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Abstract

In humans, invariant natural killer T (iNKT) cells represent a small but significant population of peripheral blood
mononuclear cells (PBMCs) with a high degree of variability. In this study, pursuant to our goal of identifying an appropriate
non-human primate model suitable for pre-clinical glycolipid testing, we evaluated the percentage and function of iNKT
cells in the peripheral blood of pig-tailed macaques. First, using a human CD1d-tetramer loaded with a-GalCer (a-GalCer-
CD1d-Tet), we found that a-GalCer-CD1d-Tet+ CD3+ iNKT cells make up 0.13% to 0.4% of pig-tailed macaque PBMCs, which
are comparable to the percentage of iNKT cells found in human PBMCs. Second, we observed that a large proportion of
Va24+CD3+ cells are a-GalCer-CD1d-Tet+CD3+ iNKT cells, which primarily consist of either the CD4+ or CD8+ subpopulation.
Third, we found that pig-tailed macaque iNKT cells produce IFN-c in response to a-GalCer, as shown by ELISpot assay and
intracellular cytokine staining (ICCS), as well as TNF-a, as shown by ICCS, indicating that these iNKT cells are fully functional.
Interestingly, the majority of pig-tailed macaque iNKT cells that secrete IFN-c are CD8+ iNKT cells. Based on these findings,
we conclude that the pig-tailed macaques exhibit potential as a non-human animal model for the pre-clinical testing of
iNKT-stimulating glycolipids.
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Introduction

Natural killer T (NKT) cells are a unique subset of lymphoid

cells that express both a T cell antigen receptor (TCR) and NK1.1

(NKR-P1 or CD161c), a C-lectin-type NK receptor [1,2]. A

significant proportion of NKT cells express semi-invariant TCRs

encoded by Va24 and Ja18 gene segments in humans and Va14

and Ja18 gene segments in mice, and these cells have been

designated invariant NKT (iNKT) cells [3]. In humans, iNKT

cells represent a small but significant proportion (0.01%–0.5%) of

PBMCs with a high degree of variability [4,5]. Upon activation,

iNKT cells rapidly secrete both Th1 and Th2 cytokines in vivo and

induce a series of cellular activation events leading to the

activation of innate immune cells, such as NK cells and dendritic

cells (DCs), as well as the stimulation of adaptive immune cells,

such as B and T cells [6–12]. In addition, upon stimulation, iNKT

cells, like NK cells, display cytotoxic activity mediated by Fas,

perforin, granzyme A/B, and granulysin [13,14]. iNKT cells have

also been shown to display anti-tumor activity [15,16], mediate

therapeutic effects against autoimmune diseases [17–20], and

promote protection against certain infectious agents [21–24].

CD1d molecules and iNKT cells are conserved between mice

and humans [25]. Accordingly, mouse models have been

extensively used to study the biological activity of CD1d-binding,

iNKT cell-stimulating glycolipids, and the phenotypes and

functions of iNKT cells [1,26]. However, these studies have

indicated substantial differences in the specificity, frequency, and

function of CD1d and iNKT cells between the two species.

Because of this, some studies have investigated the frequency,

phenotype, and function of iNKT cells derived from non-human

primates, including pig-tailed macaques, and found similar

percentages and high variability of iNKT cells between monkeys

and humans [27–30]. These studies have also indicated that the

phenotypes and functions of monkey iNKT cells are significantly

different among different macaque species [27–30]. Pig-tailed

macaques have been used as animal models to study a number of

human diseases, such as Chlamydia trachomatis [31–33] and HIV-1

infection [34,35]. In this study we sought to characterize in greater

detail the base line frequency, specificity, and function of iNKT

cells in pig-tailed macaques and address whether pig-tailed

macaques could be used as an animal model for the pre-clinical

testing of various iNKT cell-stimulating ligands.

Materials and Methods

Animals
Pig-tailed macaques (M. nemestrina) were used in this study. All

animals were negative for simian immunodeficiency virus (SIV)

and simian T-cell lymphotropic virus type 1 (STLV-1) by serology

as well as simian type D retrovirus by serology and polymerase

chain reaction (PCR). Peripheral blood was collected by

venipuncture under anesthesia. All animals used in this study
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were housed and cared for according to the Guide for the Care

