
Received: 27 April 2022 Revised: 12 May 2022 Accepted: 22 June 2022

DOI: 10.1002/mp.15853

R E S E A R C H A RT I C L E

A multi-modality physical phantom for mimicking tumor
heterogeneity patterns in PET/CT and PET/MRI

Alejandra Valladares1 Thomas Beyer1 Laszlo Papp2 Elisabeth Salomon2

Ivo Rausch1

1QIMP Team, Centre for Medical Physics and
Biomedical Engineering, Medical University of
Vienna, Vienna, Austria

2Centre for Medical Physics and Biomedical
Engineering, Medical University of Vienna,
Vienna, Austria

Correspondence
Alejandra Valladares, QIMP Team, Centre for
Medical Physics and Biomedical Engineering,
Medical University of Vienna, Waehringer
Guertel 18-20, 1090 Vienna, Austria.
Email:
alejandra.valladares@meduniwien.ac.at

Funding information
H2020 Marie Skłodowska-Curie Actions,
Grant/Award Number: 764458

Abstract
Background: Hybrid imaging (e.g., positron emission tomography [PET]/
computed tomography [CT],PET/magnetic resonance imaging [MRI]) helps one
to visualize and quantify morphological and physiological tumor characteristics
in a single study. The noninvasive characterization of tumor heterogeneity is
essential for grading, treatment planning, and following-up oncological patients.
However, conventional (CONV) image-based parameters, such as tumor diam-
eter, tumor volume, and radiotracer activity uptake, are insufficient to describe
tumor heterogeneities.Here, radiomics shows promise for a better characteriza-
tion of tumors. Nevertheless, the validation of such methods demands imaging
objects capable of reflecting heterogeneities in multi-modality imaging. We pro-
pose a phantom to simulate tumor heterogeneity repeatably in PET,CT,and MRI.
Methods: The phantom consists of three 50-ml plastic tubes filled partially with
acrylic spheres of S1: 1.6 mm, S2: 50%(1.6 mm)/50%(6.3 mm), or S3: 6.3-mm
diameter. The spheres were fixed to the bottom of each tube by a plastic grid,
yielding one sphere free homogeneous region and one heterogeneous (S1,
S2, or S3) region per tube. A 3-tube phantom and its replica were filled with
a fluorodeoxyglucose (18F) solution for test–retest measurements in a PET/CT
Siemens TPTV and a PET/MR Siemens Biograph mMR system. A number of
42 radiomic features (10 first order and 32 texture features) were calculated
for each phantom region and imaging modality. Radiomic features stability was
evaluated through coefficients of variation (COV) across phantoms and scans
for PET,CT,and MRI.Further,the Wilcoxon test was used to assess the capability
of stable features to discriminate the simulated phantom regions.
Results: The different patterns (S1–S3) did present visible heterogeneity in all
imaging modalities. However, only for CT and MRI, a clear visual difference was
present between the different patterns. Across all phantom regions in PET, CT,
and MR images,10,16,and 21 features out of 42 evaluated features in total had
a COV of 10% or less. In particular, CONV, histogram, and gray-level run length
matrix features showed high repeatability for all the phantom regions and imag-
ing modalities. Several of repeatable texture features allowed the image-based
discrimination of the different phantom regions (p < 0.05). However, depending

Abbreviations: CONV, conventional; COV, coefficient of variation; CT, computed tomography; GLCM, gray-level co-occurrence matrix; GLNUGLRLM, gray-level
nonuniformity for run; GLRLM, gray-level run length matrix; GLZLM, gray-level zone length matrix; HGRE, high gray-level run emphasis; HGZE, high gray-level zone
emphasis; HU, Hounsfield units; LGRE, low gray-level run emphasis; LGZE, low gray-level zone emphasis; LRE, long-run emphasis; LRHGE, long-run high gray-level
emphasis; MRI, magnetic resonance imaging; PET, positron emission tomography; RLNU, run length nonuniformity; RP, run percentage; SD, standard deviation;
SRE, short-run emphasis; SRHGE, short-run high gray-level emphasis; SRLGE, short-run low gray-level emphasis; SUV, standardized uptake values; SZE,
short-zone emphasis; SZHGE, short-zone high gray-level emphasis; VOI, volume-of-interest.

