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T1DM (type 1 diabetes mellitus), which results from the irreversible elimination of

beta-cells mediated by autoreactive T cells, is defined as an autoimmune disease. It

is widely accepted that T1DM is caused by a combination of genetic and environmental

factors, but the precise underlying molecular mechanisms are still unknown. To date,

more than 50 genetic risk regions contributing to the pathogenesis of T1DM have been

identified by GWAS (genome-wide association studies). Notably, more than 60% of the

identified candidate genes are expressed in islets and beta-cells, which makes it plausible

that these genes act at the beta-cell level and play a key role in the pathogenesis of

T1DM. In this review, we focus on the current status of candidate genes that act at the

beta-cell level by regulating the innate immune response and antiviral activity, affecting

susceptibility to proapoptotic stimuli and influencing the pancreatic beta-cell phenotype.
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INTRODUCTION

The autoimmune disease T1DM (type 1 diabetes mellitus) is characterized by the selective
destruction of insulin-producing pancreatic beta-cells by autoreactive T cells, absolute insulin
deficiency and subsequent hyperglycemia (1). Both genetic and environmental factors are
important in the pathogenesis of T1DM; specifically, environmental factors, such as viral infection
and the gut microbiome, may act as triggers that induce the onset of diabetes in individuals with
a genetically susceptible background (2–6). However, the precise pathogenic mechanisms have not
been established. A more complete understanding of the roles and consequences of risk-associated
variants would be beneficial for applying targeted genomic approaches to prevent T1DM.

GWAS (genome-wide association studies) have identified more than 50 genetic risk regions
associated with T1DM, but most of these regions comprise several genes, and the risk-conferring
variants and genes remain to be defined (7, 8). Of note, more than 60% of these candidate genes are
expressed in islets and beta-cells (Table 1), indicating that their roles in the onset and development
of T1DMmay be at the beta-cell level (13).

The results of many studies imply that these candidate genes act at the beta-cell level and
contribute to the pathogenesis of T1DM mainly by regulating the innate immune response
and antiviral activity, affecting susceptibility to proapoptotic stimuli and influencing pancreatic
beta-cell phenotypes (Figure 1) (8, 14). Existing evidence shows that innate immunity is
involved in the early induction and amplification of the autoimmune process in pancreatic
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islets (15, 16). Of all the innate immune responses, the type 1 IFN
(interferon) signaling pathway plays a particularly important role
in the pathogenesis of T1DM (17). Proinflammatory cytokines
and chemokines can suppress beta-cell function, evoke apoptosis
and maintain insulitis, which causes the progressive loss of beta-
cells (15). Pancreatic beta-cell apoptosis has been viewed as
the final and most critical step in the progression of T1DM.
If the dying beta-cells are not efficiently eliminated, they
become the most significant source of autoantigens, which can
worsen insulitis and autoimmunity (18, 19). Beta-cell phenotypes
are mainly related to residual function, mass, neogenesis,
proliferation and so-called beta-cell suicide (1). Intriguingly,
patients with long-standing T1DM have residual insulin-positive
beta-cells and exhibit endogenous insulin production (20, 21).
Therefore, it will be beneficial to reveal the mechanisms of
specific candidate genes that act at the beta-cell level to
induce beta-cell dysfunction or death in order to identify new
therapeutic targets to treat and cure T1DM.

This review will briefly introduce innate immunity, beta-cell
apoptosis and beta-cell phenotypes in patients with T1DM. We
focus on the relationship between innate immunity, beta-cell
apoptosis, beta-cell phenotypes and T1DM. Later in the review,
previous and the most recent findings on T1DM candidate genes
acting at the beta-cell level are discussed.

INNATE IMMUNITY AND T1DM

As the front line of the immune system, innate immunity
plays an important role in eradicating invading pathogens and
initiating the adaptive immune response. Humans can detect
environmental pathogens through interactions between innate
PRRs (pattern recognition receptors), including RLRs (RIG-I-
like receptors), TLRs (Toll-like receptors) and NLRs (nucleotide
oligomerization domain-like receptors), and PAMPs (pathogen-
associated molecular patterns), which are highly conserved
structures shared among large groups of microorganisms (22,
23). The recognition of pathogens by PRRs induces a series of
innate immune responses, including the production and release
of proinflammatory chemokines and cytokines, such as IFNs,
IL-1 (interleukin-1), and TNF-α (tumor necrosis factor-α) (22).
A moderate innate immune response protects the body against
further injury; however, an excessive response can be detrimental
in individuals with a predisposing genetic background because of
their increased risk of developing autoimmune diseases, such as
T1DM (24, 25).