and Use of Laboratory Animals at the Washington National

Primate Research Center (WaNPRC), an institution accredited by

the Association for Assessment and Accreditation of Laboratory

Animal Care International. The animal quarters are maintained at

75–78uF with controlled air humidity and quality. Commercial

monkey chow was fed to the animals once daily, and drinking

water was available at all times. Daily examinations and any

medical care were provided by the WaNPRC veterinary staff in

consultation with the clinical veterinarian. All experimental

procedures were approved by the Institutional Animal Care and

Use Committee at the University of Washington and conducted in

compliance with the Public Health Services Policy on Humane

Care and Use of Laboratory Animals (http://grants.nih.gov/

grants/olaw/references/PHSPolicyLabAnimals.pdf). The animals

were kept under deep sedation with ketamine HCl at a dose of 10–

15 mg/kg intramuscularly to alleviate any pain and discomfort

during blood draws. An animal technician or veterinary

technologist monitored the animals while under sedation.

Preparation of Peripheral Blood Mononuclear Cells
(PBMCs)

PBMCs were isolated from buffy coats by Ficoll-Hypaque

density gradient separation. Erythrocytes were removed by

osmotic lysis in ACK lysing buffer (Life Technologies, Grand

Island, NY), and the remaining nucleated cells were washed twice

with RPMI supplemented with 10% fetal calf serum (FCS).

Antibodies, Glycolipid, and CD1d-tetramer
Anti-human antibodies known to cross-react with macaques

were selected for this study. For flow cytometric analysis, we used

anti-Va24-PE (C15; Immunotech, Quebec, Canada), anti-Va24-

FITC (C15; Immunotech), anti-Vb11-FITC (C21; Beckman

Coulter, Brea, CA), anti-6B11-FITC (6B11; BioLegend, San

Diego, CA), anti-CD3-perCp (SP34-2; BD Biosciences, San Jose,

CA), anti-CD4-APC (SK3, BD Biosciences), anti-CD8-FITC

(SK1, BD Biosciences), anti-CD8a-perCp (SK1, BD Biosciences),

anti-CD8b-APC (2ST8.5H7, BD Biosciences), anti-IFN-c-APC

(4S.B3, Abcam, Cambridge, MA), and anti-TNF-a antibody-PE-

Cy7 (MAb11, BioLegend). For ELISpot assay, we used anti-IFN-c
(clone: GZ-4, Mabtech, Mariemont, OH) and biotin-labeled anti-

IFN-c (clone: 7-B6-1, Mabtech). Lyophilized a-GalCer (Avanti

Polar Lipid, Alabaster, AL) was reconstituted at 1 mg/ml with

100% DMSO then stored at 220uC. The a-GalCer-loaded

human CD1d-tetramer conjugated to PE (a-GalCer-CD1d-Tet)

was purchased from Proimmune Inc. (Sarasota, FL).

Flow Cytometric Analysis
For cell surface staining, 16106 PBMCs were incubated for

20 min at 4uC in FACs staining buffer in the presence of the

antibody of interest. After washing twice, labeled cells were

subjected to multicolor FACScan flow cytometry on a BD LSRII

(Becton Dickinson, Franklin Lakes, NJ) using forward and side-

scatter characteristics to exclude dead cells. Anti-mouse-Ig or anti-

rat compensation particle sets were used for compensation

purposes (BD Biosciences). The data were analyzed using Flowjo

software (Tree Star, Ashland, OR).

PBMCs Stimulation by a-GalCer
PBMCs were cultured in a 96-well U-bottom plate at 16106

cells/well in the presence of 5 mg/ml or 0.1 mg/ml of a-GalCer for

6 hours at 37uC followed by the addition of Brefeldin A

(BioLegend) at 5 mg/ml for the last 4 hours of incubation. In a

Figure 1. a-GalCer-CD1d-Tet+CD3+ cells among PBMCs from pig-tailed macaques. Peripheral blood mononuclear cells (PBMCs) obtained
from each pig-tailed macaque were incubated with anti-CD3-PerCP together with a-GalCer-loaded human CD1d-tetramer-PE (a-GalCer-CD1d-Tet-PE)
in upper panel or unloaded human CD1d-tetramer-PE as a negative control in lower panelData were analyzed using Flowjo software (Tree Star). For
all figures, the data represent one of three similar experiments.
doi:10.1371/journal.pone.0048166.g001

NKT Cells in Pig-Tail Macaques
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negative control group, cells were stimulated with medium

containing 0.1% of DMSO vehicle.

