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Invisibility Cloak Printed on a 
Photonic Chip
Zhen Feng1,2, Bing-Hong Wu1, Yu-Xi Zhao1, Jun Gao1,2, Lu-Feng Qiao1,2, Ai-Lin Yang1,2,  
Xiao-Feng Lin1,2 & Xian-Min Jin1,2

Invisibility cloak capable of hiding an object can be achieved by properly manipulating electromagnetic 
field. Such a remarkable ability has been shown in transformation and ray optics. Alternatively, it may 
be realistic to create a spatial cloak by means of confining electromagnetic field in three-dimensional 
arrayed waveguides and introducing appropriate collective curvature surrounding an object. We realize 
the artificial structure in borosilicate by femtosecond laser direct writing, where we prototype up to 
5,000 waveguides to conceal millimeter-scale volume. We characterize the performance of the cloak by 
normalized cross correlation, tomography analysis and continuous three-dimensional viewing angle 
scan. Our results show invisibility cloak can be achieved in waveguide optics. Furthermore, directly 
printed invisibility cloak on a photonic chip may enable controllable study and novel applications in 
classical and quantum integrated photonics, such as invisualising a coupling or swapping operation with 
on-chip circuits of their own.

Transformation optics is a prevalent approach to modify material parameters, carefully constructing artificial 
material and manipulating electromagnetic wave1,2. Due to the enormous difficulties in the realization of cloak-
ing, scientists have been seeking various simplified models3–8 to approach the prefect cloaking. Among those 
methods, Schuig et al.3 use artificially structured metamaterial to fulfill the dimension-reduced cloaking scheme 
which could only cloak the light at some specific frequencies and polarizations. To broaden the operating fre-
quency range5–7, the carpet cloak is introduced to operate at microwave9,10 and optical11–13 frequency bands. 
Metamaterials are also applied to achieve a skin cloak which can hide volumetric objects at optical frequencies14. 
In diffusive light scattering medium where light does not conform to the ballistic propagation, broadband mac-
roscopic cloak made of thin shells of metamaterial is realized in three dimensions, according to Fick’s equation15.

Ray optics provides a new way of concealing macroscopic objects by using calcite crystal16,17 and standard 
optical devices such as lens18 and prism19, which can guide light though a predefined path by Snell’s Law. We 
introduce a distinctive broadband cloaking scheme in waveguide optics that can be applied on a photonic chip. To 
be specific, light can be confined in the core of waveguide with higher refractive index associated with a modest 
curve, which shows its capability of guiding and manipulating light field in an arrayed configuration. Within the 
tolerance of curvature, a waveguide is bended to circumvent a central region. Optical information through the 
waveguide is acquired at the output while the exact propagation path remains confidential, which allows hidden 
objects to exist in the areas rounded by waveguides. The artificial structure requires a waveguide fabrication 
technique in three-dimensional space, which can be met by the intrinsic processing capacity of femtosecond laser 
writing20–22. A refractive index contrast can be generated via nonlinear absorption of femtosecond laser in trans-
parent materials, where a trajectory of laser focus transforms to a waveguide. Elaborate control of the trajectory 
enables complex optical circuits22–24 as well as three-dimensional configuration21,24.

Results
As a cloaking scheme, two prerequisites should be met: a clear image transfer and a hidden inner structure25. 
Foreground mask Ψ​ featured 0.7 mm ×​ 0.7 mm is set before the entrance window of the photonic chip and this Ψ​ 
image is expected to be soundly transported through the chip without any interference with an inner structure ħ. 
In order to cloak the 0.44 mm ×​ 0.35 mm ħ structure inside a chip, which is fabricated with a high power laser, we 
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prototype up to 5,000 waveguides in three dimensions along a spindle path opening up the central space for the 
ħ to be hidden in (Fig. 1a).

In this section, we characterize the cloaking structures by different pitches and optimize the performance 
with the introduced similarity assessment. Tomography analysis is applied to unveil the evolution of light 
field in the optimal one. In the end, we benchmark the robustness of the cloaking device with a continuous 
three-dimensional viewing angle scan.

