
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Fernando O. Martinez,
University of Surrey, United Kingdom

REVIEWED BY

Stephen J. Bush,
University of Oxford, United Kingdom
Polina Vishnyakova,
National Medical Research Center Of
Obstetrics, Gynecology And
Perinatology Named After
Academician V.I. Kulakova, Russia

*CORRESPONDENCE

Massimo Locati
massimo.locati@humanitasresearch.it

†
PRESENT ADDRESS

Alessandra Castagna,
Technical Research and Development,
GlaxoSmithKline, Siena, Italy
Federico Simone Colombo,
Servizio di citofluorimetria, U.O.C.
Laboratorio Analisi, Dipartimento dei
Servizi, Fondazione IRCCS Ca’ Granda
Ospedale Maggiore Policlinico,
Milan, Italy
Clelia Peano,
Genomics Core Facility
Human Technopole, Milan, Italy

‡These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Molecular Innate Immunity,
a section of the journal
Frontiers in Immunology

RECEIVED 13 June 2022
ACCEPTED 16 August 2022

PUBLISHED 03 October 2022

CITATION

Rigamonti A, Castagna A, Viatore M,
Colombo FS, Terzoli S, Peano C,
Marchesi F and Locati M (2022)
Distinct responses of newly identified
monocyte subsets to advanced
gastrointestinal cancer and COVID-19.
Front. Immunol. 13:967737.
doi: 10.3389/fimmu.2022.967737

TYPE Original Research
PUBLISHED 03 October 2022

DOI 10.3389/fimmu.2022.967737
Distinct responses of newly
identified monocyte subsets
to advanced gastrointestinal
cancer and COVID-19

Alessandra Rigamonti1,2‡, Alessandra Castagna1†‡,
Marika Viatore1, Federico Simone Colombo3†, Sara Terzoli4,
Clelia Peano5,6†, Federica Marchesi1,2 and Massimo Locati1,2*

1Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Milan, Italy,
2Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy,
3Flow Cytometry Core, IRCCS Humanitas Research Hospital, Milan, Italy, 4Laboratory of Clinical and
Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy, 5Genomic Unit, IRCCS
Humanitas Research Hospital, Milan, Italy, 6Institute of Genetic and Biomedical Research, UoS of
Milan, National Research Council, Milan, Italy
Monocytes are critical cells of the immune system but their role as effectors is

relatively poorly understood, as they have long been considered only as

precursors of tissue macrophages or dendritic cells. Moreover, it is known

that this cell type is heterogeneous, but our understanding of this aspect is

limited to the broad classification in classical/intermediate/non-classical

monocytes, commonly based on their expression of only two markers, i.e.

CD14 and CD16. We deeply dissected the heterogeneity of human circulating

monocytes in healthy donors by transcriptomic analysis at single-cell level and

identified 9 distinct monocyte populations characterized each by a profile

suggestive of specialized functions. The classical monocyte subset in fact

included five distinct populations, each enriched for transcriptomic gene sets

related to either inflammatory, neutrophil-like, interferon-related, and platelet-

related pathways. Non-classical monocytes included two distinct populations,

one of which marked specifically by elevated expression levels of complement

components. Intermediate monocytes were not further divided in our analysis

and were characterized by high levels of human leukocyte antigen (HLA) genes.

Finally, we identified one cluster included in both classical and non-classical

monocytes, characterized by a strong cytotoxic signature. These findings

provided the rationale to exploit the relevance of newly identified monocyte

populations in disease evolution. A machine learning approach was developed

and applied to two single-cell transcriptome public datasets, from

gastrointestinal cancer and Coronavirus disease 2019 (COVID-19) patients.

The dissection of these datasets through our classification revealed that

patients with advanced cancers showed a selective increase in monocytes

enriched in platelet-related pathways. Of note, the signature associated with

this population correlated with worse prognosis in gastric cancer patients.

Conversely, after immunotherapy, the most activated population was

composed of interferon-related monocytes, consistent with an upregulation

in interferon-related genes in responder patients compared to non-
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2022.967737/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.967737/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.967737/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.967737/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.967737&domain=pdf&date_stamp=2022-10-03
mailto:massimo.locati@humanitasresearch.it
https://doi.org/10.3389/fimmu.2022.967737
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.967737
https://www.frontiersin.org/journals/immunology


Abbreviations: C1Q, complement component 1, q

conventional dendritic cell; cMo, classical mo

Coronavirus disease 2019; DC, dendritic cell; DEGs, d

genes; FACS, fluorescence-activated cell sorting; GC

healthy donor; HLA, human leukocyte antigen; I

intermediate monocyte; infl_1, inflammatory

inflammatory, subset 2; infl_3, inflammatory, subs

Pathway Analysis; MHCII, major histocompatibili

MPA, monocyte-platelet aggregates; ncMo, non

NeuMo, neutrophil-like monocytes; NK cells, natura

peripheral blood mononuclear cells; pDC, plasmacytoid

CoV-2, severe acute respiratory syndrome coronaviru

Cell rEgulatory Network Inference and Clustering; s

RNA sequencing; ssGSEA, single sample Gene Set

STREAM, Single-cell Trajectories Reconstructio

Mapping; TF, transcription factor; UMAP,

Approximation and Projection.

Rigamonti et al. 10.3389/fimmu.2022.967737

Frontiers in Immunology
responders. In COVID-19 patients we confirmed a global activated phenotype

of the entire monocyte compartment, but our classification revealed that only

cytotoxic monocytes are expanded during the disease progression.