This is an open access article under the terms of the Creative Commons Attribution License,which permits use,distribution and reproduction in any medium,provided
the original work is properly cited.
© 2022 The Authors. Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine.

Med Phys. 2022;49:5819–5829. wileyonlinelibrary.com/journal/mp 5819

mailto:alejandra.valladares@meduniwien.ac.at
http://creativecommons.org/licenses/by/4.0/
https://wileyonlinelibrary.com/journal/mp


5820 MULTI-MODAL HETEROGENEOUS PHANTOM

on the feature, different pattern discrimination capabilities were found for the
different imaging modalities.
Conclusion: The proposed phantom appears suitable for simulating hetero-
geneities in PET, CT, and MRI. We demonstrate that it is possible to select
radiomic features for the readout of the phantom. Most of these features had
been shown to be relevant in previous clinical studies.
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1 INTRODUCTION

Tomographic imaging, such as computed tomography
(CT), magnetic resonance imaging (MRI), and positron
emission tomography (PET), are used for the nonin-
vasive characterization of oncological diseases. These
systems are widely used in clinical routine for diagnosis
and follow-up examinations, through the visual assess-
ment of the images and standard measures, such as
tumor size, Hounsfield units (HU), apparent diffusion
coefficient, and standardized uptake values (SUV).1–4

However, these simple measures fall short of the ability
to describe more complex patterns,such as intratumoral
heterogeneities,that are often disease-specific,and thus
crucial for a comprehensive diagnosis.5,6

Lately, radiomic features, in combination with artificial
intelligence techniques, have been widely studied as an
advanced tool for characterizing lesion heterogeneities.
These approaches have proven advantageous in
CT, MRI, and PET applications, for improved patient
prognosis, staging, and predicting patient survival
and recurrence of the disease.7–10 Moreover, the
combination of radiomic information from anatomical
and functional imaging modalities, such as gained
by PET/CT and PET/MR, has shown promising
results toward advanced disease characterization
and improved patient management.11–13

Nonetheless, radiomic features are more complex
than standard measures, and their values are strongly
affected by variations in acquisition protocols, post-
processing steps, and feature extraction methods.14–19

Therefore, results from individual studies are rarely com-
parable, challenging the generalization of findings and
the wider implementation of these approaches.20–23

Related intra- and inter-site variations in radiomic anal-
ysis can be addressed through phantom studies.24

However, developing phantoms to reproduce tumor
heterogeneity for radiomic research is a challenge,
particularly for multi-modality imaging.

In contrast, the simulation of tumor heterogeneities for
stand-alone CT imaging is straightforward because of
the wide range of suitable phantom materials.25 Typi-
cally, solids are used because of their stable temporal
properties and ease of use, involving simple manufac-
turing processes and handling,making them suitable for

multicenter studies and as reference objects.18,26 How-
ever,most solid phantoms are not visible in standard MRI
sequences. Visibility in PET images would require inte-
grating long-lived positron emitters,such as 68Ga/68Ge,
resulting in high production costs and storage, handling,
and transportation restrictions.

In the case of MRI, phantoms simulating heteroge-
neous patterns have been built using different materials
(e.g., porous foams or polystyrene spheres) embed-
ded in agarose solutions.27–31 Although suitable for MR
imaging in a single-center study, such approaches are
difficult to extend to multicenter trials mainly due to the
specific storage conditions required for the stability of
the agar solutions. Furthermore, their use in PET is lim-
ited as the half -life of standard PET isotopes (e.g., 18F
or 68Ga) is short compared to the required phantom
preparation times (e.g., stabilization of the agar gels).