Cloaking performance optimization.  The spindle of tightly bounded waveguides seems to be a favorable 
choice to obtain a high resolution image. However, considering the interactions between waveguides, the pitch is 
obviously a crucial parameter to determine the clarity of image transfer. In our experiment, we fabricate 10 con-
figurations of spindles with different pitches ranging from 13 μm to 31 μm and the corresponding cross sections 
captured using a 20×​ objective lens with a numerical aperture of 0.04 and 16×​ eyepieces are exhibited in Fig. 1b. 
A Gaussian beam (405 nm) is radiated through the mask at the input of the spindle and collected at the output by 
a CCD camera, as shown in Fig. 1c,d. Each configuration contains two sets: with (Fig. 1d) and without (Fig. 1c) 
the inner structure. As illustrated in Fig. 1c,d, various outputs are observed owing to different pitches. In order to 
evaluate their performances, a uniform statistical criterion should be set up. Therefore we introduce the normal-
ized cross correlation (Γ​)26,27, a common and convenient assessment of the similarity between two image patterns 
with the basic idea to compare the grey scale of each corresponding pixel between two images. Specifically, when 
images are converted into grey matrixes, Γ​ between image a and b can be represented as:

Γ =
∑ − −

∑ − ∑ −
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( ) ( ) (1)
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where i =​ 1, 2, …​ represents the ith pixel of the image. a, b is the average value of all the grey scale of pixels of a and 
b, respectively. According to the definition, the Γ​ ranges from 0 to 1; the closer to 1 the value is, the more similar 
two figures are to each other.

Firstly we compare the similarity of Ψ​ between the one only passing through the chip substrate (Fig. 2a) and 
the one passing through the waveguides with different pitches (Fig. 2b,c). The results (Γ​a,b; Γ​a,c) sketch that the Γ​ 
value increases steadily and reaches the peak at the pitch value of 21 μm and then decreases with the pitch getting 
larger. The optical coupling (crosstalk) distorts the light field propagating in the waveguides when they get too 

Figure 1.  (a) Principle of on-chip cloaking. Directional light through a mask of “Ψ​” is incident onto the 
window where thousands of waveguides embedded in the chip, propagating along the waveguides to circumvent 
the inner structure “ħ” and re-assembling to restore the mask image “Ψ​” without interference of “ħ”. (b–d) 
Characterization of cloaking structures with different pitches: (b) Cross sections of cloaking windows under the 
microscope with scale bars and duty cycles. Output images of the cloaking structures with (d)/without (c) the 
inner structure with pitches varying from 13 μm to 31 μm.
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close to each other. It conforms to a monotonous tendency, which optical coupling decreases by about 85% with 
every pitch increase of 2 μm, according to our calculation. Due to the elliptical cross section (see Fig. 1b), the 
crosstalk distortion is especially intensive in the vertical direction. On the other hand, a larger pitch constraints 
the total volume of information in virtue of the lower waveguide density. We calculate the duty cycle, the ratio 
of the total cross sectional area that the waveguides occupy to the CCD active area, to quantitatively show the 
waveguide density. (shown in Fig. 1b).

As referred in the first result (See line Γ​a,b; Γ​a,c in Fig. 2), where 21 μm is regarded as the optimal pitch for 
transmitting the image, the maximum Γ​ value is still moderately large, which can be attributed to the overweight 
of the background (the region on the image except the Ψ​) in the calculation of Γ​. To estimate the influence of 
the background, we extract region ii in Fig. 2a–c and calculate the Γ​, as shown in Fig. 2 (Γ​aii,bii; Γ​aii,cii). The result 
shows that the similarity of the background between different images remains at a low level (within the range of 
0.18 ±​ 0.03).

In view of the low weight of background noise visually, we clip the structure of Ψ​ (Region i in Fig. 2a–c) from 
a uniform background and then re-calculated the Γ​. As expected, the Γ​ values increase prominently, reaching 
the peak at 21 μm (Fig. 2 (Γ​ai,bi; Γ​ai,ci)). Furthermore, it is the consequence of the inevitable dissipation of light 
between waveguides that the maximum of Γ​ai,bi, peaking at 0.986, still cannot reach 1. Actually, the pitch of 21 μm 
reaches the image standard as high as a retina image.

