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Quantification of stroke lesion 
volume using epidural EEG 
in a cerebral ischaemic rat model
Hyun‑Joon Yoo  1, Jinsil Ham  2, Nguyen Thanh Duc  2 & Boreom Lee  2*

Precise monitoring of the brain after a stroke is essential for clinical decision making. Due to the 
non-invasive nature and high temporal resolution of electroencephalography (EEG), it is widely 
used to evaluate real-time cortical activity. In this study, we investigated the stroke-related EEG 
biomarkers and developed a predictive model for quantifying the structural brain damage in a focal 
cerebral ischaemic rat model. We enrolled 31 male Sprague–Dawley rats and randomly assigned them 
to mild stroke, moderate stroke, severe stroke, and control groups. We induced photothrombotic 
stroke targeting the right auditory cortex. We then acquired EEG signal responses to sound stimuli 
(frequency linearly increasing from 8 to 12 kHz with 750 ms duration). Power spectral analysis 
revealed a significant correlation of the relative powers of alpha, theta, delta, delta/alpha ratio, 
and (delta + theta)/(alpha + beta) ratio with the stroke lesion volume. The auditory evoked potential 
analysis revealed a significant association of amplitude and latency with stroke lesion volume. Finally, 
we developed a multiple regression model combining EEG predictors for quantifying the ischaemic 
lesion (R2 = 0.938, p value < 0.001). These findings demonstrate the potential application of EEG as a 
valid modality for monitoring the brain after a stroke.

Stroke is a neurological disorder caused by vascular disease, including cerebral infarction, intracerebral haem-
orrhage, and subarachnoid haemorrhage1. It is the second leading cause of death worldwide and its treatment 
incurs a substantial economic cost2. Consequently, comprehensive clinical guidelines for stoke management 
have been complied as countermeasures for reducing stroke-related disabilities3. However, the global burden of 
stroke remains high2. Moreover, stroke is a heterogeneous condition and its clinical course is difficult to predict. 
Further, there may be progressive stroke-induced brain damage during the subacute stage, which further aggra-
vates the neurological outcome4. Therefore, precise monitoring and evaluation of the brain injury are paramount 
for establishing effective treatment strategies and prognosis prediction.

With advances in modern medicine, various efficient imaging modalities and evaluation tools have been 
developed to monitor and evaluate the post-stroke brain condition. Among them, computed tomography (CT) 
and magnetic resonance imaging (MRI) are the most widely used modalities due to their sensitivity to brain 
ischaemic or haemorrhagic changes and their provision of structural information5. Therefore, it is recommended 
that patients admitted to hospitals with suspected stroke undergo immediate brain imaging evaluation3. However, 
these neuroimaging modalities are expensive and may not be available in some facilities. Therefore, the use of 
CT or MRI for repetitive monitoring is limited despite being the diagnostic tools of choice for stroke detection. 
However, although these imaging modalities provide detailed anatomical information about the brain; they do 
not assess the functional status of the brain. There are other alternative imaging techniques such as positron 
emission tomography (PET), which is often used to evaluate brain metabolism. However, the associated radiation 
exposure and high costs limit its feasibility as a routine clinical monitoring tool6. Stroke-related clinical scales 
such as the National Institutes of Health Stroke Scale (NIHSS) and the Mini-Mental State Examination (MMSE) 
are also widely used7,8. Although the administration of these scales requires well-trained physicians, they are 
relatively simple to implement and have been reported useful for estimating the neurologic deficit changes in 
patients over time9. However, they require appropriate cooperation from patients and cannot be administered to 
patients who are aphasic or under anaesthesia. Additionally, clinical scales are prone to be affected by the patients’ 
general condition including fatigue, pain, and post-stroke depression, which makes it difficult for clinicians to 
determine the patients’ status10. This makes it difficult to evaluate the patients’ status objectively.
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Electroencephalography (EEG) directly measures the cortical activity and reflects the brain’s spatio-temporal 
information. Compared to other brain imaging techniques it is relatively inexpensive, simple, and has almost no 
contraindications. Further, it has a high temporal resolution and provides electrophysiological information that 
other imaging modalities or clinical examinations do not11. Specifically, EEG enables physicians to evaluate the 
brain in real-time and quantify brain function objectively regardless of the patient’s cooperation. Therefore, there 
is widespread use of EEG in the neuroimaging field due to the ever-increasing interest in the temporal dynamics 
of the brain networks12. Moreover, EEG reflects the extracellular currents mainly from the dendrites of cortical 
pyramidal cells and has been reported to be sensitive enough for detecting cerebral ischaemic change13. Conse-
quently, numerous EEG studies have been conducted over the past decades which have focused on evaluating 
brain function and identifying the EEG biomarkers related to brain injury and recovery. Sainio et al. reported 
that a high proportion of delta and a low proportion of alpha power were potentially strong indicators of poor 
outcomes after an ischaemic stroke14. Similarly, delta and alpha activities reportedly correlate with the degree of 
aphasia in subacute stroke15. Moreover, several reports indicate that quantified EEG based on power spectrum 
analysis allows stroke severity categorisation and clinical outcome prediction16–20. Furthermore, brain connec-
tivity evaluation through quantification of the between-hemisphere spectral asymmetry was found not only to 
correlate with the NIHSS but also provide information regarding brain reorganization21.