The induction and development of T1DM involve extremely
complicated interactions between pancreatic beta-cells and the
immune system, which doubtlessly include innate immunity
(26). Among all innate immune responses, the type 1 IFN
signaling pathway is especially important for beta-cell damage, as
demonstrated by pathway analysis (13). A large body of evidence
has confirmed the connection between type 1 IFNs and T1DM in
both human and animal model studies. It was originally reported
that chronic hepatitis patients treated with IFN-α occasionally
develop T1DM, indicating a relationship between IFNs and
T1DM (27). This finding was further confirmed by the fact
that IFN expression levels were elevated in the pancreas of

TABLE 1 | Candidate T1DM genes expressed in islets.

Candidate

gene

Region Gene function or potential role in the

pathogenesis of T1DM

BACH2 6q15 Immune response/cytokine-induced apoptosis

BCAR1 16q23.1

CCR5 3p21.31 Th cell development/chemokine-induced signaling

CCR7 17q21.2

CD226 18q22.2 Immune regulation

CD69 12p13.31 Signal transduction

CENPW 6p22.32

CLEC16A 16p13.13 Regulating mitophagy/maintaining beta-cell function

COBL 7p12.1

CTLA4 2q33.2 T cell activation

CTRB1 16q23.1

CTSH 15q25.1 Insulin synthesis/cytokine-induced apoptosis

C1QTNF6 22q12.3 BCR signaling pathway/cytotoxicity

DEXI 16p13.13 Regulating the type 1 IFN signaling pathway

ERBB3 12q13.2 Regulating cytokine-induced apoptosis/ modulating

APC function

FUT2 19q13.33 Metabolic pathway

GAB3 Xq28

GLIS3 9p24.2 Maintaining beta-cell mass and function/regulating

cytokine-induced apoptosis

GPR183 13q32.3

GSDMB 17q12

HIP14 12q14-q12 Apoptosis/insulin production

HLA 6p21.32 Antigen presentation

HORMAD2 22q12.2

IFIH1 2q24.2 Innate immune response

IKZF1 7p12.2 Immune cell regulation

IKZF3 17q12 Immune cell regulation

ILZF4 12q13.2

IL2-IL21 4q27 Th cell differentiation/inflammatory response

IL2RA 10p15.1 T cell proliferation

IL7R 5p13.2 Antigen binding/Ig production/cytotoxicity

IL10 1q32.1 Cytokines/inflammatory response

IL-27 16p11.2 Inflammatory response/antiviral effects

INS 11p15.5 Insulin production/positive selection of T cells in the

thymus

LMQ7 13q22.2

ORMDL3 17q12 Protein binding

PRKD2 19q13.32

PRKCQ 10p15.1 T cell function/apoptosis/innate immune response

PTPN2 18p11.21 Regulating beta-cell apoptosis and insulin secretion

PTPN22 1p13.2 CD4+ T cell activation/autoimmune response

RAC2 22q12.3

RASGRP1 15q14 Cytokine production/inflammatory response

RNLS 10q23.31

SH2B3 12q24.12 Growth factor and cytokine signaling

SIRPG 20p13

SKAP2 7p15.2

SMARCE1 17q21.2

STX4 16p12-q11.1 Apoptosis/insulin production

TNFAIP3 6q23.3 Apoptosis/inflammatory response

TYK2 19p13.2 Regulating the type 1 IFN signaling pathway

UBASH3A 21q22.3 Cytokine production/TCR signaling pathway

ZFP36L1 14q24.1

Some T1DM candidate genes are expressed in pancreatic islets (9–11). Of note, HIP14

and STX4 are potential candidate genes that were discovered by in silico phenome-

interactome network analysis (12).
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FIGURE 1 | T1DM candidate genes acting at the beta-cell level mainly play a role in three pathways (11): (1) Regulate the innate immune response and pathways

important for antiviral activity, such as the type 1 IFN signaling pathway (IFIH1, TYK2, PTPN2). (2) Modulate susceptibility to proapoptotic stimuli (BACH2, TNFAIP3,

ERBB3, HIP14, STX4, CTSH, PTPN2). (3) Affect beta-cell phenotypes, primarily insulin production (GLIS3). Candidate genes in green and red represent protective and

predisposing candidates, respectively. Some candidate genes clearly participate in more than one pathway.

patients recently diagnosed with T1DM (28). Furthermore, self-
neutralizing antibodies targeting IFN-α were associated with
protection against T1DM in patents with APS1 (autoimmune
polyglandular syndrome type 1) (29). It has also been reported
that overactivation of the type 1 IFN signaling pathway occurs
prior to the appearance of T1DM-associated antibodies, which
highlights the role of type 1 IFN as a potentially precipitating
factor in the early phase of T1DM (30, 31). These discoveries
have been supported by animal experiments in which transgenic
mouse models that overexpress IFN-α in beta-cells were shown
to develop hypoinsulinemic diabetes, and self-reactive antibodies
against IFN-α and its receptors prevented the development of
inflammation and diabetes (32, 33).