In order to give a quantitative indication of that the inner structure has been well cloaked. We remove the 
foreground mask Ψ​ and compare the similarity between the output image of the chip with the uncloaked inner 
structure ħ (Fig. 2d), the one without the cloaked structure (Fig. 2e) and the one with the cloaked structure 
(Fig. 2f), respectively. Provided that the cloaking performance is not that good, we should be able to see the inner 
structure ħ shown in Fig. 2f, and a higher Γ​d,f than Γ​d,e. Apparently, the results show the Γ​ values fluctuate around 
0.13 ±​ 0.05, at a very low level which is hard to be distinguished from the background noise.

Tomography analysis of on-chip cloaking.  To reveal the evolution of light field in the printed cloak, 
tomography analysis is applied to the mechanism of cloaking. We cut the chip transversely, record the data from 
the output and compare these experiment results with simulation ones.

We simulate this experiment by a commercial software RSoft (Beam type: Gaussian, wavelength: 405 nm, 
refractive index 1.5198) and derive the distribution of the light field. As shown in Fig. 3, after the beam incidence, 
most light circumvents the cloaked area along the waveguides, while the rest is scattered by the bulk of the chip 
and forms the weak white noise in the background. Also we find the light distribution in the output is quite simi-
lar with the one in the input, which means little information may have lost after the transmission.

Inspired by the widely used tomography in biological science28,29, we perform a tomography on our cloaking 
chip by grinding the chip to a predefined length, which takes 1.5 hours for each millimeter removal on a polisher. 
As the chip gets shorter, by observing the cross section pattern, the process of the projection image splitting into 
two parts gradually apart from each other and then combining into one again is experimentally reproduced. 
Comparing the numerical results of the processed intensity distribution along the lateral axis (Fig. 3b), we can 
observe that the numerical one is more fluctuant, which is because the stray light smooths the fluctuation in the 
experiment.

Figure 2.  Area instruction of Γ analysis and cloak characterization. (a–c) Show the output images of “Ψ​”. 
Area i and ii represent the exact area of “Ψ​” and the background, respectively: (a) Cloak off and without the inner 
structure “ħ”. Cloak on and (b) without “ħ”/(c) with “ħ”. (d–f) Gaussian beam without “Ψ​” mask. (d) Cloak off and 
with “ħ”. Cloak on and (e) without “ħ”/(f) with “ħ”. Cloak characterization. (1) Γ​ value comparison: Ψ​ structure 
(Γ​ai,bi; Γ​ai,ci) >​ output image (Γ​a,b; Γ​a,c) >​ background (Γ​aii,bii; Γ​aii,cii) ≈​ hidden ħ (Γ​d,e; Γ​d,f). (2) Γ​ values peak at 
the 21 μm pitch of the output image and Ψ​ structure. (3) The fluctuation of Γ​ values on a low level represents the 
numerically well cloaked ħ.
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Three-dimensional capacity of cloaking.  Three-dimensional capacity is frequently employed to bench-
mark the performance of a cloaking approach. In our experiment, while our cloaking approach is only imple-
mented in one dimension to demonstrate its feasibility, the same method can be extended to three dimensions 
with higher complexity of waveguide arrangement and larger number of printed waveguides. We should note 
that cloaking in one dimension is not that trivial in certain scenarios. For instance, the chips are packaged leav-
ing only some specific access to the public. The components placed at appropriate locations can be well hid-
den on the chip in the observation direction. Interestingly, even our one-dimensional configuration has its 
three-dimensional capacity of cloaking in a cone, which can be understood as an effect of collective numerical 
aperture of waveguides.