Secondary stroke prevention is one of the most important issues in the subacute stroke phase since haemor-
rhagic transformation or reinfarction can deteriorate the prognosis22. Therefore, sequential evaluation of the 
neurological status and early detection of the stroke progression are paramount during admission. However, 
it is difficult to repeat neuroimaging due to both cost and accessibility. Additionally, clinicians cannot monitor 
the brain in real-time, which complicates the situation as clinicians usually depend on the clinical symptoms. 
In contrast, EEG provides dynamic cortical activity in real-time and has been explored for its potential utility 
in monitoring ischaemic brain injury23,24. Therefore, EEG is widely used as an intraoperative monitoring tool if 
there is a risk of perioperative cerebral ischaemia such as during a carotid endarterectomy25,26. However, in stroke, 
few studies have attempted to monitor the brain directly27,28, and there are not enough studies which evaluate 
the correlations of the brain’s anatomical injury with EEG results, since the majority of studies used EEG to only 
predict the clinical outcomes13,29,30.

Strokes can affect any part of the cerebral cortex. Among them, temporal lobe infarction is a common stroke 
subtype with various sequelae such as post-stroke language disorders and auditory dysfunction31–33. Despite 
its importance in processing auditory information, there are few basic research studies which assess temporal 
lobe infarction; this could be attributed to the difficulty in developing experimental models and evaluating the 
post-stroke neurological changes. Consequently, there is a lack of research on brain alterations, including elec-
trophysiological changes, after a temporal lobe infarction. Furthermore, little is known about the auditory evoked 
potentials (AEPs) in stroke, while various other evoked potentials such as visual evoked potentials, somatosen-
sory evoked potentials, and motor evoked potentials have been used to evaluate the brain state after a stroke34.

In this study, we aimed to investigate EEG characteristics after temporal lobe infarction involving the audi-
tory cortex. Moreover, we aimed to identify EEG biomarkers related to ischaemic brain injury. A previous study 
reported that the right primary auditory cortex (A1) cortex of rats, which is part of the temporal lobe, plays a 
dominant role in the recognition of frequency-modulated sound35. Therefore, we expected that changes in cer-
ebral neural activity in response to specific sounds could be measured using EEG after auditory cortical infarc-
tion. It is known that the biological timescales of post-stroke recovery are different between rats and humans36. 
Since active rehabilitation treatment and monitoring occurs during the subacute stroke phase, we assessed the rat 
EEG at 72 h post-stroke, which could be regarded as the subacute stroke phase in rat37. Specifically, we conducted 
a power spectral density (PSD) analysis and measured the peak amplitudes and latencies of AEPs in response 
to sound stimuli. Finally, we proposed a multiple linear regression model for quantifying stroke lesion volume 
using stroke-related EEG biomarkers.

Results
Analysis of EEG data and ischaemic lesion volume.  Table 1 summarises the experimental results for 
each group. First, the results of the Kruskal–Wallis test indicated between-group differences in the stroke lesion 
volume (p < 0.001). The higher laser intensity caused larger ischaemic lesions and thus suggests that the different 
degrees of structural brain damage is concomitant with the laser intensity across the groups.

Next, we compared each EEG parameter in the stroke groups to those in the control group to identify param-
eters associated with post-stroke ischaemic injury. We conducted a PSD analysis in two different conditions; with 
and without auditory stimulation. In the absence of auditory stimulation, there were no significant differences in 
the relative power for each frequency band between the control and stroke groups. In contrast, in the auditory 
stimulation condition we found significant changes in the relative power for all frequency bands except for beta, 
the delta/alpha ratio (DAR), and the (delta + theta)/(alpha + beta) ratio (DTABR). More specifically, relative theta 
power in moderate and severe stroke group were smaller than that of the control group and DTABR in moderate 
and severe stroke group were larger than that of the control group. Furthermore, relative power in the alpha of 
each stroke group was smaller than that of the control group, whereas relative power in delta and DAR of each 
stroke group were larger than that of the control group.

In the AEPs analysis, we found that the amplitudes decreased as the stroke severity increased. Accordingly, 
the amplitudes were significantly smaller in the severe stroke group than that in the control group. Moreover, 
prolonged latencies were observed with increased ischaemic brain injury severity. Consequently, the latency in the 
mild stroke group was significantly prolonged compared to that in the control group. Figure 1 presents the mean 
AEP waveforms in each group. Supplementary Figure S1 shows the individual waveforms, and Supplementary 
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Figure S2 demonstrated the four averaged AEP waveforms on a single graph, which highlights the intergroup 
differences.

These findings indicate that the relative powers in the alpha, theta, and delta, DAR, and DTABR as well as 
the amplitude and latency of the AEPs under auditory stimuli are the EEG parameters that reflect post-stroke 
brain injury.

Correlations between EEG parameters and stroke lesion volume.  Next, we selected EEG param-
eters that demonstrated significant differences between the control and stroke groups (Table 2). We analysed the 
correlations between the EEG parameters (relative powers for alpha, theta and delta, DAR, DTABR, and ampli-
tude and latency of AEPs) and the stroke lesion volume. We only included data from the stroke groups as this 
study investigated the feasibility of EEG for monitoring ischaemic lesion volume after a stroke. We conducted a 
linear regression analysis to identify EEG parameters that could quantify brain damage. We found a high correla-
tion between all of the selected EEG parameters, except for DTABR, with stroke lesion volume (Table 2). There 
were positive correlations between the relative delta power, DAR and latency with the stroke lesion volume. In 
contrast, there were negative correlations between the relative powers in the alpha and theta, and amplitude with 
the stroke lesion volume (Bonferroni corrected p < 0.05). Relative delta power had the highest correlation with 
the stroke volume (β = 0.857). The R2 of relative delta power was 0.735, which is the proportion of variance in the 
dependent variable explained by the independent variable. Individual correlations between each stroke-related 
EEG parameter and stroke lesion volume are presented as scatterplots (Fig. 2a).