Collectively, this study unravels an unexpected complexity among human

circulating monocytes and highlights the existence of specialized populations

differently engaged depending on the pathological context.
KEYWORDS

monocyte, single-cell transcriptome, machine learning, cancer, immunotherapy,
COVID-19
Introduction

Monocytes represent an essential component of the innate

immune system and play central roles both in homeostasis and

in pathological conditions (1, 2). Similarly to other mononuclear

phagocytes, such as macrophages, monocytes display a peculiar

versatility, whereby they can be engaged in quite opposite

functions, including promoting inflammation and leading off

its resolution phase. Nonetheless, these incredibly plastic cells

are mostly exclusively appreciated as precursors of macrophages,

both by refilling the tissue-resident ones and differentiating to

recruited macrophages (3). Yet, within the mononuclear

phagocyte system, monocytes represent the unique population

able to operate as both effector and precursor cells (4). In

humans, the current monocyte classification distinguishes

three major subsets based on the expression of the

lipopolysaccharide receptor CD14 and the FcgRIII/CD16:
CD14++CD16− (classical), CD14++CD16+ (intermediate) and

CD14loCD16+ (non-classical) monocytes, comprising

respectively 85-90%, ~5% and ~10% of the total circulating
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monocyte pool (5, 6). However, given that both CD14 and

CD16, as well as the vast majority of monocyte markers, are

expressed as a continuum along the three subsets, it is often

difficult to clearly separate one population from the other.

Different studies suggest the addition of further cell markers to

the conventional panel to improve subsets definition and purity

(7–9). Each subset exerts distinct activities and retains peculiar

properties. Classical monocytes present a more proinflammatory

phenotype and are involved in immune responses, being capable

of efficient phagocytosis, production of reactive oxygen species,

response to fungi and bacter ia , and secret ion of

proinflammatory cytokines. Intermediate monocytes are

poorly functionally described, but they are characterized by

high levels of HLA-DR molecules. Finally, non-classical

monocytes primarily remain in the vasculature, where they

exert the specific role of patrolling and act as caretakers and

sentinels of the vascular tissue (10–15).

Even though the distinction into classical, intermediate and

non-classical monocytes stands as a reproducible classification

of circulating monocytes, such distinction is now emerging as

being too simplistic because it masks the extensive inter-cellular

heterogeneity within the three subsets. Recently, single-cell

profiling techniques allowing high-resolution comprehension

of circulating mononuclear cells at both transcriptomic and

proteomic levels have evidenced a broader complexity and

have begun dissecting monocyte diversity (16–22). However,

an exact task-division among the different subsets has not been

defined yet.

In view of the remarkable lack of consensus on monocyte

emerging populations and the growing evidence on their

relevance in physiological and pathological contexts, in this

study we addressed to deepen our understanding of the variety

of human circulating monocytes by single-cell RNA sequencing,

which do not require a priori knowledge of the markers tested

for cell classification and analysis. Therefore, we first

investigated circulating monocyte subsets identity and

functions in homeostatic conditions. Next, to corroborate the

relevance of our findings and determine if alterations in
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monocyte profile occur during pathological conditions, we

investigated circulating monocytes in two distinct pathological

contexts, i.e. gastrointestinal cancers and viral infection from

severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-

2), by using a machine learning model for cluster scRNA-seq

data. In both contexts, we clearly recognized all the monocyte

subsets previously characterized in homeostasis, but we found

disease-specific alterations in terms of frequency and phenotype.

This work provides a single-cell atlas of human circulating

monocytes and provides a framework for future studies on the

involvement of specific monocyte subsets in health and disease.
Materials and methods

Sample collection and cell isolation

Peripheral blood was obtained from 5 adult male healthy

donors recruited to the IRCCS-Humanitas Research Hospital.

The study protocol was approved by the ethical committee of

Humanitas Clinical and Research Center (Prot. Nr 520/18,

approved on 9/2018). All participants gave written informed

consent. Samples were collected in EDTA-coated tubes (BD

Vacutainer K2E), and peripheral blood mononuclear cells

(PBMCs) were isolated by Lympholyte® cell separation density

gradient solution (Cederlane). Any residual erythrocytes were

removed via ammonium-chloride-potassium (ACK) Lysing

Buffer (Lonza) treatment for 60 sec at room temperature (RT).
Fluorescence-activated cell sorting
(FACS) and single cell sequencing

To assess PBMCs vitality, cells were stained with viability

dye (Zombie NIR; Biolegend) for 15 min at RT and Fc-block was

performed with 1% human serum for 10 min at RT. PBMCs

were then stained for 15 min at RT with fluorophore-conjugated

antibodies listed in Table S1. Finally, cells were washed in 2%

fetal bovine serum/PBS and live CD45pos/HLA-DRpos/lineageneg

(CD3, CD19, CD56) were immediately FACS sorted on a

FACSAria III (BD Biosciences) (Figure S1A). Cells

resuspended in 0.5 ml PBS 1X plus 0.04% BSA were washed

once by centrifugation and counted with an automatic cell

counter (ThermoFisher; Countess II). About 20,000 cells per

sample were loaded into one channel of the Chromium Chip B

using the Chromium Single Cell 3’ Reagent Kits (v3 Chemistry)

(10X Genomics). 50 ng per sample of the barcoded and

amplified cDNA was used then for constructing the

sequencing libraries. Sequencing was performed on the

NextSeq550 Illumina Platform, generating on average about

477 million reads per sample (on average about 67,000 reads
Frontiers in Immunology 03
per single cell recovered) following the configuration of the

sequencing RUN indicated by the Single Cell 3’ scRNAseq

v3 protocol.
scRNA-seq data processing

FASTQ files were generated by demultiplexing raw base call

(BCL) files (mkfastq function, Cell Ranger v.3.0.2) (23). Count

function allowed alignment, preliminary filtering, barcode

counting, and UMI counting; GRCh38 – hg 38 was used as

reference genome.
Data analysis

Preliminary data filtering, data integration and marker

analyses were performed with R (v.3.6.1), using the Seurat

package (v.3.1.5) (24). FindCluster function was performed to

evaluate clusterings at multiple resolutions (from 0 to 0.5 in steps

of 0.05) and results were visualized by using Clustree package

(25) (Figure S1B). Based on these two algorithms, we used a

value of 0.45 for the resolution. In order to annotate clusters,

each cell was subjected to the ssGSEA (26, 27) using manually

curated signatures. Enrichment pathway analysis was performed

with gProfiler (R package) (28) considering only differentially

expressed genes (logFC > 0.5 and p-value adjusted < 0.05).