Therefore, the tolerance for viewing angle on the chip, which shows three-dimensional capacity of cloaking, 
is also investigated18,19. We change the view direction by adjusting the lens behind the cloaking chip (21 μm 
pitch, with the inner structure) multi-directionally and align the output image with the corresponding direction 
as shown in Fig. 4. The sharpness, brightness and visibility decrease as the viewing angle gets large, though the 
Ψ​ does not distort. An elliptical-like region spanning 8.0° laterally and 6.7° vertically outlines the tolerance for 
viewing angle. Besides, the limited angle that we derive above conforms to the numerical aperture theory of an 
individual multimode fiber. It is remarkably interesting that, the inner structure is cloaked so well that even if the 
obliqueness of the viewing angle is large enough to affect the image transmission, no parts can be observed. In 
addition, output powers in Fig. 4a are measured and plotted correspondingly (see Fig. 4b) which describes the 
energy distribution in the output light cone.

Discussion
Length difference of waveguides introduces phase distortion site by site. In our experiment, imperfect collec-
tive bending of waveguides may generate site-dependent length difference and therefore differential phases. A 
phase-preserved cloak30–32 can be realized by setting the difference to be integral times of 2π in the fabrication 
process of femtosecond direct writing. Waveguide dispersion is highly related to the bandwidth performance of a 
cloak. While the monochromatic laser used in our system is dispersion insensitive, a broadband wavelength can 
be covered for our multimode waveguides in size of 16 μm ×​ 10 μm with a large V number of 13.62.

The capacity of the cloaking structure depends on the arrangement of waveguides. In our configuration, we 
implement the cloaking structure in the curvature radius 85.9 mm (see Methods) with refractive index contrast 
0.0015. We obtain an optimal cloaking performance in a hidden region in size of 0.44 mm ×​ 0.35 mm. With the 

Figure 3.  Tomography of the cloaking chip. Simulative (a) and experimental (d) tomography of on-chip 
cloaking scheme is displayed with intensity distribution along the lateral axis in (b,c) respectively.
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decrease of curvature radius, larger bending loss will be introduced, however, the relationship between cloaking 
area and curvature radius is not always monotonous.

In conclusion, we have presented the first experimental demonstration of invisibility cloak in waveguide optics 
that can hide millimeter-scale structure inside a photonic chip. The printed waveguides confine and guide light 
field in a three-dimensional array, and evolve with collective curvature in the propagating direction to mimic 
the Poynting vector in transformation-optics-based cloak1. A larger invisible volume is attainable with tightly 
bending cloak spindle of high refractive index contrast33 and rearrangement of waveguides. The quality of image 
transfer that benchmarks the performance of the cloak can be upgraded by increasing the waveguide density and 
suppressing crosstalk-induced distortion simultaneously, which is achievable if we can manipulate all the phases 
of evanescent light interference between waveguides24. The on-chip image transfer itself may stimulate novel 
applications in deep space exploration34 and biological sensing35. Furthermore, the printed cloak allows backdoor 
operations like swap or coupling isolated from observers, representing an emerging problem of information secu-
rity and hacking on a photopic chip.

Methods
Waveguide inscription and laser processing.  A femtosecond laser (10 W, 1026 nm) with 290 fs pulse 
duration and 1 MHz repetition rate is frequency doubled to 513 nm and directed into an spatial light modulator 
(SLM) to create burst trains which is focused on a borosilicate substrate (20 mm ×​ 20 mm ×​ 1 mm) with a 50×​ 
objective lens with a numerical aperture of 0.55 to fabricate several thousand spindle waveguides (85.9 mm-ra-
dius curves with 1.5 mm-long straight design at both ends; refractive index increase of 0.0015 in the borosilicate 
substrate 1.5198) at a constant velocity of 10 mm/s. Array is formed with a cross section size of 0.7 mm ×​ 0.7 mm 
and great efforts have been made to process depth independent waveguides through power and SLM compensa-
tion. An inner structure of reduced Planck constant ħ whose visibility is guaranteed by a high power laser direct 
writing back and forth hundreds of times is located in cloaking area with the size of 0.44 mm ×​ 0.35 mm (See Fig. 5 
for overall design parameters).