Multiple analyses using EEG parameter combinations for stroke lesion volume estima-
tion.  We calculated the root mean square error (RMSE) value to evaluate the accuracy of the predictive mod-
els with the selected EEG parameters in Table 2. In this study, we defined RMSE as the standard deviation of 
the residuals between the observed and estimated stroke lesion volume. First, we calculated the RMSE for the 
univariate linear regression model. Figure 3a presents the RMSEs for each EEG parameter which demonstrated 
significant correlations with the stroke lesion volume. Among them, the univariate linear regression model using 
relative delta power was the best-fitting regression model (RMSE = 0.216) while the regression model using rela-
tive theta power was the least accurate for predicting the lesion volume (RMSE = 0.333).

Next, we calculated the RMSEs for the multiple linear regression models with every possible com-
bination of n EEG parameters. Specifically, we used every parameter combination used as an input feature 
for linear regression, which yielded 63 RMSE values (26 − 1 = 6 (number of all selected features through univariate linear regression) 
C6 (number of input features for regression) + 6C5 + 6C4 + 6C3 + 6C2 + 6C1). Figure 3b presents the RMSEs for the regression models 
using all six selected EEG parameters and the three best RMSE results in each group based on the number of 
input features. As expected, the regression model using all of the selected EEG parameters demonstrated the 

Table 1.   Characteristics of EEG parameters and stroke lesion volume for the control group (n = 10), mild 
stroke group (n = 7), moderate stroke group (n = 7), and severe stroke group (n = 7). Data are presented as 
the median ± interquartile range. The values of test statistics are expressed as chi-square value and (df). The p 
values were derived using a Kruskal–Wallis test. a Represents statistical significance after Bonferroni correction 
between the control group and mild stroke group. b Represents statistical significance after Bonferroni 
correction between the control group and moderate stroke group. c Represents statistical significance after 
Bonferroni correction between the control group and severe stroke group. In addition, stroke lesion volume 
was significantly different between each group†

Variables Control Mild Stroke Moderate Stroke Severe Stroke Test statistic p value

Without auditory stimulation

RP beta 0.08 ± 0.09 0.09 ± 0.03 0.10 ± 0.04 0.10 ± 0.04 2.059 (3) 0.560

RP alpha 0.08 ± 0.05 0.07 ± 0.06 0.08 ± 0.04 0.07 ± 0.03 1.828 (3) 0.609

RP theta 0.19 ± 0.02 0.18 ± 0.02 0.18 ± 0.02 0.19 ± 0.02 4.022 (3) 0.259

RP delta 0.63 ± 0.12 0.66 ± 0.08 0.65 ± 0.05 0.63 ± 0.07 0.228 (3) 0.973

DAR 7.74 ± 7.31 9.30 ± 8.33 8.35 ± 5.66 9.26 ± 7.41 1.738 (3) 0.628

DTABR 4.64 ± 5.43 5.98 ± 3.03 4.57 ± 2.73 4.88 ± 3.30 0.494 (3) 0.920

With auditory stimulation

RP beta 0.17 ± 0.07 0.11 ± 0.04 0.10 ± 0.01 0.12 ± 0.04 6.967 (3) 0.073

RP alpha 0.14 ± 0.02 0.10 ± 0.03 0.09 ± 0.01 0.09 ± 0.02 22.388 (3) 0.001a,b,c

RP theta 0.31 ± 0.06 0.29 ± 0.04 0.25 ± 0.03 0.23 ± 0.03 19.427 (3)  < 0.001b,c

RP delta 0.40 ± 0.07 0.49 ± 0.03 0.56 ± 0.02 0.58 ± 0.04 25.951 (3)  < 0.001 a,b,c

DAR 3.01 ± 0.91 4.78 ± 1.50 5.89 ± 0.72 6.27 ± 2.29 24.566 (3)  < 0.001 a,b,c

DTABR 2.18 ± 1.03 3.46 ± 1.19 4.02 ± 0.51 3.70 ± 2.02 12.600 (3) 0.006b,c

Amplitude (μV) 137.19 ± 50.14 124.16 ± 30.86 71.40 ± 32.49 51.18 ± 12.93 14.829 (3) 0.002c

Latency (s) 0.16 ± 0.03 0.20 ± 0.03 0.25 ± 0.02 0.27 ± 0.03 25.878 (3)  < 0.001a,b,c

Lesion volume (mm3) - 3.33 ± 0.37 4.14 ± 0.11 4.65 ± 0.29 17.818 (2)  < 0.001†
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highest accuracy (RMSE = 0.109). Furthermore, we calculated the Akaike information criterion (AIC) and Bayes-
ian information criterion (BIC) for each model (for more detailed information see Supplementary Table S1). 
The regression model using four EEG parameters (relative powers in the theta and delta, amplitude, and latency 
of AEPs) exhibited the lowest AIC and BIC values, likely due to these statistical methods introducing a penalty 
term for the number of parameters in the model.

A predictive model for quantifying brain injury using the EEG parameters.  Finally, we developed 
a multiple linear regression model for quantifying the stroke lesion volume. We used stepwise regression algo-
rithms to select the appropriate subset of explanatory variables. Additionally, we conducted multicollinearity 
diagnostics as some of the EEG parameters were highly correlated (Supplementary Figure S3). Table 3 presents 

Figure 1.   Mean AEPs waveforms of each group. (a) Control group, (b) Mild stroke group, (c) Moderate stroke 
group, and (d) Severe stroke group. The bold lines indicate the mean values, and the shaded bands represent the 
standard deviations. Note that the peak amplitudes became smaller, and the peak latencies were prolonged as 
strokes became more severe. AEPs, auditory evoked potentials.

Table 2.   Univariate linear regression analysis for stroke lesion volume. BF.p value indicates Bonferroni 
corrected p values. The BF.p values were calculated by multiplying p values by the number of the tests using 
R software75. The residual errors for each model showed normal distribution on a Shapiro–Wilk test (p 
value > 0.05).