In PET imaging, compartments filled with different
isotope concentrations have been used to assess fea-
ture variations. Such phantom types are, in principle,
suitable also for multicenter studies.14,19,32–34 However,
the filling requires practical experience and preparing
different radioactive stock solutions that may hamper
reproducibility in practice. Further, to use them for CT or
MRI would require the additional use of respective con-
trast agents in different concentrations, which results in
highly complex preparation procedures.

In short, a couple of heterogeneity phantoms exist
for the individual imaging modalities. However, to date,
there is no report on their applicability in the con-
text of cross-modality imaging, such as with PET/CT
and PET/MRI.25 Here, we propose a simple phantom
concept to simulate heterogeneities in PET/CT and
PET/MRI,which does not require the preparation of mul-
tiple activity/contrast agent concentrations and the filling
of various compartments in a single phantom.

2 MATERIALS AND METHODS

2.1 Phantom

The phantom comprises three conical tubes. Each tube
consists of a homogeneous region containing only the
radioactive solution (H) and a heterogeneous region
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F IGURE 1 (a) A 3-tube phantom filled partially with S1: 1.6-mm diameter spheres, S2: 50% each of 1.6 and 6.3 mm, and S3: 6.3-mm
diameter spheres. H represents the homogeneous region. (b) From top to bottom: computed tomography (CT), positron emission tomography
(PET), and magnetic resonance (MR) images of the phantom. (c) Examples of cancers that are represented with the proposed model; images
adapted from previous reports35–37

established by acrylic spheres surrounded by a radioac-
tive solution (S). For this, the tubes (d = 31 mm,
h = 110 mm) were half -filled with different sizes of
acrylic spheres to recreate three different patterns (S1:
1.6 mm; S2: 50% each of 1.6 and 6.3 mm, and S3: 6.3-
mm diameter); see Figure 1. The homogeneous area
was separated from the sphere area using a 3D-printed
plastic grid. All tubes were filled with a fluorodeoxyglu-
cose (18F) aqueous solution with 20-kBq/ml activity
concentration at the PET acquisition start time.

2.2 Measurements

We built the 3-tube phantom twice (P1, P2) and evalu-
ated differences in the radiomic features in a test–retest
scenario to test the radiomic features’ repeatability for
our proposed phantom concept.Two consecutive scans,
with physical repositioning of the phantom between
them,were performed on a Biograph TPTV PET/CT sys-
tem (Siemens Healthineers, Germany) and a Siemens
Biograph mMR PET/MR system for PET/CT and MRI
measurements, respectively.Both of the phantoms were

centered in the field of view of the systems.For the PET
and CT measurements, a standard PET/CT oncological
protocol was used.

Specifically, the PET measurements were performed
for 10-min acquisition time and a single-bed position;
reconstructed using CT-based attenuation and scat-
ter correction, matrix size of 336 × 336, voxel size of
∼1.0 × 1.0 × 1.0 mm3, and a 5-mm Gaussian filter. The
CT images were acquired at 120 kVp, 152 mAs with a
slice thickness of 1 mm, matrix size of 512 × 512 pix-
els, and voxel size equal to 0.6 × 0.6 × 1.0 mm3. MRI
scans were performed using a body coil. T1-weighted
MR images were acquired using an inversion recovery
sequence with a matrix size = 256 × 256, repetition
time = 1500 ms, echo time = 2 ms, TI = 900 ms, num-
ber of averages = 1, pixel bandwidth = 250 Hz/px, flip
angle = 8◦, field of view = 262 × 262 mm2, slice thick-
ness = 1 mm, and no interslice gap. T2-weighted MR
images were acquired with turbo spin-echo sequence,
matrix size = 256 × 208, repetition time = 9630 ms,
echo time = 92 ms, number of averages = 1, pixel
bandwidth = 200 Hz/px, flip angle = 120◦, field of
view = 173 × 214 mm2, slice thickness = 0.8 mm, and
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1.2-mm interslice gap. All images were stored in 16-bit
DICOM format.