Correlation Coefficient value acquisition.  Since we only concern about the Ψ​ in images a and b (See 
Eq. 1), the exact CCD image clipping is necessary. To eliminate the error caused by the slight shift of Ψ​, we make a 
clip of image a with a resolution matrix of M ×​ N, and then crop a smaller box of image b with the matrix of m ×​ n 
(m ≤​ M, n ≤​ N) in the same way. Transforming the RGB matrix into grey scale, we compare the m ×​ n matrix 
extracted from b with every m ×​ n submatrix of a. The final normalized correlation coefficient value between a 
and b, Γ​a,b, is chosen to be the maximum of the (M −​ m) ×​ (N −​ n) results. Specifically in our demonstration, we 

Figure 4.  (a) Image quality on the cloaking chip with different viewing angles. We get 13 ×​ 12 output images by 
adjusting the lens behind the chip for continuously multi-directional angles and aligning the output image with 
the corresponding directions. (b) Normalized energy angular distribution. An elliptical-like region spanning 
8.0° laterally and 6.7° vertically outlines the tolerance for viewing angle in energy distribution.
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crop image a of 240 ×​ 320 pixels and image a of 204 ×​ 236 pixels. The Γ​a,b value is chosen to be the maximum of 
(240 −​ 204) ×​ (320 −​ 236) =​ 3024 results.

Simulation of light field evolution.  A commercial Beam Propagation Method software is used to test the 
cloaking scheme qualitatively in advance. We build a glass block with volume of 20 mm ×​ 1.6 mm ×​ 0.8 mm, trans-
parent boundary condition, refractive index 1.5198 as a photonic chip where 38 ×​ 38 waveguides (the size of each 
cross section is 16 μm ×​ 10 μm) are imbedded with index increase of 0.0015. All other geometry conforms to the 
fabrication structure. A 0.8 mm ×​ 0.8 mm beam, cut from a non-polarized Gaussian beam of 405 nm wavelength 
by a square mask, is launched on the cloaking chip. All simulation results are illustrated in Fig. 3a,b.

Three-Dimensional Capacity Characterization.  A Gaussian beam (wavelength 405 nm; beam waist 
1.8 mm) through the 0.7 mm ×​ 0.7 mm Ψ​ mask is radiated at the input of the spindle and the output light informa-
tion is collected by two sequent lenses placed behind the chip for imaging, as shown in Fig. 6. The key parameter, 
the viewing angle α related to the output of the chip cannot be measured directly unless we move the lens 1 after 
each measurement, which leads to vast workload of readjustment. Since the light is paraxial, we can map the output 

Figure 5.  Overall design parameters. Design parameters of (a) transverse cross section at both ends, (b) the 
cloaking structure and (c) Ψ​ mask and (d) inner structure ħ with their corresponding images.

Figure 6.  Schematic of viewing angle measurement. Viewing angle scan in (a) vertical view, (b) lateral view 
and (c) 3D view. ui - object distance, vi - image distance. αi can be calculated by the measurement of angle βi 
(i =​ 1, 2).
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of the waveguide to the point O by lens 1 and measure the corresponding object distance (u1) and image distance 
(v1). Thus, α can be calculated by the indirect measurement of angle β for the relation between β and α is given by

α β⋅ = ⋅ =u v i, 1, 2 (2)i i1 1

where i =​ 1, 2 represents azimuth and elevation angles. Since images can only be formed when lens 2 is within the 
light cone, we shift lens 2 both in azimuth and altitude direction with a corresponding adjustment of the CCD 
to catch the image simultaneously. After recording the shifting distance Li (Not shown in Fig. 5) of lens 2 and the 
length of u2, we can get the corresponding angle βi:

β = =
L
u

i, 1, 2
(3)i

i

2

Substitute (3) into (2), we get the expression of viewing angle α:

α =
⋅
⋅

=
L u
u u

i, 1, 2
(4)i

i 1

1 2

In addition, we have also measured the output powers in every combination of azimuth and elevation angles 
and plotted in Fig. 4b. This energy distribution demonstrates a radiational decreasing tendency of energy from the 
center to the edge in the output light cone, which shows a visually great agreement with the radiational decreasing 
of clearity in the result of Fig. 4a.
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