EEG parameters

Unstandardized coefficients Standardized coefficients

R2 BF.p valueB SE Beta

RP alpha − 23.541 6.097 − 0.663 0.440 0.008

RP theta − 11.519 2.764 − 0.691 0.450 0.008

RP delta 10.248 1.411 0.857 0.735 < 0.001

DAR 0.316 0.064 0.751 0.563 < 0.001

DTABR 0.286 0.133 0.443 0.196 0.352

Amplitude − 0.014 0.002 − 0.818 0.653 < 0.001

Latency 16.432 2.624 0.821 0.656 < 0.001
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the results of the stepwise linear regression analysis. As a result, we derived the following equation for the final 
model:

The analysis indicated that the predictive model had a statistically significant high explanatory power 
(R2 = 0.938, p < 0.001). There was a positive correlation between the relative delta power and latency with the 
stroke lesion volume. In contrast, there was a negative correlation between the relative theta power and ampli-
tude with the stroke lesion volume. Relative alpha power and DAR were excluded from the final model as they 
demonstrated multicollinearity. Individual levels of the predicted stroke lesion volume against the stroke lesion 
volume are plotted in Fig. 2b.

We further analysed the stroke groups’ data to determine whether we could predict stroke lesion volume 
using unseen EEG data. To overcome the limited sample sizes, we separated the original stroke dataset randomly 
into the training (n = 18) and test sets (n = 3) and constructed a multiple linear regression model using only the 
training set. Then we calculated the RMSE value with the test set and iterated the process a 1000 times to avoid 
selection bias. As a result, we obtained 1000 RMSE values and the frequencies of the selected EEG parameters 
for each model (Supplementary Figure S4). Based on these results, we can assume that we can quantify the stroke 
lesion volume with unseen data and that the EEG parameters which were selected in the final linear regression 
models (relative powers in theta and delta and latency and amplitude of AEPs) are truly important variables.

Discussion
Previous studies indicate that comprehensive monitoring and assessment of brain could provide valuable insights 
into the neural basis of stroke recovery38–40. Generally, neuroimaging techniques such as MRI or PET are pre-
ferred in acute stroke care settings. However, their accessibility and cost make it difficult to implement them 
for repetitive monitoring27. Consequently, EEG has emerged as an alternative method for post-stroke brain 

Predicted stroke lesion volume = (−3.962)× relative theta power + 3.217

× relative delta power + 6.186× Latency

+ (−0.006)× Amplitude + 2.312

Figure 2.   Scatter plots of individual data. (a) Scatter plots showing the relationship between each stroke-related 
EEG parameter and stroke lesion volume and (b) predicted stroke lesion volume using multiple linear regression 
model and actual stroke lesion volume. DAR, delta/alpha ratio; DTABR, (delta + theta)/(alpha + beta) ratio. BF.p 
value indicates Bonferroni corrected p values.
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monitoring in both clinical and research settings24,30,37,41,42. In this study, we evaluated the correlations between 
neural activity and brain structural damage in rats after focal cerebral ischaemia in the right auditory cortex. We 
hypothesised that strict control of the confounding factors and accurate epidural EEG recording through basic 
animal experiments could address the current shortcomings of clinical research. Further, it allows for clearer 
identification of post-stroke neural activity characteristics in a situation where previous studies are insufficient. 
In the linear regression analysis, we observed a strong correlation between relative powers in the alpha, theta 
and delta, and DAR, as well as the amplitude and latency of AEPs with the stroke lesion volume. Furthermore, 
we developed a multiple linear regression model with a high explanatory power that could quantify stroke lesion 
volume through epidural EEG signals from a single channel. These findings highlight the feasibility of utilising 
EEG and the observed stroke-related EEG features for stroke monitoring which have rarely studied before. To 
the best of our knowledge, this is the first study to use the auditory cortical stroke model and predict structural 
ischaemic damage using epidural EEG in rats.

Over the past two decades, EEG has progressed from conventional EEG scoring to quantitative EEG analysis, 
such as the PSD analysis applied in the present study23. The standard PSD analysis based on the canonically pre-
defined frequency bands has been recently criticised since it did not consider the aperiodic components such 
as the 1/f signals43,44. However, several other studies have reported a strong correlation between the quantified 
changes in fast and slow frequency bands with clinical outcomes and post-stroke injury severity. Although most 
of the studies analysed the resting-state EEG, there is growing evidence of a strong correlation between the 
increased delta power13 and the decreased alpha and beta rhythms16,45 in the ischaemic hemisphere with stroke 
lesion location and poor clinical outcomes. Further, theta activity has been reported to correlate with cognitive 
impairment46 and reduced language processing47 and could be used to discriminate patients with stroke from 
healthy controls48. Moreover, post-stroke enhancement of theta activity has been reported30. Further, Finnigan 
et al. reported that the DAR was the most optimal classifier followed by DTABR and relative power in delta for 
discriminating patients with acute ischaemic stroke from the healthy controls20. A recent study recorded the EEG 
data from patients with stroke using a wireless single-channel EEG system and demonstrated the prognostic value 
of DAR and the delta/theta ratio (DTR) as potential markers of post-stroke cognitive function30.

Moreover, several studies exist on the correlations between the pathophysiological state of the brain and 
post-stroke EEG changes. An observational study reported a correlation of increased delta activity and decreased 
alpha activity with cerebral blood flow in cerebral ischaemia49. Moreover, delta activity has been reported to 

Figure 3.   RMSE values for each predictive model. (a) RMSEs of the univariate linear regression model. 
The model using the relative delta power parameter most accurately predicted the stroke lesion volume 
(RMSE = 0.216) followed by the model using the latency (RMSE = 0.252). (b) RMSEs of the multiple linear 
regression model. RMSEs with every possible combination of the EEG parameters were calculated. The best 
three RMSE results based on each number of input features are shown. A trend of increasing accuracy was 
observed as the number of EEG parameters increased. As a result, the regression model using all the selected 
EEG parameters exhibited the highest accuracy (RMSE = 0.109). DAR, delta/alpha ratio; RMSE, root mean 
square error.