2.3 Feature extraction

Spherical volumes-of -interests (VOI) of 4.6 ml were
placed centrally in the homogeneous and heteroge-
neous regions of each PET, CT, and MR image volume.
Conventional (CONV) measures such as SUVmean and
average CT-HU were extracted from volumes of interest
placed on PET and CT images, respectively. Further-
more, from all phantom regions and imaging modalities,
42 radiomic features (10 first order and 32 texture fea-
tures) were calculated using the open-source software
LIFEx.38 The same VOIs shape and size were used. A
fixed bin width and 2-mm spatial resampling was applied
for all modalities. The parameters for feature extrac-
tion were selected based on previous recommendations
from patient and phantom studies.15,36,39 Matrices and
extracted features are listed in Table S1.

2.4 Statistical analysis

2.4.1 Repeatability of radiomic features

We used the coefficient of variation (COV), which is
the ratio of the standard deviation (SD) to the mean
(Equation 1), expressed as a percentage to assess the
repeatability of the radiomic features for each imaging
modality:

COV =
𝜎

𝜇
(1)

As test–retest measurements are supposed to mea-
sure the same parameter over time, we calculated a
single COV by pooling the data across phantoms and
scans. We considered a COV of 10% or less an indi-
cator of high repeatability of a specific radiomic feature
and high reproducibility of the phantom itself.15

2.4.2 Pattern discrimination

For each imaging modality, we used Wilcoxon’s tests
to evaluate the ability of the radiomic features to (1)
separate homogeneous from heterogeneous regions
and (2) discriminate among the three heterogeneous
patterns (S1, S2, and S3). We selected the repeatable
features (COV < 10%) and compared their values for
pairs of phantom regions. We ran the test at a 5%
level of significance. In this part of the analysis, we
considered only textural features.

Different characteristics of a lesion are described
through PET, CT, and MRI; therefore, we analyzed each

imaging modality separately. Individual feature values
from each modality were normalized to the average over
the homogeneous regions from the two phantoms and
scans. Normalized feature values were represented as
Boxplots for the H region and individual points for the S
regions.

3 RESULTS

3.1 Conventional measures and visual
assessment

The average SUVmean (±SD) for the homogeneous
regions across the phantoms and scans was 4.5 (±0.1),
whereas for the heterogeneous regions, SUVmean for
Phantom 1 were 1.7 (0.1), 1.6 (0.1), and 1.8 (0.1)
for S1, S2, and S3, respectively. Similar values were
obtained for Phantom 2 and test–retest, as shown in
Table 1. SUVmean in all the heterogeneous regions
was decreased by a factor of 3 compared to the
homogeneous region by replacing the activity with the
acrylic spheres. Mean CT-HU across the homogeneous
regions was 11 HU and varied between 78 and 88 HU
for the heterogeneous regions (Table 1). Unlike in PET
images, the simulated texture patterns were easily dis-
tinguished by the human eye in CT and MR images
(Figure 1).

3.2 Repeatability of radiomic features

Of the 42 evaluated features in PET, CT, and MRI, 10,
16, and 21 presented with a COV ≤ 10%, respectively,
for all phantom regions (Figure 2). CONV, histogram,
and gray-level run length matrix features showed high
repeatability for all the phantom regions and imag-
ing modalities. GLCM (gray-level co-occurrence matrix)
features from CT and MRI also had low COVs, espe-
cially for the three S regions. GLZLM (gray-level zone
length matrix) features had low COVs for all phantom
regions only in MRI. Overall, MR images had the high-
est number of stable radiomic features for the proposed
phantom.

Further, the number of repeatable features differed
across phantom regions, without a specific tendency
related to the different sphere sizes. Only for PET
images, S2 presented a considerably higher number
of repeatable features (COV ≤ 10%) than the other
phantom regions.