Cellular trajectory analysis and activity scores of transcription

factors (TFs) were performed with Python using STREAM

package (29) and pySCENIC (30), respectively.
Public gene expression data analysis

Counts matrix of the public scRNAseq dataset from Griffiths

et al. (31) and Zhang et al. (32) were obtained from the Gene

Expression Omnibus database. Preliminary filtering, data

integration and marker analyses were performed as for our

dataset (considering 1,000 as variable genes). Monocytes

classification was obtained using a machine learning model

developed with the caret R package (33), considering a

polynomial Kernel support vector machine.
Statistics

Statistical computations were performed using the software

R (v.3.6.1) and the software GraphPad Prism 6 (GraphPad

Software). Significance was assigned at p < 0.05, unless stated

otherwise. Specific tests are indicated in the relevant

figure legends.
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Kaplan-Meier survival analysis

Patient survival was interrogated with the defined cMo

infl_3- and the cMo MPA-signature using the online database

KMplot (34, 35) survival of a combined cohort of the GSE14210,

GSE15459, GSE22377, GSE29272 and GSE51105 datasets. Only

patients presenting the selected parameters were considered for

the analysis. Gene signatures were designed using CD14 and

VCAN as markers of classical monocytes, combined with the top

5 marker genes defined from the HD dataset of either the cMo

infl_3 or the cMo MPA cluster.

Further information on methods is reported in the

Supplemental Methods section.
Results

Circulating monocytes are constituted by
9 distinct subsets

To overcome the lack of consensus on human monocyte

identity and interrelationship between populations, we

performed a scRNA-seq analysis on circulating mononuclear

cells from five healthy donors. PBMCs were isolated by density

gradient and CD45pos/HLA-DRpos/lineageneg (CD3, CD19,

CD56) cells were FACS sorted, regardless of their expression

levels of CD14 and CD16 to avoid the loss of unknown

monocyte subsets (Figure S1A). The transcriptomes of 35,635

individual cells were analyzed and, after quality control and

filtering, a total of 26,474 cells were retained for the analyses,

with a median of 65,897 reads and 2,270 genes detected per cell

(Table S2). Biological replicates showed a significant

reproducibility and cell clustering was donor-independent

(Figures S1C, D).

Unsupervised clustering identified 20 distinct populations

that were annotated according to score enrichment of canonical

gene signatures (Table S3). Monocytes, dendritic cells (DCs), NK

cells and progenitor cells were present. 6 clusters of dendritic

cells, including both conventional (cDCs) and plasmacytoid DCs

(pDCs), were identified (Figures 1A, B). Type 1 cDCs expressed

high levels of HLA, CLEC9A, and CADM1 (c15), while type 2

cDCs had high levels of CD1C, FCER1A, and CLEC10A (c5, c19)

(36) (Figures 1C and S1E). Based on the expression of IL3RA/

CD123, CLEC4C and NRP1, 2 clusters (c8, c16) were recognized

as pDCs (36) (Figures 1C and S1E). We also detected a small

cluster (c18) of AXL-expressing pre-DCs (16), with a profile

similar to pDCs (Figure S1E). Two small clusters (c11 and c14)

showed a distinct set of genes including CD34, GATA1, GATA2,

and SOX4, which allowed their annotation as common myeloid

progenitors (Figures 1C and S1E). Finally, 2 clusters of NK cells

(c4, c9) and 1 of B cells (c17) were identified (Figures 1A, B).
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Among monocytes, we identified 9 distinct clusters,

indicating that the current classification only partially captures

the heterogeneity of circulating monocytes. Five clusters (c0, c1,

c2, c7, c12) included classical monocytes, based on the

expression of CD14, VCAN, NCF1 and MS4A6A; 2 clusters

(c3, c13) were characterized by high levels of FCGR3A/CD16,

LST1, RPS19, MS4A7, and CSF1R, and were identified as non-

classical monocytes (37–40); 1 cluster (c6) was annotated as

intermediate monocytes given their mid-levels of the above-

mentioned genes compared to the classical and non-classical

subpopulations (Figures 1A, C, D and S1E, F). Monocytes

belonging to c10 located in proximity to NK cells in the

Uniform Manifold Approximation and Projection (UMAP)

analysis (Figure 1B) and, similarly to NK cells, exhibited a

cytotoxic signature (GZM genes and PRF1) (Figure 1D). Using

graph-based clustering (Figure S1G), c10 resulted constituted of

both classical (c10A) and non-classical (c10B) monocytes

(Figure S1H).
Phenotypic characterization of newly
identified monocyte subsets

To dissect monocyte heterogeneity, we then applied the

single-sample Gene Set Enrichment Analyses (ssGSEA) (26,

27) of the Hallmark gene sets (41) (Figures 2A and S2A).