7

Vol.:(0123456789)

Scientific Reports |         (2021) 11:2308  | https://doi.org/10.1038/s41598-021-81912-2

www.nature.com/scientificreports/

be associated with post-stroke oedematous changes in distal dendrites50 while alpha activity demonstrates the 
integrity of synaptic networks of the cortex51. Consistent with these previous findings, we observed an increased 
relative delta power and a decreased relative alpha power in the stroke groups, with this tendency becoming 
more evident with stroke severity. The beta activity is indicative of neuronal survival. However, it is often con-
sidered to be an unreliable index of post-stroke pathophysiology since it is prone to be affected by artefacts, 
particularly those at higher frequencies16. Similarly, there was no significant difference in the relative power 
in beta between the control and stroke groups in this study. Although increased theta activity is known to be 
related to hypoperfusion, it has been criticised as being an insignificant marker for post-stroke monitoring given 
that slow alpha activity is a confounding factor for its relative power20. Further, previous animal studies have 
reported inconsistent results; specifically, post-stroke increases37 and decreases52 the theta wave activity. In the 
current study, we found a significant negative correlation of relative theta power with the stroke lesion volume. 
However, we should be careful not to interpret any single EEG parameter to be particularly meaningful in the 
stroke condition, since they all seem to be highly correlated to each other as shown in Supplementary Figure S3, 
and thus high collinearity exists in the final model.

AEPs are electric potentials generated by the synchronous firing of neighbouring neural populations in the 
brain, which are time-locked responses to the specific acoustic stimulation53. Small-voltage signal deflections 
are considered to reflect physiological changes in the auditory pathway and the electrical potentials have been 
reported to have great sensitivity in revealing the functional integrity of the brain54. AEPs are widely used in clini-
cal practice given their high temporal resolution and their ability to determine neural generators of the electrical 
responses. Previous stroke studies suggest that AEPs directly reflect the functional state of the brain and can be 
used for neurophysiologic assessment, including prognosis prediction55, evaluation of brain reorganization56, 
and post-stroke language function57,58. Oddball paradigm is a commonly used task for evaluating the cogni-
tive function in event-related potential studies59,60. In contrast, brainstem AEPs are recorded under the same 
repetitive clicks that evaluate the brain stem auditory pathway34. However, little is known about the AEPs under 
the consistent auditory stimuli after a stroke. We assumed that the extent of auditory cortical injury could be 
accurately evaluated by the evoked potentials since they are generated by cortical pyramidal cells61. Therefore, we 
acquired AEPs by summing the EEG signals for the specific sound stimuli and analysed the AEP profiles in terms 
of amplitude and latency based on the stroke severity. Generally, the amplitude and latency of AEPs reflect the 
temporal integration of cerebral neural activity62. More specifically, decreased amplitudes reflect the decreased 
neural activation resulting from axonal degeneration and neural transaction while prolonged latencies indicate 
diffuse demyelination and conduction block of the neural circuit63. We did not find significant amplitude differ-
ences in the mild and moderate stroke groups when compared to that in the control group. We only observed a 
significant decrease in the amplitudes in the severe stroke group compared to that in the control group. Moreover, 
there was prolonged latency in each stroke group, that was positively associated with stroke severity, and was 
significantly different than that of the control group. These changes in AEPs suggest that the aetiology of mild 

Table 3.   Stepwise linear regression analysis using optimal EEG parameters for stroke lesion volume. R2 = 0.735 
for step 1, R2 = 0.836 for step 2, R2 = 0.900 for step 3 and R2 = 0.938 for step 4 with p value < 0.001. Collinearity 
statistics of variables excluded from the final model are as follows: tolerance = 0.063, VIF = 15.943 for RP alpha 
and tolerance = 0.067, VIF = 14.870 for DAR. The residual errors of the final model showed normal distribution 
on a Shapiro–Wilk test (p value = 0.648). VIF indicates variance inflation factor.

EEG parameters

Standardized coefficients Standardized coefficients Standardized coefficients

p value

Collinearity 
statistics

B SE Beta Tolerance VIF

Step 1

(Constant) − 1.501 0.766 0.065

RP delta 10.248 1.411 0.857 < 0.001 1.000 1.000

Step 2

(Constant) − 1.633 0.620 0.017

RP delta 6.664 1.574 0.556 0.001 0.526 1.902

Latency 8.768 2.636 0.438 0.004 0.526 1.902

Step 3

(Constant) 0.501 0.815 0.547

RP delta 4.240 1.457 0.355 0.010 0.395 2.531

Latency 7.375 2.157 0.368 0.003 0.506 1.978

Amplitude − 0.006 0.002 − 0.359 0.004 0.499 2.003

Step 4

(Constant) 2.312 0.882 0.019

RP theta − 3.962 1.274 − 0.238 0.007 0.665 1.504

RP delta 3.217 1.230 0.269 0.019 0.367 2.726

Latency 6.186 1.797 0.309 0.003 0.483 2.072

Amplitude − 0.006 0.002 − 0.353 0.001 0.449 2.004
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and moderate strokes in this study was mainly the diffuse demyelination. On the other hand, the aetiology of 
severe stroke was not only demyelination but also severe neural injury resulting in axonal damage and neuronal 
fibre loss. These findings are consistent with the histologic findings presented in Fig. 4. We observed more struc-
tural integrity loss with liquefactive necrosis with increased stroke severity. These findings demonstrate that the 
amplitude and latency of AEPs accurately reflect the neuronal brain states and are appropriate predictors for 
estimating post-stroke structural brain damage.

