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Abstract: The reduction of substrate temperature is important in view of the integration of III–V
materials with a Si platform. Here, we show the way to significantly decrease substrate temperature
by introducing a procedure to create nanoscale holes in the native-SiOx layer on Si(111) substrate
via In-induced drilling. Using the fabricated template, we successfully grew self-catalyzed GaAs
nanowires by molecular-beam epitaxy. Energy-dispersive X-ray analysis reveals no indium atoms
inside the nanowires. This unambiguously manifests that the procedure proposed can be used for the
growth of ultra-pure GaAs nanowires.
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1. Introduction

Nowadays III–V semiconductor nanowires (NWs) attract increasing attention due to recent
advances made in their use as building elements for various electronic, optical, and biological
applications [1–4]. Due to their ability to accumulate strain in two dimensions [5–7], NWs geometry
is ideal for the monolithic integration of semiconductor materials with different lattice-mismatched
substrates, which is important for achieving high-performance optoelectronic devices based on Si
technology. A commonly used NWs fabrication technique relies on the Au-catalytic mechanism
generally referred to as vapor-liquid-solid (VLS) growth [8,9]. However, Au is known to be a detrimental
impurity in Si, limiting the integration of those nano-objects with a Si platform [10]. Moreover, the use of
Au as a catalyst can lead to uncontrolled doping of III–V NWs [11,12]. On the other hand, successful
attempts to grow self-catalyzed GaAs NWs on silicon [13–15] are very promising. However, GaAs
NWs arrays synthesized on an unprepared Si surface are usually not homogeneous in terms of
the height and diameter of NWs, which is critical for many applications. Plissard et al. [16] and
Reznik et al. [17] have shown that the use of Si substrates with a SiOx covering layer and electron-beam
lithography technique for forming holes in SiOx allows one to synthesize regular and homogeneous
arrays of self-catalyzed GaAs NWs on a substrate surface. By changing the size and the distance
between holes in SiOx, it is possible to control the morphological parameters of the NWs array,
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such as the density and the diameter of NWs. The synthesis of regular and homogeneous NWs
arrays with controlled morphological properties is necessary for numerous applications. However,
the high cost and time-consumption of the electron-beam lithography processes encourage researchers
to find other ways to synthesize homogeneous and separated NWs. It was demonstrated in the
work of I Morral et al. [18] that gallium adatoms interact with SiO2 forming sparse nanocraters on
preexisting subnanometer pinholes. Küpers et al. [19] introduced a two-step growth method, where
Ga droplets are pre-deposited on SiOx/Si substrates to form pinholes in SiOx for subsequent NWs
synthesis. In order to further improve the homogeneity and controllability of GaAs NWs density
and diameters, Tauchnitz et al. [20] developed a three-step in-situ surface modification procedure for
non-patterned native-SiOx/Si(111) substrates which decouples the Ga-induced hole formation in SiOx

from the following Ga-assisted growth of GaAs NWs. Koivusalo et al. [21] added two more steps
to the technology described in [20]: crystallization of Ga droplets into GaAs by As2 exposure and
spontaneous oxidation of the Si surface by air exposure outside the MBE setup. But in all these cases,
substrate temperature reached 660–780 ◦C during the procedure before the initiation of NWs MBE
growth. However, reduction of the maximum temperature of the NWs growth process is critical for
the integration of III–V materials with silicon technology.

Here, we present a novel approach to low-temperature In-induced holes formation in SiOx for
GaAs NWs MBE growth. The temperature at which indium adatoms form holes in SiOx and evaporate
from the surface is significantly lower than for gallium ones. Moreover, indium droplets do not
etch silicon and do not interact with it [22]. The above makes it possible to decrease the substrate
preparation temperature to a lower level than typical GaAs NWs MBE growth temperature.

2. Materials and Methods

GaAs NWs were grown on non-patterned native-SiOx/Si(111) substrates using MBE setup Riber
Compact 21 equipped with Ga, In effusion cells and a valved cracker source for the supply of As4.
Firstly, the substrate was outgassed at 350 ◦C for 1 h in an ultrahigh vacuum and then transferred into
the growth chamber with no vacuum brake. Afterwards, the substrate was heated to a temperature of
400 ◦C, and after temperature stabilization, the In source shutter was opened for 20 s to form In droplet
on the substrate surface. The In flux was set at 0.4 ML/s according to previous calibrations. On the next
step the substrate was kept at the same temperature for 15 min for the etching of the holes in SiOx

induced by indium droplets. In order to stop the etching of the holes, the In droplets were crystallized
into InAs by 2 min As4 exposure. It was established previously that under similar growth conditions
InAs nanoscale islands may be grown on Si(100) surface [23–25]. After that the substrate was annealed
for 5 min at a temperature of 550 ◦C to evaporate the InAs completely from the substrate surface. In the
following step aimed at the growth of the NWs the substrate temperature was increased to 600 ◦C for
Ga deposition on the surface during 5 s with a 15 s pause to enhance Ga adatoms diffusion towards the
holes and to form droplets inside them. Finally, GaAs NWs growth was performed under Ga-rich
conditions by opening Ga and As shutters for 10 min. The gallium flux was constant throughout the
experiment and was set at 1 ML/s according to the previous calibrations.