Clusters belonging to either the classical or the non-classical

subsets shared common functional properties, supporting the

current monocyte classification. Clusters of classical monocytes

were enriched for transcripts related to angiogenesis, epithelial-

mesenchymal transition and wound healing pathways, while the

Notch signaling pathway was enriched in non-classical

monocytes (Figure S2A). Other functional pathways, however,

were selectively enriched in distinct clusters regardless of the

specific macro-category they belong to. In particular, cells in the

most abundant cluster (c0, comprising 27.7% +/- 6.6% of all

monocytes) showed lower activation of apoptosis, fatty-acid

metabolism, and mTORC1 signaling pathways as compared to

other classical monocytes (Figure 2A). This cluster, as well as c1

and c2 (comprising 23% +/- 2.5% and 16.2% +/- 3.6% of all

monocytes, respectively), displayed a proinflammatory

phenotype. In particular, c0 and c2 were strictly related

(Figure S2B) and expressed the highes t leve ls of

proinflammatory genes, such as S100A8/A9/A12 (Figure S2C)

and were therefore operationally defined them as cMo infl_

(classical monocyte, inflammatory, subset_) 1 and 2,

respectively. Also c1 (cMo infl_3) exhibited a functional

activation phenotype and proinflammatory features. Indeed,

among its top cluster marker genes, we identified

inflammatory cytokines (CCL3, CCL3L1, and IL1B) and

NFKBIA , a positive regulator of NF-kB activity (42)
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(Figure 2B). In the analysis of differentially expressed genes

(DEGs), neutrophil migration pathway was increased in both

cMo infl_1 and cMo infl_3, consistent with the upregulation of

CXCL8 and CCL3 in the two clusters, respectively (Figures 2C,

D). Cells belonging to cMo infl_2 expressed high levels of genes

involved in the antimicrobial defense (RETN, PADI4, LYZ;

Figure 2C) and showed a significant enrichment of cell defense

against bacteria pathways (Figure 2D).

The two remaining clusters of classical monocytes displayed

peculiar transcriptional profiles as well, highlighting specific

functional properties. Cells constituting c7 (7.3% +/- 2.6% of

all monocytes, from now cMo IFN) were enriched in genes
Frontiers in Immunology 05
associated with interferon signaling pathways (ISG15, MX1,

IFIT2/3, IFI6, CXCL10, HERC5) and genes belonging to the

IFIT, IFI and OAS families (Figures 2B, C). Accordingly,

signature analyses showed enrichment of pathways involved in

IFNa/g responses and defense against viruses (Figure 2D). The

profile of c12 (1.2% +/- 0.6% of all monocytes) was instead

associated with leukocyte transendothelial migration genes

(MYL9, MYL12A, CD9) (Figures 2C, D) and platelet-related

genes (PPBP and PF4) (Figure 2B) and showed significant

upregulation of platelet-associated pathways (Figure 2D),

suggesting that this cluster (from now cMo MPA) may

correspond either to circulating monocyte-platelet aggregates
A

B C

D

FIGURE 1

Identification of 9 clusters of circulating monocytes by single-cell RNA sequencing of healthy peripheral blood HLA-DR+ cells. (A) Dot-plot
showing annotated immune cells by lineage signatures (genes belonging to each signature are listed in Table S3). ssGSEA score-based signature
expression is colored-coded from blue (lower) to yellow (higher); circle size indicates the fraction of cells expressing the signature. CD14+

mono, classical CD14+ monocytes; CD16+ mono, non-classical CD16+ monocytes; DCs, dendritic cells; NK cells, natural killer cells. (B) UMAP
projection of CD45+Lin-HLA-DR+ cells (n = 26,474) showing 20 clusters belonging to 5 major immune cell subsets. Clusters are numbered
according to their size, from the largest (cluster 0) to the smallest (cluster 19). Each dot represents an individual cell. (C) Feature plots showing
the expression of key genes adopted for manual annotation of myeloid cell clusters. Gene expression is colored-coded from gray (lower) to red
(higher). (D) Dot-plot showing the expression of key genes adopted for manual annotation of clusters 10A and 10B. Gene expression is colored
coded from gray (lower) to blue (higher); circle size indicates the fraction of cells expressing the gene.
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B

C

D

A

FIGURE 2

Phenotypic characterization of human blood monocytes in steady state conditions. (A) Boxplot showing the normalized enrichment score
(ssGSEA) of selected Hallmark signatures found differentially enriched in clusters belonging to the same monocyte macro-group (classical and
non-classical monocytes). Colour code: dark red, classical monocytes; pink, intermediate monocytes; yellow, non-classical monocytes. (B)
UMAP projection of monocyte clusters (c0, c1, c2, c3, c6, c7, c10A, c10B, c12 and c13). Up to five cluster marker genes are listed in boxes next
to each cluster. Cluster marker genes are defined as in Material and Methods. (C) Single cell gene expression heatmap showing significant
differentially expressing genes (pvalueadj ≤ 0.05, pct 1 ≥ 0.1, pct2 ≥ 0.1, log2 FC > 0.5) among monocyte cell subsets. Selected gene names are
labeled; gene expression is colored-coded from purple (lower) to yellow (higher); gene expression level is scaled by row. (D) Pathway analysis of
differentially expressed genes (one cluster of monocyte vs all the other monocyte cells). Bar plots show key canonical pathways collected in The
Molecular Signatures Database (MSigDB) enriched in individual populations of monocytes. The Canonical Pathways gene sets derived from the
KEGG pathway database, the Canonical Pathways gene sets derived from the Reactome pathway database and the Gene Ontology gene sets
were taken into consideration. Only upregulated genes were considered.
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(43, 44) or to the recently reported megakaryocyte-like

monocyte subset (45).