The main requirement for EEG signal interpretation is good signal quality. In this respect, animal studies 
enhance the investigation of pathophysiologic EEG features since they allow for the acquisition of more accurate 
signals through invasive procedures such as epidural electrode implantation. Therefore, we expected that regres-
sion modelling using EEG in animal experiments could accurately reflect the extent of ischaemic brain injury. 
Given the complexity of the auditory signal processing mechanism in the brain, the multiple linear regression 
model using the EEG parameter combination strengthened the explanatory power compared to the univari-
ate linear regression models (Fig. 3). Although there are insufficient animal studies, recent clinical studies on 
the post-stroke brain state have developed regression models using EEG. Wu et al. analysed the correlation 
between infarct volume and EEG and utilised the ipsilesional and contralesional delta power to predict the 
infarct volume27. Further, Aminov et al. developed a regression model combining DTR with other clinical ratings 
of neurological status that explained 75% of the variance in post-stroke cognitive function30. Moreover, recent 
studies have used a single saline net27 or wireless single-channel electrode systems30 rather than the traditional 
applications of multiple separate electrodes to improve usability and portability. Accordingly, we recorded the 
cortical activity using a single epidural EEG. This allowed us to present a regression model with a high explana-
tory power that could quantify the extent of brain injury with a small RMSE. However, we should keep in mind 
that this study analysed the EEG data obtained under anaesthesia and part of the results could be affected by the 
anaesthetic effects. Slowing of the frequency with an increase in delta power is a typical finding of EEG changes 
after isoflurane anaesthesia64. Further studies are required in rats in an awake state.

Resting-state EEG might be insufficient for recording subtle post-stroke changes65. Therefore, there is a need 
for studies recording EEG under certain tasks or stimuli to further examine the cerebrovascular diseases, given 

Figure 4.   Histologic findings of stroke models on haematoxylin and eosin staining. (a) An overview of multiple 
coronal sections of the rat brain showing the stroke lesion from rostral (top) to caudal (bottom). The arrows 
indicate the boundary of the ischemic lesion. (b) An example of the coronal section indicating the outline of 
the infarcted area shown by the dashed line. (c,d) High-power view of the boxed regions in (b). The demarcated 
zone of pale-staining cortex indicates the infarcted area, surrounded by mononuclear inflammatory cell 
infiltration. (e) A coronal section of mild stroke, (f) moderate stroke, and (g) severe stroke. As the stroke became 
severe, destructive changes such as cystic cavitation also increased.
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EEGs superior sensitivity over resting-state conditions28. In this study, both EEG signals with and without the 
auditory stimuli were analysed. Interestingly, no significant EEG differences were observed between each group 
when there was no auditory stimulation. Overall, relative delta power was dominant across all the groups when 
compared to the results under the auditory stimulation. On the other hand, subtle changes of EEG became more 
pronounced under the auditory stimulation and allowed for the identification of stroke-related EEG features. 
The high R2 value obtained in this study could be attributed to more accurate signal acquisition with implanted 
electrodes as well as the fact that the severity of ischaemic brain injury could be accurately reflected on EEG 
under the passive stimulation paradigm. However, this does not conclusively determine that the combinations 
of predictors used in the regression model were the optimal EEG parameters. The model might not fit well with 
changes in the subjects’ characteristics or stroke types since the sample size did not allow for generalizability. 
Additionally, there is a possibility that the changes in relative power of each frequency band are mainly affected 
by the changes in AEPs. However, this study provides neurobiological insight that proper combinations of EEG 
signals could accurately reflect post-stroke structural brain damage.

In this study, we investigated the stroke-related EEG biomarkers and provide evidence that EEG could suc-
cessfully estimate the structural stroke severity. Further, we used the temporal lobe infarction model, a common 
stroke type that has been rarely studied in animals. Although this is an early-stage animal model, we believe 
that it could be improved and may prove crucial for studies on temporal lobe infarction and related disabilities 
such as aphasia. However, further studies are required to increase the value and robustness of our findings. We 
could solely focus on the effects of stroke on EEG by minimising the variability such as demographic features 
and strictly controlling the pathophysiological conditions66. However, studies with different stroke subtypes and 
phenotypes including female rats with varying age are required to increase the generalizability of the predictive 
model. Additionally, analyses of EEG under different duration and frequency sounds are required since the dura-
tion of the sound stimuli in this study was relatively long and there would have been a constant sound input to 
the brain, which may have generated a range of overlapping EEG activity. Explicit parameterisation of neural 
power spectra to specify periodic and aperiodic activity would help obtain more accurate EEG parameters. 
Moreover, it is necessary to analyse the effects of anaesthesia on EEG. Finally, there is a need for more advanced 
studies, including clinical studies, to allow for the successful clinical application of EEG for stroke monitoring 
since translational animal studies have inevitable limitations regarding their practical application.

In conclusion, accurate monitoring and determining the extent of brain injury are crucial for stroke-related 
care. We investigated the feasibility of EEG for evaluating post-stroke neural activity. We acquired EEG signals 
using a single epidural electrode and analysed the correlations between EEG parameters and the extent of ischae-
mic brain damage in a rat model of focal cerebral ischaemia. Regression analysis indicated that the relative powers 
in the alpha, theta and delta, DAR, and DTABR as well as the amplitude and latency of AEPs, could be considered 
as electrophysiological biomarkers for post-stroke brain injury, particularly for a temporal lobe stroke involving 
the auditory cortex. Further, combinations of EEG predictors (relative powers in the theta and delta, and AEP 
latency and amplitude) produced a powerful model for quantifying post-stroke structural brain damage. Since 
this is a pre-clinical animal study, there is a need for further studies to generalise and optimise the model. How-
ever, this study provides evidence that EEG is useful as a supplemental neurophysiological assessment method.