The mechanisms underlying type 1 IFN-induced T1DM
can be divided into two groups (34). In the first group, the
non-immunologic mechanisms include the ER (endoplasmic
reticulum) stress-mediated impairment of insulin production
and the induction of beta-cell apoptosis via the mitochondrial
pathway (35, 36). For mechanisms in the second group,
type 1 IFN is central to activating innate immunity and
adaptive immune responses. The type 1 IFN signaling pathway
promotes the production of proinflammatory mediators and
the recruitment of innate immune cells, including macrophages,
monocytes, NK (natural killer) cells, and DCs (dendritic
cells), which can cause and maintain insulitis in a genetically
predisposed background (17). Additionally, the IFN-α-triggered
overexpression of MHC-| (major histocompatibility complex
class I) can evoke more efficient self-antigen presentation and
render beta-cells more easily attacked by autoreactive immune

cells (35). Under this circumstance, the adaptive immune
response is amplified, resulting in the attack of beta-cells by
CD8+ T cells.

BETA-CELL APOPTOSIS AND T1DM

Apoptosis, also termed programmed cell death, is characterized
by cell shrinkage, chromatin condensation, DNA and protein
cleavage, and the formation of apoptotic bodies accompanied
by almost no inflammatory response. This physiological
process, which can be divided into the mitochondrial pathway
and the death receptor pathway, maintains homeostasis and
benefits the organism by eliminating unneeded cells. Both
apoptosis pathways function by activating cysteine proteases
called caspases.

It is widely accepted that the loss of pancreatic beta-cells due
to apoptosis is the significant and final step in the pathogenesis
of T1DM (37). The process of apoptosis is closely connected
to the innate immune response (Figure 2). For example, the
enhanced apoptosis of beta-cells and defective apoptotic cell
clearance lead to the leakage of cellular content and exposure
of autoantigens, which amplify insulitis and autoimmunity;
moreover, DNA accumulation from cellular apoptosis can
cause excessive type 1 IFN production. In another example,
proinflammatory agents produced by leukocytes, such as IL-1β,
IFN-γ, TNF-α, and other soluble mediators, can induce beta-cell
apoptosis (19, 38). All these cytokines can activate cytosolic signal
transduction pathways that regulate the apoptosis of affected
beta-cells. For instance, IL-1β and TNF-α function by activating
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FIGURE 2 | Innate immunity (especially the type 1 IFN signaling pathway) and cytokine-induced apoptosis together contribute to beta-cell death. (1) When PAMPs are

bound by PRRs, including the cytosolic receptors RIG-1 and MDA5 and endosomal TLRs, the interactions can promote the synthesis and secretion of type 1 IFNs.

IFN-α/β bind their receptor IFNAR and induce the production of cytokines and chemokines that can cause and worsen insulitis and apoptosis. (2) The signaling

pathways underlying cytokine-induced apoptosis mainly include (i) JAK/STAT signaling induced by IFN-γ binding to its receptor IFNGR and (ii) NF-κB and MAPK

signaling induced by IL-β/IL-R and TNF-α/TNFR.

the NF-κB (nuclear factor-κB), and MAPK (mitogen-activated
protein kinase) pathways, and IFN-γ mainly exerts activity via
the JAK (Janus kinase)-STAT (signal transducers and activators
of transcription) pathway.

After activation, NF-κB translocates to the nucleus and
regulates iNOS (inducible nitric oxide synthase) gene expression.
Previous evidence shows that NF-κB inhibition prevents
cytokine-induced beta-cell apoptosis in vitro and in vivo and
exerts a protective effect against diabetes induced by multiple
low-dose treatments with streptozotocin in mice (39–41). After
phosphorylation by JAK2, activated STAT1 translocates to the
nucleus and regulates the expression of many genes. STAT1
deletion prevents cytokine-induced beta-cell death and diabetes
induced by multiple low-dose treatments with streptozotocin in
mice (42–44), and STAT1 can also regulate caspase expression
(45). The MAPK family includes ERK (extracellular signal-
regulated kinase), p38 and JNK (c-Jun N-terminal kinase). The
downstream protein kinases and transcription factors, including
ATF-2 (activating transcription factor 2), AP-1 (activator protein
1), and c-Jun, modify nuclear gene expression, and AP-1
may be the major transcription factor promoting MAPK-
associated apoptosis (46, 47). Additionally, cytokine-mediated
signal transduction pathways can interact with each other
through MAPKs (47).