Most of the non-classical monocytes grouped into c3 (from

now ncMo) and a minor fraction clustered independently in c13

(12.2% +/- 5.5% and 1.2% +/- 0.6% of all monocytes,

respectively). They expressed a very similar transcriptome,

characterized by high levels of cell activation (LST1, LYN,

SIGLEC10, SOD1, RPS19) and cell cycle regulation genes

(MTSS1, CDKN1C) (Figure 2C). c13 (from now ncMo C1Q)

was characterized by the highest expression of the complement

genes C1QA, C1QB and C1QC and their related pathways

(Figures 2C, D and S2D), consistent with their involvement in

complement-mediated phagocytosis (12, 38).

Intermediate monocytes were all included in c6 (from now

iMo), comprising 9.4% +/- 1.5% of the total monocytes and were

strongly characterized by high levels of HLA genes in MHC class

II (12) and enrichment of antigen presentation pathways

(Figures 2C, D). Finally, cells included in c10A-B (0.9% +/-

0.5% and 0.8% +/- 1% of all monocytes, respectively) presented

upregulation of cytolysis and cell death pathways (Figure 2D),

and likely corresponded to the recently identified NK-like

monocyte subset with cytotoxic activity (45).
Monocyte subsets
developmental relationship

Many studies have demonstrated that classical monocytes are

able to give rise to the non-classical population in mice (46–48).

Recently, the same program has been shown also in humans (6),

even though the hypothesis that some CD14+CD16- cells can arise

following another route of development cannot be excluded (1).

Since we found several classical and non-classical subsets of

monocytes under homeostasis, we asked whether their

developmental paths were connected and how. To this aim, a

Single-cell Trajectories Reconstruction, Exploration And Mapping

(STREAM) analysis (29) was performed, taking advantage of the

presence of precursor cells within the dataset. The sequential

progression of classical, intermediate and non-classical monocytes

along the pseudotime trajectory, as well as the transition markers of

branch S0-S1, were in line with the hypothesis of a sequential

transition from CD14+CD16− via CD14+CD16+ to CD14loCD16+

monocytes (Figures 3A, B and S3A, B). Interestingly, there was a

clear separation between the branch S0-S3, which was mainly

composed of cells from cMo infl_1, and the shorter branch S0-S2,

constituted by the other classical monocytes (Figures 3A and S3A),

suggesting that cMo infl_1 was less engaged in biological processes

compared to the other subsets and possibly maturing toward a

specific proinflammatory phenotype. This is in line with the

upregulation of the ferritin heavy/light chains (FTH1/FTL), the

mediator of inflammation nicotinamide phosphoribosyltransferase
Frontiers in Immunology 07
NAPMT (49), and the calcium binding proteins S100A6/A8

(Figure 3C). Notably, c10A and c10B (from now cMo cytotoxic

and ncMo cytotoxic, respectively) separated from the other

monocytes early along the trajectory pseudotime (Figures 3A

and S3A).

Single-cell regulatory network inference and clustering

(SCENIC) (30) allowed us to investigate the involvement of

specific TFs in driving monocyte transcriptomic variability.

Besides common monocytic transcription factors (TFs), such

as SPI1 (PU.1) and Kruppel-like factor 4 (KLF4) (50, 51), some

TFs resulted selectively activated in classical or non-classical

monocytes (Figure 3D), suggesting that the transition from

CD14+ to CD16+ cells requires the activity of specific regulons.

For example, classical monocytes displayed active CCAAT/

enhancer binding proteins (CEBPD/E), BCL3/6 and Nuclear

Factor, Interleukin 3 Regulated (NFIR3). In contrast, KLF2/F3

and TCF7L2 were highly activated in non-classical monocytes.

Of note, TFs known for their role in NK cell biology, such as

TBX21 (T-bet), HES6 and EOMES (52), were selectively

activated in c10, suggesting that these TFs support the profile

of cytotoxic monocytes.
Relevance of distinct monocyte
subsets in cancer patients and in
response to immunotherapy

The frequency of peripheral blood cells represents a non-

invasive indicator of immunotherapy responsiveness in cancer

patients (53). To investigate the dynamics of monocyte subsets

in response to checkpoint inhibitors, we inspected a published

scRNA-seq dataset of cancer patients from Griffiths et al. (31),

hereinafter referred as “GC dataset”). This dataset contains

transcriptomes of PBMCs collected from 13 advanced (stage 3/

4) gastrointestinal cancer patients (phase I clinical trial,

NCT02268825) at 3 time points: before treatment (C1), after

two cycles of chemotherapy (mFOLFOX6) (C3) and after two

cycles of mFOLFOX6 and anti-PD-1 antibody (C5) (Figure 4A).

We applied the same strategy used in our scRNA-seq of healthy

donors (hereinafter referred as “HD dataset”) to the GC dataset

and obtained 55,293 cells, comprising B cells, T cells, NK cells,

dendritic cells, monocytes and platelets (Figures 4B, C and S4A).