Methods
Animals.  The total sample size required was calculated as 10 subjects for the control group and 25 subjects 
for the stroke groups, based on previous studies28,30,37 and 10% dropout rate from a pilot study. We only included 
male rats to minimise the potential confounders which could affect the study results, including effects of oestro-
gen. As a result, the study included 35 male Sprague–Dawley rats (337.42 ± 12.27 g, 10 weeks of age, Orient Bio 
Inc., Seongnam, Korea). Initially, the rats were randomly assigned to the mild stroke (n = 8), moderate stroke 
(n = 8), severe stroke (n = 9), and control groups (n = 10). Then, all the rats underwent the surgical procedure, 
and 33 rats survived the experiment. Two rats from the severe stroke group perished 1 to 2 days after the stroke 
induction. In addition, 1 rat from the mild stroke group and 1 rat from the moderate stroke group were excluded 
from the study as the EEG data from the subjects were extremely noisy during the signal acquisition. In sum-
mary, a total of 31 rats completed the experiment, and all of the EEG data and stroke lesion volume from these 
rats were included in the final analyses.

The rats were individually housed in plastic cages and maintained on a 12-h light/dark cycle at a temperature 
of 21 ± 1 °C with ad libitum access to food and water. All of the experimental animal procedures were conducted 
in compliance with the guidelines of the Institutional Animal Care and Use Committee of the Gwangju Institute 
of Science and Technology (GIST). The study was approved by the Institutional Review Board of GIST (approval 
number: GIST-2019-047).

Photothrombotic stroke model.  The photothrombotic stroke model is commonly used in animal stud-
ies since it allows for the accurate induction of focal ischaemia in specific cortical regions. Although the photo-
thrombotic stroke model does not induce the penumbra zone, which is one of the typical features of stroke, the 
model can precisely control the ischaemic lesion with high reproducibility. Before establishing the stroke model, 
we anaesthetised each rat using 5% isoflurane with oxygen gas (0.6 L/min flow rate) in an induction chamber. 
Once rats lost the righting reflex, they were removed from the induction chamber and an aesthetic nosecone 
was applied. The isoflurane gas mixed with oxygen was then redirected to the nosecone and reduced to an 
anaesthesia maintenance dose of 1.5%. Next, the rat was mounted onto a stereotactic frame and its head secured 
by inserting the ear bars into the ear canals. We shaved the fur from the ears to just in-between the eyes using 
a razor. A line block was performed with 2% lidocaine before incision. Subsequently, the skull was exposed by 
retracting each side of the scalp. Moreover, we partly removed the right temporalis muscle to expose the right 
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auditory cortex. We then injected the Rose Bengal dye (30 mg/kg, Sigma-Aldrich, USA) into the tail vein. Next, 
we illuminated green laser light (532 nm, 4.0 mm beam diameter) over the right A1 cortex for 15 min to induce 
photothrombotic ischaemia67. The coordinates of the A1 cortex were 4 mm posterior, 7.6 mm lateral, and 4 mm 
ventral to bregma68. We adjusted the laser intensity power according to the experimental group. Previous stud-
ies have used a 17-mW laser output to create permanent photothrombotic stroke models and induce distinct 
structural brain damage in rats67,69. Therefore, we irradiated the rats with 17 mW, 11 mW, 5 mW green lasers 
and respectively designated them as the severe, moderate, and mild stroke groups, since laser intensity is known 
to be correlated with damage volume70,71. The sham-operated group underwent all of the aforementioned steps; 
however, the green laser was turned off during the 15 min exposure time. We maintained the rats’ core tempera-
ture at 37 °C during the surgery using an animal temperature controller (Temperature controller 69001, Scitech 
Korea, Korea).

Electrode implantation surgery for EEG recording.  Immediately after the stroke induction, all rats 
underwent the microelectrode implantation surgery to allow for the acquisition of EEG signals from the right 
auditory cortex. We performed a durotomy at 3 different sites with a dental drill to allow for EEG electrode 
placement. We drilled one hole over the right A1 cortex at the same location where the green laser was illumi-
nated. Moreover, we drilled a hole for the reference electrode at 0.7 mm posterior and 0.8 mm left to bregma, and 
another for the ground electrode at 8 mm posterior and 0.8 mm left to bregma (Fig. 5a,b). After EEG electrode 
implantation, the electrodes were connected to a multi-pin connector. Finally, we covered the exposed skull with 
bone cement. We injected antibiotics (Ceftazol 20 mg/kg, Guju Pharma Co, Korea, IM) and an analgesic agent 
(Ketoprofen 2.5 mg/kg, Uni Biotech, Korea) for 3 consecutive days after the surgery.

Sound stimulation and EEG acquisition.  Studies have used frequency-modulated stimuli to investigate 
auditory perception in animals35. In this study, we used a frequency-modulated tone with a linearly increasing 
frequency from 8 to 12 kHz as a target sound, which covers the rat hearing range with a 750 ms duration for 
sound stimulation72. In addition, other three frequency-modulated stimuli (linearly increasing frequency from 
4 to 8 kHz, and linearly decreasing frequency from 8 to 4 kHz and 12 to 8 kHz with a 750 ms duration) were 
used to minimise the habituation effects. Furthermore, 2 s of the silent period were randomly presented for 100 
times between the sound stimuli to record EEG without auditory stimuli. All the sound stimuli were gener-
ated using the MATLAB software version 2017b (Mathworks, Inc., MA., USA). Therefore, the four types of 
frequency-modulated stimuli or the 2 s of the silent period were randomly presented for 100 times each with an 
inter-stimulus interval of 2 s. The total duration of EEG recording was around 1000 s.

