detection are two
steps in an analysis workflow. RNA read alignment is the
precursor step and splice isoform detection is the successor
step. Splice isoform detection tools include Cufflinks [81] and
Scripture [82]. Cufflinks is a software tool for detecting the
specific expression genes. If users have two groups of RNA-
Seq data, such as ill and normal persons, it would be better
to employ Cufflinks for the key genes detection. Scripture is
a method for transcriptome reconstruction that relies solely
on RNA-Seq reads and an assembled genome to build a
transcriptome ab initio.

Researchers applied the preprepared splice site database
when they began trying to align spliced reads to the reference
genome. However, the existing annotation of the transcrip-
tome was far from being perfect.Therefore, some researchers
once again began using BLAT to locate reads.

The TopHat software program solved these problems
and thus became widely used by researchers; moreover, its
vision has been expanding in every release from its initial

release. In addition to its ability to align spliced reads to the
reference genome, TopHat can also predict possible splice
sites. These splice sites play an important role in improving
the annotation of the transcriptome. The initial vision of
TopHat had many limitations; however, the adoption of new
methods in the software updates has improved TopHat’s
performance.

With the development of sequencing technologies, reads
with lengths >100 bp have been produced on a large scale.
These reads may span one or more spliced sites, which
introduces difficulty in aligning spliced reads.The SpliceMap
software is capable of processing longer reads (read lengths
> 50 bp). To process these long reads, SpliceMap divides the
reads into overlapping short read fragments. Then, they are
annotated with the locating information of whole reads based
on the locating information of the short read fragments.

MapSplice is another package that aligns spliced reads to
the reference genome, although it applies a different method.
The MapSplice algorithm is suitable for all types of read
lengths. It is similar to SpliceMap in that it does not use
continuous aligning of the reads to create an exon library in
advance. Because theMapSplice package does not depend on
spliced read signal information when aligning reads, it can
locate some reads that SpliceMap cannot align. It can also be
used to predict new spliced reads with no spliced read signal
information. Another advantage of the MapSplice package is
its high efficiency compared with most other software.

Package SeqSaw was proposed by Wang et al. [83] and is
totally different fromTopHat andMapSplice. It was similar to
the SpliceMap package in its early releases. However, SeqSaw
use has dynamically changed to Hash Table to reduce the
search space. The core algorithm of SeqSaw is focused on
locating short reads to the genome.There are very few introns
>400Kb in the known mammalian genome. Thus, we can
define intron lengths as being less than a certain value, with a
default value of 400Kb. Users can adjust the value according
to the needs of different species or datasets. However, SeqSaw
uses certainmeans and performs a large amount of optimiza-
tion, which greatly reduces the search space.

The R package DEGseq [83] has been proposed to detect
small changes in the genetic expression of each sample. It is
used to assess the trend of background noise in MA due to
technological repeats. Figure 2 shows the working process of
DEGseq.

The difference between a DNA aligner and an RNA
aligner is that an RNA aligner can tolerate extra-long dele-
tions (introns) while DNA aligners cannot [84]. Moreover,
many RNA aligners are constructed based on DNA aligners
(i.e., TopHat is built based on Bowtie). STAR is the latest
and most popular RNA-seq alignment tools. In addition to
unbiased de novo detection of canonical junctions, STAR
can discover noncanonical splices and chimeric (fusion)
transcripts and is also capable of mapping full-length RNA
sequences [85].

4. Experiments Using State-of-the-Art
Software Tools

HMMSplicer, SOAPsplice, TopHat, and STAR were used to
perform the following analysis of Illumina/Solexa output
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Figure 2: Working process of DEGseq.

data. The reference genome data are from the tenth human
chromosome. The gene sequence was processed into RNA-
seq sequences with different read lengths and different
sequencing depths as the test data for SOAPsplice and
TopHat. HMMSplicer does not support double-end sequenc-
ing data, so each pair of FASTQ data was merged into a
FASTQ file as the test data for HMMSplicer.

Figure 3 shows that, in the premise of the 50 bp read
length, each type of software predicts an increase in the
number of loci that increases with the development of
sequencing technologies. The accuracy of TopHat is poorer
compared with the other two programs within a sequencing
depth range of 1x to 10x, and the error rate is still high. The
accuracy of TopHat increased rapidly after the sequencing
was deepened. SOAPsplice and TopHat performedwell in the
aspect of accuracy, although the error rate was significantly
worse for TopHat. STAR works best among the four tested
tools. SOAPsplice and STAR performed well in both aspects.

5. Conclusion

In this study, we analyzed and compared the current
AS-associated algorithms and software. We summarized

the present situation of AS. The read mapping, including AS
and site recognition algorithms, remained the focus of the
current research.We aimed to improve the algorithm’s quality
in order to increase the number of prediction sites as much
as possible and to meet the high-accuracy rate. RNA-seq data
size is very large due to the continuous development of next-
generation sequencing technology. This study represents a
broad platform for AS and other fields of bioinformatics.This
review of experimental and research methods for AS may be
helpful for other researchers.

Although high-throughput sequencing has given rise to
an unprecedented opportunity for the study of AS, few
scholars study AS based on RNA-seq data. Therefore, the
available algorithms and software are not rich compared with
those based on EST/cDNA theory. Significant differences
are found in the alignment step between the algorithms
and the software using next-generation technology. This step
represents the critical step based on the study of RNA-seq
data.The software tools and algorithms need to be considered
in parallel as the read data becomes more massive [86].
Genome-wide analysis will be the hot topic for all alternative
and epigenetic research fields [87]. Moreover, many of the
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Figure 3: Comparison of HMMSplicer, SOAPsplice, STAR, and TopHat.

special databases based on RNA-seq data are not perfect.
The corresponding new research methods and databases will
be perfected with the constantly developing study of AS.
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Rouzé, and S. Brunak, “Splice site prediction in Arabidopsis
thaliana pre-mRNA by combining local and global sequence
information,” Nucleic Acids Research, vol. 24, no. 17, pp. 3439–
3452, 1996.

[61] G. Parra, E. Blanco, and R. Guigó, “GeneID in Drosophila,”
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