3.3 Pattern discrimination

Figure 3 presents the distribution of the normal-
ized values for features with COV ≤ 10% in each
imaging modality. Tables 2–4 contain Wilcoxon’s test
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TABLE 1 SUVmean (±SD) and HU values (±SD) across phantoms (P1 and P2) and test–retest scans

Modality Scan Parameter
Homogeneous
region (H)

Phantom 1 (P1) Phantom 2 (P2)
S1 S2 S3 S1 S2 S3

PET Test SUVmean 4.5 (0.1) 1.7 (0.1) 1.6 (0.1) 1.8 (0.1) 1.7 (0.1) 1.5 (0.1) 1.8 (0.1)

Retest SUVmean 4.5 (0.1) 1.7 (0.1) 1.6 (0.1) 1.8 (0.1) 1.7 (0.1) 1.5 (0.1) 1.8 (0.1)

CT Test HU 11.1 (3.8) 83.3 (21.7) 85.1 (28.1) 78.6 (42.1) 87.3 (23.9) 85.5 (27.3) 80.2 (42.3)

Retest HU 11.1 (3.5) 82.8 (24.5) 84.4 (28.2) 77.9 (42.2) 87.8 (24.2) 87.7 (26.2) 79.9 (42.9)

Abbreviations: CT, computed tomography; HU, Hounsfield units; PET, positron emission tomography.

results applied among paired phantom regions in PET,
CT, and MR images. Most of the PET-based radiomic
features that presented a COV < 10% in the test–
retest scans distinguished S1, S2, and S3 (p = 0.029)
and discriminated them from the homogeneous region
(p = 0.001). For CT, only two features were significantly
different for all the paired regions. Most of the other
CT radiomic features distinguished S from H regions
(p= 0.01) and S3 from S1 and S2 (p= 0.029).No signifi-
cant difference was found between S1 and S2 (p> 0.05).
Six of the MRI features presented significant differences
among all the phantom regions. Discrimination of S1,
S2, and S3 was variable across the rest of MRI-based
features.

4 DISCUSSION

We developed a simple phantom for simulating differ-
ent textures in dual-modality images involving PET, CT,
and MRI (Figure 1). The phantom consisted of three
plastic tubes filled with acrylic spheres embedded in a
radioactive solution. By varying the acrylic sphere sizes,
we generated three different image patterns (S1–S3).
Two phantoms were built and measured in a test–retest
scenario. Specific radiomic features yielded low inter-
phantom and inter-scan variability and good capability
to distinguish among phantom regions, thus supporting
the ability of the proposed phantom design to mimic
heterogeneities in PET, CT, and MRI or combinations
thereof.

The intent to build a phantom suitable for PET, CT,
and MR imaging rests upon a practical issue. Scientific
radiomic studies in nuclear medicine imaging usually
suffer from a very small number of datasets,55,56 limiting
the quality of these studies and their clinical relevance.
Data pooling can benefit from harmonizing imaging
studies and the standardization of imaging readouts for
radiomic studies. Imaging can be harmonized through
phantom studies by the on-site physicist or the tech-
nologist’s team. The phantom concept proposed here
is a simple and easy-to-adopt approach to assessing
heterogeneity in multi-modality imaging. Compared to
existing multi-modality phantoms,25 our model does not
require filling multiple compartments to create homo-
geneous and heterogeneous patterns in PET/MRI and

PET/CT, which helps to reduce the effect of variation
in phantom preparation on the result of harmonization
efforts. Moreover, the filling/refilling of the phantom is
achieved easily with a long needle syringe. It also does
not require specific conditions for storage, for exam-
ple, temperature, and humidity, which is beneficial for
long-term and multicenter studies.

For the used phantom design in this study, we found
a set of repeatable radiomic features (COV ≤ 10%)
across the two phantoms and scans for each imag-
ing modality. However, as observed in Figure 2, the
repeatability of those features was variable across the
phantom regions. In general, features from heteroge-
neous regions were somewhat more stable than those
from homogeneous regions. This is in-line with a pre-
vious study reporting the dependence of PET-based
features repeatability on the recreated heterogeneities,
object sizes, and uptake ratios; the authors suggested
that noise reduction, for example, by image smooth-
ing, may lead to higher repeatability for homogeneous
regions.49 However, in our study, no image noise reduc-
tion was applied to avoid a potential loss of textural
information from the heterogeneous regions. The appli-
cation of noise reduction methods needs to be further
addressed for radiomic analysis in multi-modality imag-
ing due to the varying noise sources across PET, CT,
and MRI.50 Overall, texture features were more variable
than first-order features (e.g., SUV, HU, and histogram).
This can be explained to some extent by the effects
of rebinning and rescaling parameters used during the
extraction of the features on the repeatability of texture
indexes, as reported in phantom and patient radiomic
studies in multiple imaging modalities.17