BETA-CELL PHENOTYPES IN T1DM

The beta-cell phenotypes of patients with T1DMmainly relate to
beta-cell suicide and the function and mass of residual beta-cells
(1). Beta-cell suicide is a consequence of MHC-| overexpression

and increased ER stress (1). Overexpression ofMHC-| can render
insulin-producing beta-cells more sensitive to attack by cytotoxic
T lymphocytes, and ER stress is associated with alterations in
mRNA splicing and the production of abnormal proteins, which
may serve as immunogenic antigens (9, 48). As T1DM develops,
most pancreatic beta-cells are lost. However, some studies have
identified a substantial number of residual beta-cells in patients
with T1DM at diagnosis (8). Furthermore, patients with long-
standing T1DM, even more than 50 years, retain identifiable
residual beta-cells (21, 49). Moreover, in non-diabetogenic in
vivo culture, impaired islets from T1DM patients can regain the
ability to secrete insulin (50). All these findings demonstrate that
the loss of beta-cell function results from both decreased beta-
cell mass and decreased function. These studies provide insight
into the development of new therapeutic interventions aimed at
preserving and augmenting residual beta-cells.

CANDIDATE GENES IN T1DM

To date, more than 50 candidate regions associated with
T1DM have been identified by GWAS (7). Some candidate
genes are potentially involved in other inflammatory and
autoimmune diseases in addition to T1DM, suggesting that they
could be key regulators of abnormal autoimmune responses.
Previous studies have focused primarily on genes affecting the
immune system, such as HLA, CTCL4, and PTPN22. However,
gene function at the beta-cell level is receiving increasing
attention (Table 1). Genes with such activity exert influence by
regulating the innate immune response and antiviral activity
(IFIH1, TYK2), influencing susceptibility to proapoptotic stimuli
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(HIP14, BACH2), and affecting the beta-cell phenotype (GLIS3)
(Figure 1). Of note, some genes play a role in both the immune
system and at the beta-cell level, such as HLA, INS, and
BACH2, which implies that interactions between the abnormal
immune system and pancreatic islet beta-cells contribute to the
development of T1DM.

IFIH1
IFIH1 (interferon induced helicase C domain 1), which is
located on human chromosome 2q24.2, was identified by
GWAS as a candidate gene conferring risk to T1DM; it is
expressed in human pancreatic beta-cells and encodes MDA
(melanoma differentiation-associated protein 5), a cytoplasmic
sensor that recognizes dsRNA, a byproduct of viral replication
(51, 52). The interaction between MDA and dsRNA leads to
a cascade of antiviral responses, such as the synthesis and
secretion of type 1 IFNs (53). IFIH1 promotes cytokine and
chemokine production when induced by enterovirus infection
or PIC (polyinosinic-polycytidylic acid) (54, 55). Knockout of
MDA5 in INS-1E cells and primary beta-cells decreases PIC-
induced cytokines and chemokines, which indicates that IFIH1
modulates the local release of inflammatory mediators at the
pancreatic beta-cell level (54). Moreover, in NOD mice, partial
loss of MDA (MDA+/−) reduces the incidence of spontaneous
diabetes, and complete MDA5 deficiency (MDA−/−) fully
protects against spontaneous diabetes compared with wild-type
(WT) MDA5 status (MDA+/+) (51). Various SNPs (single
nucleotide polymorphisms) have been found to confer either
susceptibility to or protection against T1DM (56). Among all
these mutations, the gain-of-function missense mutation A946T
in IFIH1 (rs1990760) has been confirmed to be associated with
T1DM as well as several other autoimmune diseases in several
independent studies (57–59). IFIH1 A946T confers increased
basal and ligand-triggered type 1 IFN expression, and transgenic
mice with the A946T risk allele exhibit increased basal type
1 IFN expression (60). Additionally, several studies showed
that the IFIH1 A946T risk allele exerts its effect via the IFN-
β-mediated response rather than through IFN-α, and IFN-β
can promote persistent LCMV (lymphocytic choriomeningitis
virus) infection, which causes enduring beta-cell damage (61–
65). Intriguingly, a previous study indicated an association
between the SNP rs1990760 and seasonal variation in the onset
of T1DM and found that the predisposing gene was more likely
to be associated with the onset of T1DM in summer (66).
This finding may be explained by the theory that T1DM is
caused by environmental factors in individuals with a genetically
susceptible background. In contrast, two rare protective loss-
of-function mutations in IFIH1, rs35667974 (I923V) and
rs35744605 (E627X), are associated with potent inhibition of
PIC-stimulated IFN-β production (67). In summary, IFIH1
may play an important role in the pathogenesis of T1DM by
regulating the innate immune response, especially the type 1 IFN
signaling pathway; as the downregulation of IFIH1 may have a
positive effect on preventing the onset of T1DM in the initial
phase, it may become a useful strategy for preventing T1DM in
the future.