We then considered only monocytes and, splitting the HD

dataset into a training set (80% of cells) and a test set

(remaining 20% of cells), we developed a machine learning

model for clustering analysis (Figure S4B). With this approach,

we could clearly recognize in the GC dataset all the 9 monocyte

clusters previously identified in homeostatic conditions,

confirming the robustness of the machine learning approach

and indicating that monocyte subpopulations are broadly

conserved in steady-state and in gastrointestinal cancer
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patients (Figure 4C). Compared to healthy donors, cancer

patients showed a similar frequency of most monocyte

subpopulations (Figure S4C), with the exception of cMo infl_3

and cMo MPA which were found decreased and increased,

respectively (Figure 4D). To explore the relevance of these

monocytes in cancer patients, we derived two gene signatures

representative of each cluster and tested them as predictive of

first progression survival, in a database of 358 patients. Of note,

patients with above median level expression of the cMo infl_3-

signature had an improved survival (logrank P=0.00083; n=354),

while above median level expression of the cMo MPA-signature

correlated with worst first progression survival (logrank

P=0.00067; n=240), highlighting the influence of such

monocyte subsets on patient outcome (Figure 4E). We then

investigated the impact of monocytes on the response to

treatments and found that anti–PD-1 therapy selectively

increased the relative frequency of the ncMo C1Q and iMo

subsets (Figures 4F and S4D) and the expression of the

complement genes C1QA/B/C exclusively in ncMo_C1Q from

responders (Figure 4H).
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In their work, Griffiths et al. found higher activation of growth

factors, inflammation, and differentiation pathways in monocytes

from responders versus non-responders before treatment (31),

with the following trend: reduction of the score after

immunotherapy, further reduction in patients responsive to

treatment and a significant enrichment in non-responders after

anti-PD-1 immunotherapy. When the same pathways were

examined in each cluster individually (Figure S4E), they were

not equally enriched or follow the same trend in all the monocyte

subpopulations. cMo IFN was the most altered cluster after

immunotherapy (Figure 4G), with interferon-stimulated genes

(IFITM1/2/3 and ISG15) significantly overexpressed in responder

patients compared to non-responders (Figure 4H). Increased

expression of IFN-related genes (ISG15, IFI44L and IFI6) was

also evident in intermediate and non-classical monocytes from

responders (Figure 4H), in line with their upregulation of IFN

pathways in homeostatic conditions (Figure 2A). Conversely,

other clusters did not show significant alterations among

different time points nor between the two groups of patients.

Overall, these data confirm that distinct circulating monocyte
B C

DA

FIGURE 3

Monocyte subsets developmental relationship. (A) Subway map plot visualization of inferred developmental trajectory of myeloid progenitors
and monocytes by STREAM. Cells are colored according to the cluster of origin as shown in the legend. Starting from myeloid progenitors, cells
bifurcated into Mo cytotoxic (branch S4-S6) and a branch that further separated into three sub-branches: classical monocytes (belonging to c1,
c2, c7, c12) primarily localize into node S0 and branch S0-S2; branch S0-S3 is mainly consisted of classical monocytes from c0; branch S0-S1
identify a clear directional progress from the intermediate to the non-classical monocytic cells. (B, C) Bar plots showing the top-20 transition
markers significantly most correlated with the pseudotime calculated in branch S0-S3 (B), containing classical monocytes from c0, or branch
S0-S1 (C), containing intermediate and non-classical monocytes from c6, c3 and c13. 10 genes positively and 10 genes negatively correlated are
shown. (D) Single cell binary matrix showing the activity of each regulon in each cell (black blocks represent cells that are “on”, white blocks
cells that are “off”). TFs belonging to selected regulons active in monocytes are labeled.
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FIGURE 4

Monocyte subsets in advance gastrointestinal cancers and response to immunotherapy. (A) Schematic illustration of the clinical trial treatment
strategy adopted in the study of Griffiths and colleagues (Mod. from Griffiths et al., PNAS, 2020). Advanced GC pts received mFOLFOX6
chemotherapy at the beginning of the trial for 2 cycles (14 days per cycle). From cycle 3 through 12, they received the combination of mFOLFOX6
and anti-PD-1 immunotherapy. Blood samples were collected at C1 (cycle 1, baseline), C3 (cycle 3) and C5 (cycle 5). PBMCs were isolated and
frozen. Single cell RNA sequencing was performed on the cryopreserved PBMCs samples using 10X Genomics technology and sequenced on an
Illumina HiSEq. (B) Dot-plot showing annotated immune cells by lineage signatures (genes belonging to each signature are listed in Table S4).
ssGSEA score-based signature expression is colored-coded from blue (lower) to yellow (higher); circle size indicates the fraction of cells expressing
the signature. (C, left) UMAP projection of GC pts PBMCs (n = 55,293) showing 25 clusters individually annotated belonging to 6 major immune cell
subsets. Clusters are numbered according to their size, from the largest (cluster 0) to the smallest (cluster 24). Each dot represents an individual cell.
(C, right) UMAP projection of GC pts monocytes clustered using the machine learning classifier. Up to five cluster marker genes are listed in boxes
next to each cluster. Cluster marker genes are defined as in Material and Methods. (D) Percentage of cMo_infl_3 and cMo_MPA over the total
monocyte population from healthy donors and GC pts at C1. Statistical significance was determined by the Mann-Whitney test. (***) P < 0.001. (E)
Kaplan-Meier curves of patient first progression survival defined by the cMo infl_3 signature (left) or the cMo MPA signature (right) using KMplot (34).
Significance was evaluated by the log-rank Mantel–Cox test. (F) Percentage of iMo and nc_Mo C1Q over the total monocyte population in GC pts
during therapy. Each line represents a patient percentage trend along the three therapy cycle steps. Statistical significance was determined by the
Friedman test followed by Dunnett’s multiple comparison test. (*) P < 0.05. (G) Bar plot showing the number of significant differentially expressing
genes after immunotherapy (green and white bars) and immunotherapy (orange and green pathways) in monocyte subtypes. (H) Heatmap showing
the gene expression in C1, C3 and C5 of significant differentially expressing genes between responders and non-responders after immunotherapy.
Gene expression is colored-coded from blue (lower) to red (higher); gene expression level is scaled by columns. C1, cycle 1 = baseline; C3, cycle 3
= chemotherapy mFOLOFX6 regimen; C5, cycle 5 = chemotherapy + anti–PD-1 immunotherapy. HD, healthy donors; GC pts, gastrointestinal
cancer patients. NS, non-responder patients; R, responder patients.
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subsets are differentially engaged in cancer patients and can play

different roles in their response to immunotherapy.