Most of the repeatable radiomic features
(COV < 10%) obtained for the proposed phantom were
able to discriminate homogeneous and heterogeneous
patterns (p = 0.01) while presenting smaller differ-
ences among heterogeneous patterns (Tables 2–4).
One reason is that there are no subtle heterogeneity
differences among the simulated patterns besides the
diverse sphere sizes. Imaging objects showing a wider
range of SUV values, CT, and MR contrasts may result
in larger heterogeneity and better discrimination by
radiomic texture indexes.30,51,52 However, already this
simple concept is able to mimic specific cancer types
(Figure 1).



5824 MULTI-MODAL HETEROGENEOUS PHANTOM

F IGURE 2 Coefficient of variation (COV) (%) per radiomic feature across phantoms and scans for positron emission tomography (PET)
(top), computed tomography (CT) (middle), and magnetic resonance imaging (MRI) (bottom). Dashed lines indicate COV ≤ 10%.
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F IGURE 3 Feature values for positron emission tomography (PET) (top), computed tomography (CT) (middle), and magnetic resonance
imaging (MRI) (bottom). The figure only includes those features with coefficient of variation (COV) ≤10%. Boxplots indicate the distribution of
the values for homogeneous regions across phantoms and scans. The individual values (n = 4 from test/retest from both replicates) for S1, S2,
and S3 are superposed on each boxplot.

We expected that the arrangement of different sphere
sizes in the S2 would lead to a more heterogeneous
pattern than the ones created with single sphere sizes
in S1 and S3 regions, which can be seen as the same
pattern but at different scales.Thus,the ability to discrim-
inate S2 from S1 and S3 was expected to be higher than
between S1 and S3. Nonetheless, this assumption was
not supported by the results. Instead, the variability of
pattern discrimination across the S regions in the three
imaging modalities supports that subtle heterogeneity
differences and scaling of the same heterogeneous

object influence pattern discrimination through radiomic
features.49 The differences seen between S1 and S3
might be caused by partial volume effects, which have
a stronger impact on smaller objects and the differ-
ent sizes of connected homogeneous regions when
using different sphere sizes in combination with fixed
voxel dimensions. Further, the pattern S2 is a mixture
of the patterns in S1 and S3, and thus, it seems rea-
sonable that feature values extracted from S2 are in
a similar range as feature values extracted from S1
and S3.
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TABLE 2 p-Values of Wilcoxon’s test for positron emission tomography (PET) texture indices among paired phantom regions

Feature matrix Feature name S1 vs. H S2 vs. H S3 vs. H S1 vs. S2 S1 vs. S3 S2 vs. S3

Conventional SUVmeana 0.001 0.001 0.001 0.029 0.029 0.029

SUVmaxa 0.001 0.001 0.001 0.200 0.114 0.029

GLCM Homogeneitya 0.042 0.030 0.316 0.029 0.029 0.486

GLRLM LGREa 0.001 0.001 0.001 0.029 0.029 0.029

HGREa 0.001 0.001 0.001 0.029 0.029 0.029

GLNUa 0.379 0.058 0.521 0.114 0.114 0.029

GLZLM LGZEa 0.001 0.001 0.001 0.029 0.029 0.029

Note: “H” corresponds to the homogeneous region. Gray-colored cells correspond to p > 0.05, no significant difference.
Abbreviations: GLCM, gray-level co-occurrence matrix; GLNU, gray-level nonuniformity; GLRLM, gray-level run length matrix; GLZLM, gray-level zone length matrix;
HGRE, high gray-level run emphasis; LGRE, low gray-level run emphasis; LGZE, low gray-level zone emphasis.
aPET features previously reported on clinical trials as robust to the number of gray levels for intensity discretization, suggested for future studies on tumor response
characterization or showing some reliability to build multi-parametric models.41–43