TYK2
Located on human chromosome 19p13.2, TYK2 (tyrosine kinase
2) is a T1DM-associated candidate gene encoding a tyrosine
kinase belonging to the JAK family that interacts with the
cytoplasmic part of INFAR and plays a role in the type 1 IFN
signaling pathway (68). Several SNPs within TYK2 are associated
with autoimmune and inflammatory diseases, such as T1DM,
RA (rheumatoid arthritis), SLE (systemic lupus erythematosus),
MS (multiple sclerosis), and IBD (inflammatory bowel disease)
(69–71). A SNP within TYK2 (rs2304256) that causes a missense
mutation leading to decreased function has been associated with
a decreased risk of developing T1DM (71). Human beta-cells with
TYK2 knockout display lower PIC-induced JAK-STAT pathway
activation; lower IFN-α, CXCL10, and MHC-| expression; and
greater prevention of PIC-induced apoptosis (72). However,
mice with lower expression of TYK2, caused by either TYK2
gene knockout or the presence of mutants with reduced TYK2
promoter activity, leading to decreased expression, are more
sensitive to virus-induced diabetes, accompanied by higher virus
titers and type 1 IFN levels, thanmice withWT TYK2 (73). These
findings demonstrate that WT TYK2 is crucial for maintaining
the appropriate activation of the type 1 IFN signaling pathway.
Differences in tissues and species may partially account for
the opposing outcomes, but the exact mechanism by which
the expression level of this gene regulates T1DM susceptibility
remains to be explored. Regardless, there is no doubt that TYK2
can alter the inflammatory response toward beta-cells and may
be a promising antidiabetic target.

PTPN2
PTPN2 (protein tyrosine phosphatase, non-receptor type 2),
which is located on human chromosome 18p11, is expressed in
human islet cells and exerts negative feedback on the JAK-STAT
signaling pathway by dephosphorylating JAKs and STATs (8, 74,
75). In addition to the JAK-STAT signaling pathway, ERK, EGFR
(epidermal growth factor receptor) and IRβ (insulin receptor β)
are also regulated by PTPN2 (76–78). PTPN2 expression can be
upregulated by proinflammatory cytokines and PIC, and PTPN2
knockout in INS-1E cells and primary beta-cells exacerbates PIC-
induced apoptosis and proinflammatory cytokine production via
the upregulation of STATs (54, 74). In another study, PTPN2
knockout in INS-1E cells, primary rat beta-cells and human
beta-cells increased apoptosis by activating JNK, Bim (BH3-only
protein) and the intrinsic apoptotic pathway. All these findings
show that decreased PTPN2 expression sensitizes beta-cells to
apoptosis induced by danger signals, and SNPs within PTPN2
that evoke decreased expression or function may increase the
risk of T1DM (8). In addition to apoptosis, insulin secretion is
also potentially affected by PTPN2; a previous study found that
PTPN2 knockout in mice affected beta-cell function and led to
decreased insulin secretion (79).

Of note, all three candidate genes mentioned above participate
in regulating the type 1 IFN signaling pathway, and a common
trait of risk-conferring variants is the promotion of excessive
activation of the inflammatory response, leading to an increased
risk of T1DM (13). The evidence not only emphasizes the
importance of the type 1 IFN signaling pathway in the
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pathogenesis of T1DM but also provides a potential treatment
strategy, namely, moderately downregulating the expression of
type 1 IFNs by using targeted genomic approaches.