While investigating the prognostic potential of cMo IFN in

cancer patients, we observed significant overexpression of

TMEM176A and TMEM176B genes in cMo IFN from

responders, though both genes were differentially expressed even

before treatment (Figure S5A). TMEM176A/B are co-regulated

genes encoding transmembrane proteins belonging to the MS4A

family. They have been detected in monocytes and macrophages

(54), dendritic cells and RORgt+ lymphocytes (55). In our study

we found the highest levels of these genes in circulating

monocytes, with different expression depending on the

subpopulations, while lower levels in dendritic cells (Figure

S5B), suggesting a previously unappreciated role in monocytes

and candidating TMEM176A/B as biomarkers of response to

immune-checkpoint inhibitors.
Activated cytotoxic monocytes are
expanded in COVID-19 patients

Monocytes are pivotal players in viral infections, including

COVID-19 (56). We investigated the transcriptomic changes of

monocyte subpopulations in a public single-cell transcriptomic

dataset of PBMCs from COVID-19 patients at different stages of

the disease (hereafter named “CoV-2 dataset”) (32) (Figure

S6A). Monocytes were identified among other mononuclear

cells (Figures S6B-D) and re-clustered applying the machine

learning approach used for the GC dataset, allowing the

recognition of all the 9 subpopulations of monocytes

(Figure 5A). The phenotype of most subtypes was highly

altered according to the severity of disease and, in most

clusters, severe patients counted the highest number of DEGs

when compared to healthy donors, while a progressive lower

number of DEGs was detected in moderate and convalescent

patients, respectively (Figure 5B). Interestingly, all subsets

showed comparable frequencies (Figure S6E), with the only

noticeable exception of cytotoxic monocytes, which were

significantly expanded in patients with moderate or severe

disease conditions compared to healthy controls (Figure 5C).

Moreover, perforin and granzymes, as well as other cytotoxic

genes, were selectively upregulated in cMo- and ncMo cytotoxic

populations according to the severity of disease (Figure 5D).

To better investigate the role of circulating monocytes in

COVID-19, we performed Ingenuity Pathway Analysis (IPA)

[QUIAGEN lnc., https://digitalinsights.qiagen.com/IPA, (57)],

and found that, compared to healthy donors, the most

significantly downregulated pathways in all the pathological

conditions were the Oxidative Phosphorylation signaling,

Tumor Microenvironment signaling categories and Translation

Initiation Factor 2 (eIF2) signaling, while PD-1, PD-L1 Cancer

Immunotherapy Pathway was downregulated in the severe
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pathological group (Figure S7). A significant upregulation of

the interferon signature was detected in all monocytes from

patients with COVID-19, but surprisingly, in patients with

severe disease, the Coronavirus Pathogenesis Pathway was

selectively upregulated only in the cMo- and ncMo cytotoxic

monocyte subsets (Figure 5E). We further examined this

pathway and noted that, while both cytotoxic monocyte

subsets showed a significant upregulation in the response to

interferon type I and activation of IRF7 pathways in severe

patients as compared to healthy controls, cMo- and ncMo

cytotoxic monocyte subsets showed an opposite regulation of

the NALP3 inflammasome pathway, with upregulation of

CASP1, encoding the protease essential for the production of

the active and mature form of IL-1b (58), only in cMo cytotoxic

(Figure S6F). We then explored if the phenotype of cytotoxic

monocytes differed depending on disease severity. Looking at

differentially expressed genes between the cytotoxic subsets from

moderate and severe patients, we found many genes modulated

in the same way of other clusters, including the upregulation of

TNFAIP3, CXCL8 and different HLA genes in moderate patients,

and upregulation in severe patients of inflammatory cytokines,

such as S100A6, S100A8, S100A12, and the interferon-related

genes IFIT1 and IFIT2 (Figure 5F). Of note, among genes

selectively modulated in cytotoxic monocyte subpopulations

but not in the others, we identified the IL-7 receptor (IL-7R)

(Figure 5F). Since the recombinant human IL-7 (rhIL-7) has

been evaluated as promising vaccine adjuvant against SARS-

Cov-2 (59), we asked whether IL-7R is expressed by all

monocytes and upregulated only in the cytotoxic monocytes

from moderate patients or if the receptor is selectively expressed

by this subpopulation. Interestingly, while other subsets showed

low levels of IL-7R, both cMo and ncMo cytotoxic resulted as the

most expressing cells (Figures 5G).

These results point to cytotoxic monocyte subsets as new

players in COVID-19 and suggest they contribute to the disease

pathogenes i s through both common and dis t inc t

effector pathways.
Discussion

The involvement of monocytes in physiological and

pathological conditions has been primarily related to their role

as reservoir of macrophages and monocyte-derived DCs, while

their role as effector cells has been overlooked. Recent studies

have brought to light the heterogeneity of myeloid cells and their

plasticity (16, 17, 21, 22, 45, 60, 61), nevertheless circulating

monocytes remain poorly characterized, and the classification

based on their expression of CD14 and CD16 (5) holds as the

most credited one. Here we unraveled the transcriptional

landscape of human circulating monocytes in homeostatic

conditions and we investigated their relevance in pathological
frontiersin.or
g

https://digitalinsights.qiagen.com/IPA
https://doi.org/10.3389/fimmu.2022.967737
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Rigamonti et al. 10.3389/fimmu.2022.967737
states inspecting public scRNA-seq datasets through a machine

learning model for clustering analysis.