TABLE 3 p-Values of Wilcoxon’s test for computed tomography (CT) texture indices among paired phantom regions

Feature matrix Feature name S1 vs. H S2 vs. H S3 vs. H S1 vs. S2 S1 vs. S3 S2 vs. S3

Histogram Energy 0.001 0.001 0.001 0.029 0.029 0.029

GLCM Homogeneitya 0.001 0.001 0.001 0.057 0.029 0.029

GLRLM SRE 0.001 0.001 0.001 0.114 0.029 0.029

LGRE 0.001 0.001 0.001 0.829 0.029 0.029

HGREa 0.001 0.001 0.001 0.686 0.029 0.029

SRLGE 0.001 0.001 0.001 0.114 0.029 0.029

SRHGE 0.001 0.001 0.001 0.114 0.029 0.029

GLNUa 0.001 0.001 0.001 0.029 0.029 0.029

RP 0.001 0.001 0.001 0.057 0.029 0.029

GLZLM LGZEa 0.001 0.001 0.001 1 0.971 0.286

HGZEa 0.001 0.001 0.001 1 0.343 0.029

Note: “H” corresponds to the homogeneous region. Gray-colored cells correspond to p > 0.05.
Abbreviations: GLCM, gray-level co-occurrence matrix; GLNU, gray-level nonuniformity; GLRLM, gray-level run length matrix; GLZLM, gray-level zone length matrix;
HGRE, high gray-level run emphasis; HGZE, high gray-level zone emphasis; LGRE, low gray-level run emphasis; LGZE, low gray-level zone emphasis; RP, run
percentage; SRE, short-run emphasis; SRLGE, short-run low gray-level emphasis; SRHGE, short-run high gray-level emphasis.
aCT features previously reported on clinical trials as reproducible radiomic features under a wide range of imaging parameter settings or potentially reliable to build
prognosis models.42,44,45.

We also found that the same feature can present
different pattern discrimination capabilities for the differ-
ent imaging modalities. For example, unlike in PET, the
gray-level nonuniformity feature from CT and MRI was
significantly different across all the paired regions.More-
over, more MRI features helped discriminate among the
simulated patterns compared to features extracted from
PET and CT. These results may be linked to the dif-
ferences in the spatial resolution of the systems and
the phantom composition. First, images with high spa-
tial resolution, as is the case for MRI and CT, allow a
better classification of texture patterns.30 Second, our
phantom was composed only of acrylic spheres and
water, thus, yielding a higher image contrast in MR
than in PET and CT. It indicates a need to consider
the appearance of the material under each imaging
modality during the phantom design to produce further
enhanced heterogeneous patterns in different imaging
systems.

PET images of the three recreated patterns pre-
sented a similar visual appearance attributed to the
relatively high noise level and a low spatial resolution of
the PET system compared to CT and MRI (Figure 1b).
Nevertheless, some stable PET radiomic features had
good discrimination capability (p < 0.05) among all the
phantom regions. This outcome supports the statement
that radiomic features may describe patterns in images
that are not visible to the human eye.24

It is worth noting that some of the features that per-
formed well in discriminating the phantom regions have
been reported to help in differentiating homogeneous
from heterogeneous body tissues and classifying het-
erogeneous lesions in patient studies (Tables 2–4). For
example, Orlhac et al.41 reported SUVmax, homogene-
ity, and low gray-level zone emphasis PET features
obtained by absolute resampling to be significantly dif-
ferent between tumor and healthy tissue in non-small
cell lung cancer patients. These features were also
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TABLE 4 p-Values of Wilcoxon’s test for magnetic resonance imaging (MRI) texture indices among paired phantom regions

Feature matrix Feature name S1 vs. H S2 vs. H S3 vs. H S1 vs. S2 S1 vs. S3 S2 vs. S3