In order to evaluate the parameters of the holes that were formed in SiOx layer, firstly, only In was
deposited with following etching, crystallization, and evaporation. The surface morphology of the
native-SiOx/Si substrate with holes after etching was studied using atomic force microscopy (AFM,
BioScope Catalyst, Bruker, Santa Barbara, CA, USA). After NWs growth, the morphology of the grown
NWs was studied by scanning electron microscopy (SEM, Supra 25, Carl Zeiss, Oberkochen, Germany).
Microstructure and chemical composition of the grown NWs were investigated by transmission electron
microscopy (TEM, Libra 200FE, Carl Zeiss, Oberkochen, Germany) with energy-dispersive X-ray (EDX)
spectroscopy techniques (X-Max 80, Oxford Ins., High Wycombe, UK).
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3. Results and Discussion

At the preliminary stage of the growth, the holes in the SiOx layer were unambiguously formed
by In droplets etching. According to [26–29], a part of the deposited In adatoms on SiOx/Si substrate is
oxidized because of oxygen migration from the SiOx overlayer. At this point, In oxides contribute to
droplet self-organization by tuning In diffusion on the surface. During the following thermal annealing
In oxidation plays the key role as it locally consumes the SiOx overlayer and drills nanoholes into
SiOx until reaching the Si substrate. AFM profiles of the substrates surfaces (1 × 1 µm2) before and
after etching, crystallization and evaporation of InAs from the surface are shown in Figure 1a,b. It is
obvious that there are no holes in native-SiOx which are clearly resolved after In pre-treatment. It is
important to note that the holes formed are uniform in depth ~0.6 nm. Based on the measurement
results, the average surface density of the holes amounts to 1.9 × 1010 cm−2. Figure 1c shows the
distribution of holes in lateral size. The difference in the sizes of the holes can be related to the different
sizes of In droplets formed on the substrate surface and their evolution during annealing. To conclude
this stage, the described substrate preparation method allows one to form holes in native-SiOx layers
on Si(111) substrates.
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Figure 1. Typical AFM images of SiOx/Si(111) substrate surface: (a) initial and (b) after In droplets
formation, etching, crystallization and evaporation of In from the surface. The scale bar corresponds to
250 nm. The insertion shows AFM image of a single hole in SiOx, which is approximately 35 nm in
diameter (scale bar in the insertion corresponds to 50 nm); (c) Size distribution of holes in the SiOx

layer diagram.

Figure 2 shows typical SEM images of GaAs NWs grown on a native-SiOx/Si (111) substrate under
the same growth conditions with and without In pre-treatment. As can be seen from the images, GaAs
NWs without In pre-treatment follow different crystallographic directions and are inhomogeneous
in morphological parameters. In turn, after In pre-treatment the NWs formed predominantly in the
<111> direction. This means that NWs synthesis occurs epitaxially in the holes in SiOx/Si(111) surface.
The average length of NWs is 3.5 µm, whereas the average surface density of NWs is about 2 × 10−6 cm−2.
The difference in the densities of holes in SiOx and grown NWs may indicate that the NWs growth was
initiated not in all of the holes. Indeed, most of the NWs have a diameter bigger than 50 nm, which is
typical for Ga-catalyzed NWs growth [13]. According to the AFM measurements, only a small fraction
of the holes exhibits lateral sizes bigger than 50 nm, that is why the NWs surface density is much
smaller than the surface density of the holes. It should be noted that the diameter of the NWs bottom
is not absolutely homogeneous. As the length increases to 500 nm, the NWs diameter decreases from
85 nm to 55 nm and then remains constant up to the top of the NWs. It turned out that, similar to the
MBE growth using etching by Ga droplets [19], other rather flat objects were formed on the substrate
surface, in addition to GaAs NWs.
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Figure 2. Typical SEM images of GaAs NWs grown on SiOx/Si(111) substrate: (a) without In pre-treatment;
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For studying structural properties of the NWs, they were transferred from the substrate onto the
carbon mesh. As shown in Figure 3, the structure of the NWs is predominantly cubic, which is typical
for self-catalyzed GaAs NWs growth [13].
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EDX analysis was carried out on several NWs. Figure 4 shows a typical EDX spectrum of GaAs
NW. According to [30], peaks corresponding to In are observed in the EDX spectrum in the range
from 3 to 4 keV. As can be seen from the figure, peaks corresponding to In are not observed in the
EDX spectrum of grown NWs. Thus, indium was not detected along the entire length of NWs, which
indicates its complete evaporation from the substrate surface before the GaAs NWs growth.
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To conclude, we have shown the way to significantly decrease substrate temperature by introducing
a procedure to create nanoscale holes in a native-SiOx layer on a Si(111) substrate via In-induced
drilling. Using the fabricated template, we have successfully grown self-catalyzed GaAs nanowires by
molecular-beam epitaxy. The fact that NWs formed in the <111> direction indicates that In droplets
perfectly etch SiOx down to the silicon surface, and hence the NWs growth occurs epitaxially
directly in the holes. Energy-dispersive X-ray analysis reveals no indium atoms inside the NWs.
This unambiguously manifests that the procedure proposed can be used for the growth of ultra-pure
GaAs NWs.
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