We acquired EEG signal responses to sound stimuli from the right A1 cortex 72 h after surgery. We anaes-
thetised rats using 5% isoflurane in an induction chamber. Once rats lost the righting reflex, we applied 1.5% 

Figure 5.   Schematic diagrams of the electrode placement for EEG recording and the experimental timeline. 
(a) Dorsal skull surface of rat showing locations of each electrode. Ch1 was located over right A1 cortex. Ch2 
indicates reference electrode, while Ch3 indicates a ground electrode. (b) Electrodes were successfully implanted 
on the right A1 cortex, reference and ground. (The image was taken by H.-J.Y.) (c) Flowchart of the whole 
experiment. Photothrombotic stroke induction (only for each stroke group*) and microelectrode implantation 
surgery were performed under isoflurane anaesthesia. EEG signals were acquired from the right A1 cortex 
72 h after the surgery. All the rats in the stroke groups were then transcardially perfused, and their brains were 
extracted to evaluate the stroke lesion volume. Finally, the EEG signals and stroke lesion volume were analysed 
offline.



11

Vol.:(0123456789)

Scientific Reports |         (2021) 11:2308  | https://doi.org/10.1038/s41598-021-81912-2

www.nature.com/scientificreports/

isoflurane via a nosecone during the recording time to prevent EEG signal contamination from motion artefacts. 
Next, we connected a multi-pin connector to a customised recording device (g.USBamp and g.HEADstage, 
g.tec medical engineering GmbH; Graz, Austria), which acquired signals at a 1200 Hz sampling frequency. We 
performed all recordings in a soundproof booth to maximise the signal to noise ratio.

EEG signal processing.  We analysed the EEG signals under the target sound offline using MATLAB. EEG 
signals without the auditory stimuli were also analysed. First, the recorded EEG data were band-pass filtered 
between 0.05 and 60 Hz. We used the zero-phase forward and reverse Infinite Impulse Response Butterworth 
filter of 4th order73. Further, we averaged the last 300 ms of the signal before stimulus onset as a baseline correc-
tion. Next, we down-sampled the data from 1200 to 600 Hz. Subsequently, we conducted the PSD analysis using 
signals obtained from the target stimulus or silent period onset to 1 s using Welch’s method, which is one of the 
most widely used periodogram methods for determining the power density of EEG frequency components74. 
The parameter was set to divide the EEG signals into eight sections of equal length, each with a 50% overlap 
based on the Hamming window. We defined the frequency range for each band as follows: Delta (1–4 Hz), theta 
(4–8 Hz), alpha (8–12 Hz), and beta (12–30 Hz). We calculated the relative power for each frequency band by 
summing all of the absolute PSD values across the four bands to compute the total power followed by dividing 
the absolute value for each frequency band with the total power. Finally, we calculated the DAR (delta/alpha 
ratio) and the DTABR ((delta + theta)/(alpha + beta) ratio), which were computed by the relative power of the 
relevant frequency bands.

Further, we analysed AEPs in response to the target sound stimuli by averaging all of the epochs between 
300 ms before the stimuli onset to 500 ms after it. The AEP amplitude was defined as the highest recorded volt-
age following the sound stimulus. The latency of the components of the AEPs was defined as the duration from 
stimulus onset to the peak amplitude.

Histological analysis of the stroke volume.  All rats in the stroke group were transcardially perfused 
and fixed with formalin under deep anaesthesia on the same day after EEG signal acquisition. Brains were care-
fully extracted and fixed with 50 ml of 4% formalin for 24 h. After fixation, brains were placed in a 30% sucrose 
solution for 3–4 days, after which they were carefully removed and cryoprotected. Next, the brains were sliced 
coronally (thickness = 10 μm) using a cryostat machine and then mounted on microscope slides. Finally, the 
slides were counterstained with haematoxylin and eosin solutions (Fig. 4).

Two independent observers analysed the cortical stroke volume using the ImageJ software (NIH, Bethesda, 
MD, USA). The observers were blinded to the experimental condition. They manually traced the damaged 
ischaemic tissue in each section and calculated the stroke volume by multiplying its surface area by the slice 
thickness. Then, all the stroke volume for every slice were summed to determine the total stroke lesion volume67. 
A consensus was achieved after sufficient discussion between the observers if there were any differences in the 
analysis. The schematic of the experimental timeline is shown in Fig. 5c.

Statistical analyses.  We performed all statistical analyses using the SPSS software (SPSS version 20.0, 
SPSS Inc., Armonk, NY, USA) and R software75. Non-parametric statistics were used since the data in the study 
did not show the normal distribution in the normality tests. Accordingly, we reported the EEG parameters 
and stroke lesion volume as the median and interquartile range in Table 1. We used the Kruskal–Wallis test to 
compare the EEG parameters between the control and each stroke group to determine specific stroke-related 
EEG features. Moreover, we used the Kruskal–Wallis test to compare stroke lesion volumes in mild, moderate, 
and severe stroke groups. If the results of the tests were significant, we assessed individual differences using all 
possible pairwise comparisons using the Mann–Whitney test with a Bonferroni correction for type I error rate 
inflation. Next, we conducted a univariate linear regression analysis to evaluate the relationships of the EEG 
parameters with stroke lesion volumes. Moreover, we calculated the coefficient of determination (R2) for each 
predictive model and the RMSE between the real and estimated stroke lesion volumes. Finally, we performed 
a multiple linear regression analysis with stepwise regression algorithm and assessed the multicollinearity to 
determine the most appropriate EEG parameter combination for estimating the stroke lesion volumes. Both the 
significance levels of nominal p value and the Bonferroni corrected p value were set at 0.05.

Data availability
The datasets generated and analysed during this study are publicly accessible on https​://sandb​ox.zenod​o.org/ 
(Digital Object Identifier: https​://doi.org/10.5072/zenod​o.68049​7).
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