BACH2
Located on human chromosome 6q15, BACH2 (BTB and CNC
homology 1, basic leucine zipper transcription factor 2) was
traditionally thought to function at the immune system level
but has been shown to be expressed in pancreatic beta-cells
as well and to be upregulated by proinflammatory cytokines
(80). BACH2 knockout in human and mouse beta-cells increases
cytokine-induced beta-cell apoptosis via the upregulation of
JUN1, BIM and the intrinsic apoptotic pathway; in contrast,
BACH2 overexpression has a protective effect on beta-cell
apoptosis (80). Moreover, inhibition of BACH2 downregulates
PTPN2 expression (80). Although the exact mechanism is still
unknown, this finding supports the hypothesis that the network
formed by T1DM candidate risk genes renders beta-cells hyper-
responsive to danger signals. A recent study found that a BACH2
risk allele (rs3757247) might contribute to the development
of insulin-triggered T1DM by affecting the immune response
(81). The finding that the BACH2 gene functions at both the
immune system and beta-cell levels suggests interplay between
these two systems and implies an intricate network underlying
T1DM pathogenesis.

TNFAIP3
TNFAIP3 (TNF-induced protein 3), which is located on human
chromosome 6q23, has been identified by GWAS as a candidate
gene associated with the onset and pathogenesis of T1DM and
other autoimmune diseases, such as RA, IBD and psoriasis
(82, 83). The TNFAIP3 gene encodes the zinc finger protein
A20, a cytoplasmic ubiquitin-editing protein that is upregulated
by cytokines in INS-1E cells and primary mouse islets (83).
TNFAIP3 knockout increases INS-1E cell apoptosis induced by
proinflammatory cytokines; in contrast, overexpression of this
gene decreases apoptosis (84). A20 exerts function via multiple
pathways: it negatively regulates NF-κB activation and NO
production, inhibits JNK activation, upregulates Akt (a protein
controlling beta-cell survival) and subsequently downregulates
the intrinsic apoptotic pathway (84). These functions highlight
the multiple antiapoptotic effects of A20 in beta-cells (8). In
addition to influencing apoptosis, TNFAIP3 also affects beta-
cell function by regulating the expression level of ZnT8, which
is essential for insulin production and secretion, as determined
by experiments showing that TNFAIP3 overexpression protects
ZnT8 from cytokine-induced downregulation (85). Furthermore,
a SNP in the non-coding region of TNFAIP3 (rs2327832) is
associated with lower C-peptide and higher HbA1c (hemoglobin
A1c) levels, which indicates reduced beta-cell function and
impaired glycemic control in children with recent onset of
T1DM (84). Although further investigation in different cohorts
is needed, this finding provides evidence that A20 influences
beta-cell death and function. Another recent study indicated
that islet allografts with A20 upregulation show increased
survival via NF-κB inhibition, AP-1 reporter activation and
CXCL10 transcription (86), which sheds some light on the

possibility of reducing immunosuppression therapies after islet
transplantation and increasing the success rate of this operation.

ERBB3
Located on human chromosome 12q13.2, the ERBB3 (erb-
b2 receptor tyrosine kinase 3) gene is known for its role
in cancer. The ERBB3 gene encodes a protein in the EGFR
family that functions as a heterodimer with other EGFR family
members (87). The SNP rs2292239, located in intron 7 of
ERBB3, is associated with T1DM, residual beta-cell function
and metabolic control (88–90). Previous studies focused on
this gene reported that it confers a risk for T1DM by
modulating APC function to exert immunoregulatory effects
(91). A later study demonstrated that ERBB3 also affects beta-cell
apoptosis (89). ERBB3 knockdown decreases basal and cytokine-
induced apoptosis, but ERBB3 expression is downregulated
by proinflammatory cytokines, indicating that this gene may
participate in negative regulation by cytokines (89). Thus, further
investigation is needed to resolve the contradiction that the
ERBB3 gene is downregulated by proinflammatory cytokines
but increases cytokine-induced apoptosis. Additionally, this
contradiction may suggest that additional unknown mechanisms
affect beta-cell death.

HIP14
The HIP14 (huntingtin-interacting protein 14) gene located
on human chromosome 12 encodes a palmitoyl transferase
that is highly expressed in the brain (92). HIP14 was
identified as a T1DM candidate protein by in silico phenome-
interactome network analysis (12). HIP14 is expressed in
pancreatic islets, with predominant expression in beta-cells (12).
Unlike PTPN2, BACH2, and TNFAIP3, which are upregulated
by proinflammatory cytokines, HIP14 is downregulated by
cytokines (12). HIP14 is thought to participate in T1DM
development through interactions with two proteins physically
associated with T1DM, HTT (huntingtin protein), and GAD65
(glutamate decarboxylase 65) (12). HIP14 knockout leads to
increased apoptosis, whereas HIP14 overexpression results in
decreased apoptosis due to reduced NF-κB activation (12).
Another study indicated that caspase 6, which plays an important
role in apoptosis, can be inhibited by the palmitoyl transferase
activity of HIP14 in the mouse brain (93). However, further
investigation is needed to clarify whether this effect also occurs
in pancreatic beta-cells. In addition to apoptosis, insulin release
is also affected by the palmitoyl transferase activity of HIP14
(12). The knockout of HIP14 and overexpression of mutant
HIP14 lacking the palmitoyl transferase domain lead to decreased
insulin release, indicating that the palmitoyl transferase activity
of HIP14 participates in insulin secretion (12). In summary,
HIP14 may contribute to the development of T1DM by
regulating beta-cell apoptosis and insulin secretion, but more
evidence is required to determine whether it is a candidate risk
gene of T1DM.