Histogram Entropy_log10 0.001 0.001 0.001 0.029 0.029 0.029

Entropy_log2 0.001 0.001 0.001 0.029 0.029 0.029

Energya 0.054 0.001 0.001 0.029 0.029 0.029

GLCM Homogeneitya 0.001 0.001 0.001 0.029 0.029 0.029

Entropy_log10a 0.001 0.098 0.001 0.029 0.029 0.029

Entropy_log2 0.001 0.098 0.001 0.029 0.029 0.029

GLRLM SRE 0.001 0.001 0.751 0.029 0.029 0.029

LRE 0.001 0.001 0.663 0.029 0.029 0.029

HGREa 0.019 0.001 0.001 0.029 0.029 0.029

SRHGEa 0.001 0.001 0.001 0.029 0.029 0.886

LRHGEa 0.001 0.001 0.002 0.057 0.029 0.029

GLNUa 0.012 0.001 0.001 0.029 0.029 0.029

RLNUa 0.001 0.004 0.841 0.343 0.029 0.029

RP 0.001 0.001 0.751 0.029 0.029 0.029

GLZLM SZEa 0.001 0.001 0.001 0.057 0.029 0.343

HGZEa 0.001 0.001 0.001 0.029 0.029 0.029

SZHGEa 0.001 0.001 0.001 0.114 0.029 0.886

Note: “H” corresponds to the homogeneous region. Gray-colored cells correspond to p > 0.05.
Abbreviations: GLCM, gray-level co-occurrence matrix; GLNU, gray-level nonuniformity; GLRLM, gray-level run length matrix; GLZLM, gray-level zone length matrix;
HGRE, high gray-level run emphasis; HGZE, high gray-level zone emphasis; LRE, long-run emphasis; LRHGE, long-run high gray-level emphasis; RLNU, run length
nonuniformity; RP, run percentage; SRE, short-run emphasis; SRHGE, short-run high gray-level emphasis; SZE, short-zone emphasis; SZHGE, short-zone high gray-
level emphasis.
aFeatures reported as robust to segmentation methods or helpful on building prognosis models in previous clinical MRI studies.43,46–48

helpful to discriminate between adenocarcinoma and
squamous cell carcinoma. Likewise, in a similar study,
the values for those features presented significant dif-
ferences between homogeneous and heterogeneous
breast lesions.54 In an MRI patient study, the authors
found, for example, energy and entropy helpful within a
machine learning–based classification system for pro-
viding a prediction of the methylation status of a strong
predictive marker for therapy success in brain tumors,
specifically glioblastomas.48

There are still some limitations with the proposed
model; for example, to improve further usability in mul-
ticenter trials, the phantom could be modified to fit
existing standardized imaging phantoms, such as the
National Electrical Manufacturers Association IQ phan-
tom. 3D printing could be used to make the phantom
compatible with such standardized image quality phan-
toms or optimize the phantom (e.g., other geometries)
to be also helpful to evaluate shape features. We
also suggest exploring MRI signal generating mate-
rials for future studies.25 In addition, future studies
need to systematically determine an appropriate com-
promise among the spatial resolutions of the imaging
systems, type of recreated patterns, and the used
phantom materials. This needs to be done in view
of the different clinical scenarios to provide results
as close as possible to those obtained from patient
studies due to the differences seen in feature stabili-

ties between the different heterogeneities and imaging
methods.

For the present study, all acquisitions were per-
formed on a 3T MRI as part of commonly used
hybrid imaging systems in nuclear medicine. How-
ever, the field strength influences achievable resolution
and noise properties; thus, we expect variations for
specific features across MRI systems,53 which would
need to be addressed in future studies for a broad
implementation of MRI-based radiomic studies across
centers.

5 CONCLUSION

We propose a simple phantom consisting of acrylic
spheres embedded in a radioactive solution to simulate
tumor heterogeneities in PET, CT, MRI studies, or com-
binations thereof. We demonstrated that it is possible
to select radiomic features relevant in previous clinical
studies for the readout of the phantom.
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