Intracellular Cytokine Staining
For intracellular IFN-c and TNF-a staining, the PBMCs were

stimulated with a-GalCer, as described above. After stimulation,

the cells were incubated with anti-CD3, anti-CD4, and anti-CD8

antibodies, as well as the human CD1d tetramer loaded with a-

GalCer for 20 min. The cells were then fixed and permeabilized

using the Cytofix/Cytoperm kit (BD Biosciences) following the

manufacturer’s instructions. The permeabilized cells were stained

with PE-Cy7-labeled anti-TNF-a and APC-labeled anti-IFN-c
antibodies for 30 min on ice in the dark. After washing twice, the

cells were resuspended in staining buffer and analyzed by flow

cytometric analysis. Acquisition and analysis were carried out by

first gating for live cells by forward scatter (FSC) and side scatter

(SSC) then subsequently gating for iNKT cells by positivity to

CD3+ and a-GalCer-loaded CD1d tetramer+ among the live cells.

IFN-c+ and TNF-a+ cells were then further gated from the iNKT

cells.

IFN-c ELISpot Assay
The total IFN-c producing cells among the a-GalCer stimulated

PBMC cells were determined by an ELISpot assay using the

monkey IFN-c ELISpot kit (Mabtech). Briefly, the Multiscreen

HA ELISpot plate (Millipore, Billerica, MA) was first coated with

anti-IFN-c antibodies. Next, the PBMC cells from pig-tailed

macaques were added at 56105 cells/well and stimulated with a-

GalCer at 0.1 mg/ml or 1 mg/ml for 24 hours at 37uC. In the

negative control groups, the cells were cultured with 0.1% DMSO.

After washing five times, the plate was incubated with biotin-

labeled anti-IFN-c antibodies for 1 hour followed by incubation

with avidin-HRP. Finally, the spots were developed with an AEC

ELISpot substrate kit (BD Biosciences).

Results and Discussion

Here, we aimed to characterize the properties of iNKT cells

derived from pig-tailed macaques to determine whether the cells in

this species exhibit similar properties to human iNKT cells. The

goal of the study was to determine whether pig-tailed macaques

represent an appropriate animal species for pre-clinical testing. We

first determined the frequency of iNKT cells among PBMCs

Figure 2. Correlation between Va24+CD3+ cells and a-GalCer-CD1d-Tet+CD3+ cells among PBMCs from pig-tailed macaques. (A)
One million PBMCs were incubated with anti-Va24-FITC together with a-GalCer-CD1d-Tet-PE or unloaded CD1d-Tet-PE as a negative control then
subjected to flow cytometric analysis, as described in Fig. 1. (B) The percentages of Va24+CD3+ cells and a-GalCer-CD1d-Tet+CD3+ cells among
PBMCs from each pig-tailed macaque are listed. (C) The percentage of Va24+CD3+ cells and the percentage of a-GalCer-CD1d-Tet+CD3+ cells among
PBMCs from each pig-tailed macaque are scatter-plotted to evaluate the correlation between these variables, and a linear regression analysis was
applied.
doi:10.1371/journal.pone.0048166.g002
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collected from pig-tailed macaques. To accomplish this, we

identified iNKT cells by staining PBMCs with an a-GalCer-

loaded human CD1d-tetramer (a-GalCer-CD1d-Tet). As shown

in Fig. 1, we detected a distinct population of PBMCs that react

with a-GalCer-CD1d-Tet, but not with the unloaded human

CD1d-tetramer. The percentage of these a-GalCer-CD1d-Tet+

cells ranged from 0.13% to 0.4% of the total PBMCs (Fig. 2B).

These results confirm those from a previously published study

Figure 3. Vb11 and 6B11 phenotypes of Va24+ cells among PBMCs from pig-tailed macaques. One million PBMCs were incubated with
anti-Va24-PE together with either anti-Vb11-FITC or 6B11-FITC followed by flow cytometric analysis, as described in Fig. 1.
doi:10.1371/journal.pone.0048166.g003

Figure 4. CD4/CD8 phenotype of a-GalCer-CD1d-Tet+CD3+ iNKT cells derived from pig-tailed macaques. (A) One million PBMCs were
first incubated with a-GalCer-CD1d-Tet-PE and anti-CD3-PerCP. Cells were also stained with anti-CD4-APC and anti-CD8-FITC then subjected to flow
cytometric analysis, as described in Fig. 1. Data represent one of two similar experiments. (B) The percentage of a-GalCer-CD1d-Tet+CD3+ cells among
PBMCs and the percentage of CD4+ or CD8+ cells among a-GalCer-CD1d-Tet+CD3+ iNKT cells of each pig-tailed macaque are listed. (C) One million
PBMCs were first incubated with anti-Va24-PE then stained with CD8a-perCp anti-CD8b-APC and subjected to flow cytometric analysis, as described
in Fig. 1.
doi:10.1371/journal.pone.0048166.g004