STX4
Located on human chromosome 16, the STX4 (syntaxin 4)
gene is situated within the T1DM susceptibility region, and
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similar to HIP14, the Stx4 protein encoded by STX4 was
identified as a T1DM candidate protein by in silico phenome-
interactome network analysis (12, 94). STX4, which localizes to
the plasma membrane, is associated with insulin secretion (94).
STX4 overexpression restricted to pancreatic beta-cells increases
the capacity for insulin secretion, promotes glucose tolerance
and protects STZ-treated mice from developing diabetes (94).
Furthermore, increased STX4 expression can downregulate the
expression of chemokine genes associated with inflammation
and the apoptosis of pancreatic islets, such as CXCL9, CXCL10,
and CXCL11 (94). Additionally, increased STX4 expression leads
to decreased apoptosis by decreasing the translocation and
activation of NF-κB (94). In conclusion, STX4 can influence both
insulin secretion and beta-cell apoptosis, and it may be a novel
target for the treatment of T1DM.

CLEC16A
CLEC16A (c-type lectin domain family 16, member A),
which is located on human chromosome 16p13, encodes
a membrane-associated endosomal protein that has been
associated with T1DM, MS, primary adrenal insufficiency
and other inflammatory and autoimmune diseases (95–97).
CLEC16A plays a role in mitochondrial autophagy (mitophagy),
a process to eliminate unhealthy mitochondria that is essential
for maintaining beta-cell function, glucose homeostasis
and GSIS (glucose-stimulated insulin secretion); inhibition
of the CLEC16A-related pathway impairs beta-cell oxygen
consumption and insulin secretion (98). A ubiquitin-dependent
tripartite composed of CLEC16A, NRDP1, and USP18 was
reported to act as a regulator of beta-cell mitophagy (99). A
previous study found that pancreas-specific CLEC16A deficiency
led to impaired glucose tolerance, ER stress and GSIS in mice,
and a SNP in the CLEC16A gene (rs12708716) associated with
reduced expression resulted in impaired beta-cell function in
humans (98). A recent finding indicated that risk variants within
CLEC16A might lead to insulin-triggered T1DM due to less
efficient negative selection in the thymus (81). These findings
shed light on how mitophagy maintains and promotes beta-cell
function and suggest the candidate gene CLEC16A as a new
potential therapeutic target for T1DM.

DEXI
DEXI, which is located in the same region as the CLEC16A
gene, encodes a dexamethasone-induced protein of unknown
function that is highly expressed in human pancreatic islets; this
gene has been implicated in the pathogenesis of T1DM and
other autoimmune diseases, such as MS (95, 100). According
to gene expression analysis, SNPs within the CLEC16A gene
modulate the expression level of DEXI, suggesting DEXI as a
potential candidate gene related to T1DM (101). A previous study
found that DEXI knockout led to the decreased activation of
STAT1 and production of proinflammatory chemokines, such
as CCL5, CXCL9, and CXCL1, in PIC-treated INS-1E cells, and
DEXI overexpression has the opposite results (100); moreover,
DEXI was shown to modulate IFN-β transcription (100). Based
on these findings, the researchers concluded that DEXI might
participate in the pathogenesis of T1DM by regulating the type

1 IFN signaling pathway (100). However, another recent study
found that DEXI knockout did not alter the frequency of diabetes
or influence the protective effect afforded by CLEC16A knockout
in NODmice (102). These researchers concluded that CLEC16A,
rather than DEXI, is a causal gene of T1DM within human
chromosome region 16p13 (102). Different cell types and species
may partly explain the opposite conclusions, but the precise
underlying mechanisms remain to be further investigated.