Among the classical monocytes, the three most abundant

subpopulations displayed all inflammatory programs and

activation states, and were closely related. Interestingly, cMo
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infl_1 and cMo infl_2 had a profile similar to neutrophil-like

monocytes (NeuMo) (62) and, by trajectory analysis, emerged as

two clusters captured at different states of maturation. The

developmental paths of monocyte populations also confirmed

the sequential transition from classical, intermediate and non-
B C

D

E

F G

A

FIGURE 5

Cytotoxic monocytes are involved in COVID-19. (A) UMAP projection of Cov-2 pts monocytes clustered using the machine learning classifier.
Up to five cluster marker genes are listed in boxes next to each cluster. Cluster marker genes are defined as in Material and Methods. (B) Bar
plot showing the number of DEGs between monocytes from COVID-19 patients with different pathological conditions and healthy donors. (C)
Percentage of cMo cytotoxic over the total monocyte population from healthy donors and Cov-2 pts. Statistical significance was determined by
the Dunn’s multiple comparisons test. (*) P < 0.05. (D) Heatmap showing the expression of selected cytotoxic genes in healthy donors (HD),
patients with severe (sev) or moderate (mod) COVID-19 and convalescent patients with COVID-19 (conv). Gene expression is colored-coded
from blue (lower) to red (higher); gene expression level is scaled by row. (E) Ingenuity pathway analysis of the DEGs between cytotoxic
monocytes from severe COVID-19 pts and healthy donors. Only pathways that were significantly (-log10(p-val) > 1.3) upregulated (z score > 2,
in red) or downregulated (z score < -2, in blue) are shown. Analysis of the other monocyte clusters are shown in Figure S7 (F) Venn diagram
showing the distribution of DEGs in cytotoxic monocytes between moderate and severe patients. Genes in black are differentially expressed also
in other monocyte subpopulations; genes in red are differentially expressed exclusively in cytotoxic monocytes. (G) Bar plot showing the
expression of IL7R in each cell cluster of the CoV-2 dataset. HD, healthy donors; sev, severe COVID-19 patients; mod, moderate COVID-19
patients; conv, convalescent patients.
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classical subset (6), although cytotoxic monocytes followed

peculiar development and differentiation routes. Specific TFs,

selectively active in either classical (CEBPD, CEBPE, BCL3/6,

NFIR3), non-classical (KLF2, KLF3, TCF7L2) or cytotoxic

(TBX21, HES6, EOMES) monocytes, are possibly involved in

the differentiation from one monocyte population to the other.

In cancer patients, specialized monocyte subtypes caught our

attention as relevant players during disease progression.

Interestingly, the frequency of cMo MPA was significantly

increased in cancer patients compared to healthy subjects,

possibly as a manifestation of the inflammatory milieu

characterizing the tumor condition (63), and enrichment of

cMo MPA-signature in cancer samples correlated with

significant worst prognosis. On the contrary, cMo infl_3

showed the exact opposite behaviour, suggesting a protective

function of these cells in disease. Instead, considering the effect

of the anti-PD-1 immunotherapy, we recorded an expansion of

iMo [in line with the increased MHC II gene expression

observed by Griffiths et al. (31)]. Both cMo IFN and ncMo

C1Q were involved in response to therapy. Particularly, cMo

IFN, which showed a discriminative type I IFN-induced

signature, resulted the major altered subtype after anti-PD-1

treatment, and cells from responder patients showed significant

upregulation of interferon genes compared to non-responders.

Other studies have investigated the correlation of interferon-

related gene signature with clinical response to immune

checkpoint blockade therapies (64, 65). Our results based on

analyses of circulating monocytes may provide rationale to

design non-invasive strategies to predict clinical response to

anti-PD-1 therapy.

Sometimes the boundaries between distinct immune cell

populations are blurred. This is for instance the case of c10,

which we annotated as cytotoxic monocytes because of their

similarity with NK cells. Villani et al. had previously described a

subset of monocytes with a distinct cytotoxic gene signature

(16), but subsequent analyses of the same dataset suggested a

misclassification of clusters, probably due to the experimental

strategy adopted (66). Cytotoxic monocytes were reported in a

more recent study of scRNA-seq, both in homeostatic conditions

and in Vogt-Koyanagi-Harada disease (45). In our hands,

monocytes with a marked NK-like signature were deeply

modulated in COVID-19 patients , showing strong

transcriptomic alterations, cellular activation and interferon

response depending on disease severity and stage. The

Coronavirus Pathogenesis Pathway selectively upregulated in

cMo cytotoxic and ncMo cytotoxic from severe COVID-19

patients compared to healthy controls. Accordingly, we also

found a disease severity-dependent upregulation of cytotoxic

genes specifically in these two subsets. This observation is in line

with the significant upregulation of granzyme B and perforin

proteins in monocytes from COVID-19 patients compared to

healthy donors reported by Ahmadi P. et al. (67). Moreover,
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despite the fact that the literature reports a reduction of non-

classical monocytes in COVID-19 patients (68), in our dataset

the only subpopulation altered in frequency was the one of cMo

cytotoxic monocytes, which increased in severe and moderate

patients. Finally, our data showing the expression of IL-7R in

cytotoxic monocytes are consistent with the presence of IL7R+

monocytes/macrophages in COVID-19 BALF (69), and further

support the hypothesis that these cells are key players in the

progress of the disease.

Taken together, our results provide a framework for

analyzing circulating monocytes in pathology. Therapeutic

interventions designed to target selective monocyte subsets

may offer opportunities to enhance treatment efficacy. The

significance of each of the monocyte subpopulations will have

to be validated in functional studies, and further studies are

needed to define the role of distinct monocytes as precursors of

specific macrophage subpopulations in tissues.
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