NKT Cells in Pig-Tail Macaques
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[30], and indicate that the percentage of iNKT cells in the

peripheral blood of pig-tailed macaques is comparable to what has

been observed in the peripheral blood of humans. To determine

the correlation between a-GalCer-CD1d-Tet+ cells and Va24+

cells, we co-stained pig-tailed macaque PBMCs with a-GalCer-

CD1d-Tet and anti-Va24 antibodies, as shown in Fig. 2A. We

found that approximately two-thirds of the Va24+ cells were a-

GalCer-CD1d-Tet+ cells (Fig. 2B), and there was a strong positive

linear correlation (p = 0.0187; R2 = 0.9599) between the percent-

ages of the two subpopulations (Fig. 2C).

In humans, the majority of a-GalCer-CD1d-Tet+ iNKT cells

have been shown to ‘‘co-express’’ an invariant Va24-Ja18 chain

and a semi-invariant Vb11 chain [36–38]. Therefore, we sought to

determine whether a-GalCer-CD1d-Tet+ iNKT cells derived from

pig-tailed macaques also co-express Va24 and Vb11. Unfortu-

nately, the anti-human Vb11 antibody failed to cross-react with

pig-tailed macaque iNKT cells, as has been shown with iNKT cells

derived from other monkey species (Fig. 3) [27–29]. Furthermore,

the 6B11 antibody, which is known to react with the CDR3 region

of the Va24-Ja18 chain, failed to react with Va24+ cells derived

from pig-tailed macaques (Fig. 3). Although the CDR3 region

between the human and rhesus Vc24 chain is almost identical

(98% homology) [39], it is possible that the amino-acid sequence

of the pig-tailed macaque Va24 chain varies enough from the

human Va24 chain to lack the 6B11 epitope. This issue requires

clarification and will be resolved in a future study.

We next determined the CD4 and CD8 phenotypes of pig-tailed

macaque iNKT cells (Fig. 4A) and found that iNKT cells primarily

consisted of the CD4+ and CD8+ subpopulations. The few

remaining cells were double negative (DN)(Fig. 4B). All CD8+

iNKT cells were also found to be CD8ab+ (Fig. 4C). These results

confirmed an earlier study showing that pig-tailed macaque iNKT

cells consist of a significant percentage of a CD4+ subpopulation

[30]. Furthermore, the CD4/CD8 distribution is somewhat

different from iNKT cells derived from other monkey species,

which are largely made up of CD8+ cells [27–29]. More

Figure 5. Secretion of IFN-c and TNF-a by pig-tailed macaque iNKT cells upon stimulation with a-GalCer. One million PBMC cells were
stimulated with 0.1 mg/ml or 5 mg/ml of a-GalCer followed by the addition of 5 mg/ml Brefeldin A for the last 4 hours of incubation. Invariant natural
killer T (iNKT) cells were then gated with a-GalCer-CD1d-Tet+ and CD3+ followed by flow cytometric analysis. (A) Flow cytometric figure shows the
pattern of IFN-c and TNF-a expression by a-GalCer-activated, IFN-c-secreting iNKT cells gated from PBMCs from one representative pig-tailed
macaque. (B) The graph shows the percentages of iNKT cells secreting the respective cytokines among total iNKT cells derived from the PBMCs of five
pig-tailed macaques.
doi:10.1371/journal.pone.0048166.g005
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importantly, this distribution pattern resembles human iNKT

cells, except DN iNKT cells are more abundant in humans [4,5].

Regarding the functionality of iNKT cells, human iNKT cells

activated by a-GalCer are known to secrete a myriad of cytokines,

with CD8+ iNKT cells biased toward a Th1 phenotype, CD4+

iNKT cells predominantly secreting Th2 cytokines, and DN iNKT

cells exhibiting an intermediate Th1/Th2 phenotype [40]. Non-

human primate iNKT cells have been shown to display a similar

function to human iNKT cells, but there are some differences

among different species. For example, rhesus macaque iNKT cells

secrete large amounts of TGF-b, IL-6, and IL-13, and modest

levels of IFN-c, whereas IL-10 secretion was negligible and no

detectable IL-4 was observed [41]. However, sooty mangabey

iNKT cells have been shown to secrete virtually all cytokines

tested, including IFN-c, TNF-a, IL-2, IL-13, and IL-10 [29]. In

addition, their CD8+ NKT subpopulation produced a high

amount of IFN-c and expressed significantly higher levels of

granzyme B and perforin [42].