CTSH
Located on human chromosome 15q25.1, the CTSH (cathepsin
H) gene encodes a lysosomal cysteine protease that is
expressed in human pancreatic islet beta-cells and downregulated
upon exposure to proinflammatory cytokines. Overexpression
of CTSH leads to decreased cytokine-induced apoptosis by
decreasing the activation of the JNK1/2 and p38 pathways and
the production of proapoptotic factors, including c-Myc, Bim
and DP5 (death protein 5), in insulin-producing INS-1 cells
(103). In addition to its effects on beta-cell apoptosis, CTSH
overexpression also resulted in increased insulin accumulation
in the medium and higher Ins2 levels. In line with this finding,
CTSH(-/-) mice have lower plasma insulin levels than WT mice
(103). These facts indicate the antiapoptotic effects of CTSH
and its ability to enhance beta-cell function. A SNP in CTSH
(rs3825932) associated with lower expression affects disease
progression in children with newly diagnosed T1DM in an allele
dose-dependent manner, characterized by the requirement for
a higher daily insulin dose and a lower chance of remission
(103). This variant also influences beta-cell function in healthy
adults (103). However, another SNP (rs2289702) in low LD
(linkage disequilibrium) with rs3825932 was recently discovered
to have an adverse effect; rs2289702 correlates with decreased
CTSH expression and plays a protective role in T1DM (104). The
researchers speculated that increased CTSH expression might
lead to an excessive innate immune response, thus increasing
the risk of T1DM, based on the fact that CTSH can increase
the activation of TLR3, a protein expressed in human islets, via
cleavage of the N-terminus (104). Further investigation is needed
to clarify whether this gene has protective properties and to
elucidate its underlying mechanisms.

GLIS3
GLIS3 (Gli-similar 3), which is located on human chromosome
9p24.2, encodes a transcription factor in the zinc finger family;
this gene was identified by GWAS as a candidate gene for
both T1DM and T2DM (82, 105). It plays an important role
in the development and generation of beta-cells by maintaining
mature beta-cell mass and function and INS gene expression
(106, 107). Loss-of-function mutations within GLIS3 lead to a
rare syndrome mainly characterized by neonatal diabetes and
congenital hypothyroidism in humans, and in accordance with
this, GLIS3(−/−) mice develop neonatal diabetes caused by
impaired pancreatic beta-cell generation and insulin production
(108, 109). Additionally, GLIS3 knockout increases basal and
proinflammatory cytokine-induced apoptosis by promoting the
formation of a proapoptotic splice variant of BIM (110).
These findings indicate that GLIS3 protects against T1DM
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by maintaining beta-cell function and mass and by exerting
antiapoptotic effects. It is conceivable that we can prevent the
onset of T1DM by enhancing GLIS3 in the future.

DISCUSSION

As evident from the above discussion, candidate genes acting
at the beta-cell level play important roles in the onset
and development of T1DM and, together with genes acting
at the immune system, constitute the complete pathogenic
network. There is a critical need to elucidate the exact
underlying mechanisms of these genes to fully understand
T1DM. Additionally, advances in this field will provide new
therapeutic strategies for T1DM, i.e., avenues to moderately
downregulate the innate immune response and cytokine-induced
apoptosis and to strengthen residual beta-cell function and
viability by using genetic engineering techniques.

T1DM is a multifactorial autoimmune disease, and its
precise mechanisms are still unknown. However, it is widely
accepted that a combination of environmental and genetic
factors contributes to the onset and pathogenesis of T1DM.
Candidate genes identified by GWAS influence not only the
immune system but also pancreatic islet beta-cells. Some
studies have revealed that risk genes act at the beta-cell
level mainly through modulating the innate immune system,
antiviral activity, and beta-cell apoptosis and phenotypes, and
understanding potential pathogenic mechanisms will be helpful
in the development of new treatments. However, T1DM is
an extremely complex and heterogeneous disease, and these
characteristics may be attributed to different genetic backgrounds
and environmental components. To develop a more precise

predictive model and more effective treatment and prevention
measures, it is necessary to fully elucidate the pathogenic network

of T1DM. A scoring system for quantifying the genetic and
environmental elements may help considerably. To reach this
ambitious goal, we propose roughly dividing the process into
the following steps. First, screen candidate risk genes for T1DM
and establish a pathogenic network comprising genetic and
environmental elements. Next, assign these elements a value
according to importance in conferring risk for T1DM and
build a formula based on epidemiological information. Finally,
assess the susceptibility of developing T1DM using the novel
formula, and take individualized prevention measures in the
predisposed population. Since the pathogenic mechanisms are
not fully understood, there is still a long way to go to achieve
this goal.
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