To investigate the function of pig-tailed macaque iNKT cells in

this study, we first measured the percentage of a-GalCer-activated

iNKT cells secreting IFN-c, TNF-a and IL-10, using an ICCS

assay. As shown in Fig. 5, a significant percentage of pig-tailed

macaque iNKT cells secreted TNF-a and/or IFN-c, whereas they

failed to secrete a significant amount of IL-10 (data not shown).

We next analyzed the percentages of CD4+ and CD8+ iNKT cell

subpopulations among the total IFN-c-secreting iNKT cells.

Although both CD4+ and CD8+ iNKT cells produced IFN-c
after stimulation with a-GalCer, the percentage of IFN-c-secreting

CD8+ iNKT cells was much higher than IFN-c-secreting CD4+

iNKT cells (Fig. 6). Furthermore, the IFN-c ELISpot assay showed

that 100–400 per million PBMCs secreted IFN-c in response to

1 mg/ml of a-GalCer (Fig. 6C). This result corroborates our ICCS

assay and indicates that a significant number of iNKT cells among

PBMCs secrete IFN-c upon a-GalCer stimulation.

We then performed various correlation analyses and found a

marginal correlation between the relative number of a-GalCer-

activated cells secreting IFN-c among PBMCs, as determined by

ELISpot assay, and the percentage of total iNKT cells among

PBMCs, as determined by FACS analysis (R2 = 0.7847,

p = 0.0455) (Fig. 7A). However, the correlation became much

stronger when we performed a correlation analysis between the

relative number of a-GalCer-activated cells secreting IFN-c
among PBMCs and the percentage of CD8+ iNKT cells among

PBMCs (R2 = 0.9576, p = 0.0135) (Fig. 7A). Interestingly, when we

compared the relative number of IFN-c-secreting cells among

PBMCs and the percentages of IFN-c-secreting CD8+ and CD4+

iNKT cells by ICCS assay, we found a strong correlation for the

relative number of IFN-c-secreting cells among PBMCs with IFN-

c-secreting CD8+ iNKT cells (R2 = 0.8965, p = 0.0146), but not

with IFN-c + CD4+ iNKT cells (R2 = 0.2559, p = 0.3866) (Fig. 7B).

Thus, our current functional study demonstrates that the majority

of pig-tailed macaque iNKT cells that secrete IFN-c consist of

CD8+ iNKT cells, although CD4+ iNKT cells can also produce

Th1 cytokines, including IFN-c and TNF-a.

We would like to emphasize that due to the lack of available

antibodies that cross-react with pig-tailed macaque cells, we could

Figure 6. IFN-c secreting pig-tailed macaque iNKT cells, as determined by intracellular cytokine staining and ELISpot assay. (A) Flow
cytometric figure shows the pattern of CD4+ versus CD8+ expression by a-GalCer-activated, IFN-c-secreting iNKT cells gated from the PBMCs from
one representative pig-tailed macaque. v(B) The graph shows the percentages of CD4+ or CD8+ iNKT cells among total IFN-c secreting iNKT cells
derived from the PBMCs of five pig-tailed macaques. v(C) The relative number of a-GalCer-activated, IFN-c-secreting iNKT cells among PBMCs. In this
assay, 56105 pig-tailed macaque PBMC cells were stimulated with 0.1 mg/ml or 1 mg/ml of a-GalCer, and the relative numbers of IFN-c-secreting cells
were determined by an ELISpot assay. The results are expressed as the mean 6 SD of triplicated wells.
doi:10.1371/journal.pone.0048166.g006
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only perform a limited study of the phenotype and function of pig-

tailed macaque iNKT cells. Despite this difficulty, however, our

current study demonstrates that the percentage of iNKT cells

present in the peripheral blood of pig-tailed macaques is

comparable to the iNKT cells found in human peripheral blood.

Furthermore, similar to humans, a large proportion of

Va24+CD3+ cells are a-GalCer-CD1d-Tet+CD3+ iNKT cells,

and almost half of these express CD4 molecules.

Together, these results highlight the properties of pig-tailed

macaque iNKT cells, which resemble human cells to some degree.

In light of previous successful research studies using pig-tailed

macaques for certain human diseases [31–35], our study provides

further evidence supporting the use of pig-tailed macaques in the

pre-clinical testing of various iNKT cell-stimulating ligands. In

particular, they may be useful for evaluating therapeutic and

prophylactic measures across a myriad of human diseases in the

future.
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